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Abstract

Operational concepts in which a single operator teams with
multiple autonomous vehicles are now considered feasible
due to advances in automation technology. This will require
that an operator be able to express a high-level intent, or
goal, to the vehicle team rather than direct the actions of in-
dividual assets. Successful operator-autonomy collaboration
must quickly capture the operator’s intent and then portray
the autonomy’s trade-offs between different courses of action
in an intuitive interface. This paper describes how a multi-
disciplinary effort was employed in the design of a display
that highlights the trade-off of autonomy-generated plans and
supports the efficient allocation of assets to surveillance tasks.
Our novel control station approach combines domain mod-
eling and multi-objective optimization with innovative inter-
faces to enable a single operator to effectively command a
team of unmanned vehicles.

Agility in tactical decision-making, mission management,
and control is a key requirement for human and heteroge-
neous unmanned vehicle (UxV) teams to manage the “fog
of war” with its inherent complex, ambiguous, and time-
pressured conditions. A recent effort focused on command
and control (C2) autonomy, which includes a human oper-
ator in the real-time mission decision loop. This involved
developing a decision-aiding agent technology as well as
a human-autonomy interface paradigm by which an oper-
ator commands multiple heterogeneous unmanned vehicles.
These technologies enable operators to monitor and instruct
the autonomy in response to dynamic environments and mis-
sions as well as allow the autonomy to make suggestions to
the operator and provide rationale for generated plans. Fa-
cilitating operator-autonomy interaction is a key challenge
for achieving trusted, bi-directional collaboration.

To enable operator-autonomy teamwork in control of mul-
tiple unmanned vehicles, a novel adaptable automation ap-
proach has been developed through which an operator makes
inputs that determines the degree to which tasks are auto-
mated and how they are performed. Specifically, the oper-
ator communicates to a decision-aiding agent by calling a
“play” (a high-level command) that is translated into a se-
ries of automation tasks for one or more unmanned vehicles
to perform. For instance, a ’Monitor Target Alpha’ verbal
or manual command from the operator prompts the agent to
reason about which unmanned vehicle(s) should optimally

be assigned to the play (e.g., those with appropriate sensors,
tracking capabilities, etc.). Plays are represented formally
(domain modeling) and, when combined with operator con-
straints and situational factors, allow the agent to enumer-
ate all possible courses of action (COAs) that would fulfill
the operator’s intent. The agent then ranks these COAs ac-
cording to multiple optimization criteria and presents them,
along with their trade-offs, in a specialized display to the
operator. The operator’s approval results in the automated
completion of that play.

This approach to operator-autonomy teaming was devel-
oped and implemented in a high-fidelity ground control sta-
tion for evaluation using a simulated security force opera-
tions scenario in which a single operator manages 12 un-
manned air, ground, and water surface (4 each) vehicles.
Data collection is currently underway to confirm that opera-
tor workload is improved by the use of high-level plays and
agent-aided decision making.

The objectives of the present paper are to provide details
on how this approach was implemented and illustrate the
cross-disciplinary contributions to the resulting capability.
First, an introduction to the domain modeling formalism em-
ployed by the decision-aiding agent will be provided. Con-
tributions from computational computer scientists are fur-
ther shown by an explanation of multi-objective optimiza-
tion, which forms the basis of ranking candidate courses of
action (possible ways of fulfilling a play). Next, we illus-
trate how a specific play is instantiated in the domain mod-
eling formalism, and then used to produce and rank candi-
date courses of action for the human operator to consider.
Lastly, the contribution of human interface developers is il-
lustrated with explanations of how the operator’s intent is
captured and how the agent’s solutions are communicated to
the human-operator team member.

Domain Modeling
The first step in transforming play calls (operator intent) into
possible courses of action is formally capturing the domain
of interest. We employ feature-oriented domain analysis, an
approach which defines a domain in terms of its common
aspects as well as the differences between related systems
in the domain (Kang et al. 1990). Specifically, we spec-
ify domain models as a hierarchy of related entities and
constraints. Using an automated code generation process,
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Figure 1: Simple domain with 6 events (A-F), 1 event cardi-
nality (ec) relation, and 2 group cardinality (gc) relations.

these domain models are transformed into a dynamic con-
straint satisfaction problem (Mittal and Falkenhainer 1990)
that can be automatically solved using an off-the-shelf con-
straint solver like MiniZinc (Nethercote et al. 2007). This
section provides the details of our domain formalism, in-
cluding the constraint language used to shape a domain by
pruning potential solutions from the constraint solver.

A domain model in the IMPACT decision-aiding agent
consists of events and two types of relations, alternating
in a tree with an event as the root1. Events may contain
named attributes whose values are read or written by con-
straints. The group cardinality relation allows for between n
and m child events to be present in a given solution. When
n and m are both 1, for example, the relation behaves like an
exclusive-or (exactly 1 child in each solution) rather than a
conjunction (all children) or disjunction (at least n children,
at most m). The event cardinality relation always contains
a single child (template) event, and requires between n and
m copies or instances of this event be present in all solu-
tions. Each instance may have different sub-events present
in a given solution or different values for its attributes. In
the space of existing feature model systems, our domain for-
malism is both extended (supports attributes) and cardinal-
ity based (has an event cardinality relation) (Benavides, Se-
gura, and Ruiz-Cortés 2010). This flexibility captures rich
domains, but still retains the formal rigor of feature model-
ing.

Figure 1 contains a simple domain with 6 events (A-F)
and 3 relations (1 event cardinality, 2 group cardinality). The
mins and maxes are displayed to the right of each relation
(n..m). In this domain, any number of B’s may be present
(each with a copy of the sub-structure). Each B may contain
either a C or D, and may contain E, F, or both E and F. An
example solution is shown in Figure 2 with 4 B’s (excluded
sub-events are shown but shaded).

Without additional constraints, the domain in Figure 1
would have a total of (2 × 3)4 = 1296 solutions, assum-
ing the event cardinality under A has 4 copies of B (i.e.,
n = m = 4). A simple constraint, like C and E cannot both
be present in any B, would reduce this number to 256 (be-
cause each B now only has 4 valid configurations instead of
6). Using domain-relevant constraints, the enumerated space

1The term event reflects the decision-aiding agent’s use of a
complex event processing system as a working memory (Eugster
et al. 2003). They are typically referred to as features.

Figure 2: Example solution from the domain in Figure 1.
Shaded events are not present.

of solutions can be shaped to match modeling needs. Parallel
algorithms for quickly searching very large solution spaces
have been developed and accelerated in hardware (Atahary,
Taha, and Douglass 2016).

Non-Determinism and Constraints
By itself, a domain model represents only the structure of all
possible solutions – which events may be present in a given
solution. Group cardinalities whose mins (n) and maxes (m)
do not equal the number of child events under them (c) cap-
ture domain non-determinism (n = m = c does not hold).
With non-determinism in a domain, different solutions may
contain very different sub-structure under these relations,
depending on the n and m of each relation and any addi-
tional constraints.

Domain and situational constraints shut down non-
determinism, by either pruning impossible (domain) or ir-
relevant (situational) solutions. We express both kinds of
constraints with a logical language that captures first-order
relationships between events and attributes (Table 1) as well
as second-order relationships across event cardinality in-
stances (Table 2). For example, the sample constraint from
the previous section (C and E cannot both be present in
any B from the domain in Figure 1), could be expressed as
every(X,C =⇒ ¬E).

Constraint Description (C = Constraint, X/Y = Event)

X[i, j] Asserts that X must be present in all solutions. In-
dexes i, j, etc. specify event cardinality indexes from
the root.

¬C If C is true, exclude solution.

C1 ∧ C2 Both C1 and C2 must be true.

C1 ∨ C2 Either C1 or C2 (or both) must be true.

C1 =⇒ C2 If C1 is true, then C2 must be true.

C1 ⇐⇒ C2 C1 must be true if, and only if, C2 is true.

X.a OP Y.b Attributes a and b of X and Y are related by operation
OP (e.g., =, <).

Table 1: First-order constraint language for domain models.

Attribute values may be compared or overwritten by con-
straints, but they are not treated as constraint variables. In
other words, the constraint solver will not enumerate an
attribute’s domain when generating solutions. This was a
deliberate design decision, allowing us to isolate all non-
determinism to events under group cardinality relations.
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Constraint Description (C = Constraint, E = Event Cardinality)

every(E,C) C holds for all events under E.

atLeast(n,E,C) C holds for at least n events under E.

atMost(n,E,C) C holds for at most n events under E.

exactly(n,E,C) C holds for exactly n events under E.

Table 2: Second-order constraint language for domain mod-
els.

Multi-Objective Optimization
While all solutions from a domain model will necessarily
be constraint-compliant, some may be preferred more than
others. Using objective functions, the “value” of each so-
lution can be computed, allowing solutions to be compared
and ranked. When more than one objective function is used,
finding the “best” solution becomes a multi-objective op-
timization problem (Deb 2001) with autonomy-generated
courses of action across six different conflicting objectives.
By default, total minimized vehicle arrival time is the only
objective for optimization. However, the objectives of min-
imized fuel usage, maximized stealth, maximized presence,
maximized crowd effectiveness, and maximized track effec-
tiveness can be preferred.

An important consideration in multi-objective optimiza-
tion is the normalization of objective values (Yoo and Har-
man 2007). Because these values may be compared or com-
bined, they must exist on the same scale (with the same
units). Normalization is highly dependent on the objective
function and the intended comparison/combination method.
A common method is to simply scale all values relative to
their observed minimums and maximums. This may artifi-
cially inflate or obscure differences between solutions (e.g.,
milliseconds difference appears as significant as a difference
of kilometers).

Many different ways of combining objective function val-
ues exist, such as the scalarization technique or weighted
sum method (Deb 2001). We use the latter, which involves
normalization across each specified objectives of interest
(assuming equal weight for all selected objectives) and a
summing of the normalized values. Additionally, ranking is
influenced by the National Imagery Interpretability Rating
Scale (NIIRs) size target rating (Kim, Kim, and Kim 2008),
environmental conditions, asset allocability, and other fac-
tors (see Table 3 for details). Some values, such as presence
and tracking effectiveness, are based on an integral rating
scale derived from each vehicle’s type and payload. If a
given solution has the best value across all objective func-
tions, then it is said to be Pareto optimal. Multiple Pareto
optimal solutions may exist in a set of solutions, but a de-
cision maker must ultimately evaluate and accept a single
course of action.

Courses of Action
A play represents an operator’s high-level intent for a
surveillance task, possibly involving multiple, cooperating
vehicles. Figure 3 shows a domain model that captures plays

Objective Description

Time Estimated arrival and execution times
of the play.

Fuel Available fuel at play completion us-
ing a linear burn rate based on the ve-
hicles’ flight profile.

Stealth Sound intensity of vehicles’ engines at
mission altitude.

Presence Payload and size-based vehicle abili-
ties to project force.

Tracking Payload-based vehicle ability to track
targets.

Crowd Control Payload-based vehicle ability to con-
trol crowds with less-than-lethal mea-
sures.

Environment Sensor and maneuverability-based ve-
hicle ability to perform mission under
ambient conditions (e.g., fog).

Target Size Sensor-based vehicle ability to detect
targets of an operator-provided NIIRS
size using the GIQE equation (Smith
et al. 1999).

Allocability Whether or not vehicles can be imme-
diately assigned to plays.

Table 3: Agent objective functions. Solutions are sorted by
the objectives’ summed, normalized values.

for point inspect and patterned search plays. Each play has
a set of mission requirements (e.g., requiring a specific sen-
sor), and an allocation of unmanned assets. The details of
each vehicle are shown in Figure 4, which includes its type
(air, ground, surface) and whether or not it will participate
in the play. When a specific play is “called” by the opera-
tor, the agent asserts information into its domain model. For
example, ’point inspect at alpha with IR’ would constrain
the domain model with a Sensor mission requirement, a
Point Inspect task type, and a Target with point al-
pha’s latitude/longitude (previously briefed).

Because in-situ play and vehicle details will fully deter-
mine most group cardinality choices, the non-determinism
in this play domain model will only capture uncertainty
about vehicle participation in the play (the Active/Not
Active choices in Figure 4). When run through the con-
straint solver, each solution (a constraint-compliant assign-
ment of choices to group cardinalities) will be a possible
vehicle allocation, or course of action (COA), that could be
taken to achieve the operator’s intent. Each COA can then be
ranked according to its objective values (Table 3), and pre-
sented to the operator in a specialized display (Figure 9) for
consideration and approval. The agent’s domain model in-
cludes a-priori domain constraints on vehicle-task eligibility
– e.g., surface vehicles cannot participate in ground surveil-
lance tasks – as well as details of the current vehicle states
(positions, fuel, sensors), so the operator can be assured that
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Figure 3: Example play domain with mission requirements,
autonomous assets, and task details.

Figure 4: Vehicle sub-domain from Figure 3 with fact sheet
information and participation group cardinality.

the suggested COAs comply with actual vehicle capabilities,
mission restrictions, and doctrine.

Human-Autonomy Interfaces
For envisioned future multi-UxV command and control, op-
erators will communicate intent to the agent by calling a
play that defines what defense mission related task needs
to be completed, as well as where the task needs to be com-
pleted. Play calling can be initiated with a speech command
or selection of an icon on one of the Play Calling Inter-
faces (Calhoun et al. 2017). Figure 5 explains the symbol-
ogy used to denote play type (center of each icon) and UxV
(shape and location of symbols on exterior circle) in the in-
terfaces. For example, the interface shown in Figure 6 in-
cludes an icon for each of the twenty-five types of plays cur-
rently supported. Here, the icons are arranged by play type
(point, route, area, “target plays” (non-threat versus poten-
tial threats)). In contrast to this Play Calling Interface that
is always available overlaid on a map, Play Radial menus
can be called up by clicking or touching a vehicle symbol
or location on a map (Figure 8). This interface approach
filters plays such that only the options relevant to that ve-
hicle or location are presented (e.g., the menu does not in-
clude ground-based plays for locations that are in the wa-
ter). With the specification of task type (and location), the
agent can generate COAs based on pre-established defaults
for each play type (e.g., for “Air Inspect” at a point, the de-
fault settings are: environment-unobscured, optimize-time,
priority-high, standoff distance-0 m, loiter radius-1000 m,
length-200 m, direction-clockwise). However, to tailor the
generated COAs to current conditions, the operator can com-
municate constraints to the agent via the Play Workbook that

Figure 5: Icons and descriptions of all agent-supported
plays.

Figure 6: Play calling interface. The center icon indicates
the play type. Peripheral icons indicate vehicle type.

is displayed after the play is called (Calhoun et al. 2017).
Figure 7 shows the play workbook for a surface inspect

play call (asking an unmanned sea vehicle to inspect a
lat/lon). This workbook view contains rows of icons that
represent default mission constraints (e.g., an infra-red sen-
sor must be used) as well as additional operator knowledge
that the autonomy can use for more relevant COA sugges-
tions (e.g., there is smoke at the target lat/lon). The high-
lighted icons on the right indicate that the weather is sunny
(minimal clouds), that time is the primary optimization cri-
teria, and that lethal force is necessary to complete the mis-
sion.

The details of the play call (type, location, etc.) and the
operator restrictions/additional knowledge from the work-
book are provided to the agent along with the current
states of all vehicles. Each piece of information will ei-
ther set event attributes in the domain model or reduce
non-determinism by closing off possible group cardinality
choices. Before recommending courses of action, the only
non-determinism remaining in the domain model is regard-
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Figure 7: Play workbook example for a Surface Inspect play
call. Play constraints and objectives are shown on the right.

Figure 8: Play radial menu for calling plays directly on a
vehicle or at a specific location.

ing vehicle participation in the play. Each solution, there-
fore, is a different constraint-compliant allocation of vehi-
cles.

COA Display
Visualizing the trade-offs of different courses of action be-
comes challenging as more factors are considered by the
decision-aiding agent. An approach that allows a compar-
ison of N COAs across M parameters is needed. We’ve
adapted a parallel coordinate plot (Edsall 2003) such that
each COA is represented by a line that passes through a se-
ries of parallel axes, with each axis representing a differ-
ent objective function (Behymer et al. 2014). In this man-
ner, all the objective functions can be compared: estimated
time of execution (ETE), fuel (ENERGY) needed, stealth
(DETECT), presence (FORCE), effectiveness in managing
a crowd (CC), and ability to track an object (TRACK).

In the COA Comparison Interface (Figure 9), each mis-
sion related objective is assigned a column, and each candi-
date plan is assigned a unique color and shape for the plotted
points. For this example, the COA indicated by the bottom
left purple plus sign is slower than all other COAs in terms
of estimated time enroute. However, this COA, as well as the
yellow/square coded COA, are the only two options that rate
high on three of the mission parameters. The values of each
column are normalized on a scale from 0 to 100, with 100
being the ideal value for the underlying objective function.
This allows an overall score for each plan (“AVG”) column
to be represented. Selecting one of the COAs also calls up a
dashed route on the map and additional textual explanations

Figure 9: Course of action comparison for multiple surface
inspect plans. The outlining colors of each plan match the
plot colors.

Figure 10: Explanations for a single course of action.

from the decision-aiding agent (Figure 10).

Conclusion and Future Work
The interfaces described herein enable bi-directional com-
munication between the operator and the decision-aiding
agent. The operator informs the agent of intent with respect
to vehicle control and any constraints related to the current
situation. The agent, via the interfaces, provides feedback on
how the play call was interpreted, enumerates the possible
COAs that fulfill the operator’s specified intent, ranks these
options to facilitate comparison, and provides additional ex-
planations. The subjective data collected in simulation to
date employing the operator-autonomy team approach have
been very positive. Personnel familiar with military base
defense and/or unmanned vehicle operation have rated the
interfaces as very easy to learn, easy to use, and well inte-
grated into the station. They have also commented that the
flexible control approach with the intelligent agent support
would be a great aid to workload and help operators main-
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tain situation awareness. One commented that this approach
would be “spectacular” for force protection.

Evaluations are on-going and it is anticipated that com-
ments from the experimental participants will further inform
interface design and how the agent supports single operator
control of multiple unmanned vehicles. Meanwhile, agent
and interface developers are already considering improve-
ments to support operator-agent communication and estab-
lishment of a shared situation awareness. For instance, the
temporal component of vehicle operations could be better
supported. It is desirable that the interfaces support commu-
nication of desired temporal constraints to the agent (e.g.,
to have a weaponized vehicle strike a hostile at Gate Char-
lie, followed 10 minutes later by a vehicle with an appro-
priate sensor to capture imagery for damage assessment).
Similarly, the agent’s reasoning could be expanded to sup-
port scheduling of assets that perform periodic random anti-
terrorism measures (e.g, capture image of armory every 15
minutes). These advancements may involve creation of new
interfaces (e.g., a temporal view of ongoing and projected
actions of each vehicle and associated play) or modifications
of existing interfaces (e.g, the ability for an operator, via the
COA Comparison Interface (Figure 9), to adjust the weights
of the different objectives for the multi-objective optimiza-
tion process).

Any changes to the human-autonomy interfaces, domain
modeling, or multi-objective optimization will be followed
by experimental sessions in which human participants will
perform tasks in the simulation with both objective and sub-
jective data collected. In this manner, the utility and value
of any developments that influence the operator-agent di-
alogue will be verified. Multi-disciplinary team members
are involved in the evaluation cycles, and have successfully
demonstrated the value of this approach in the development
of COA-centric interfaces for multi-unmanned vehicle con-
trol stations.
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