
Detecting User Intention Changes Using the Kullback-Leibler Distance

Eric Demeester and Alexander Hüntemann
Department of Mechanical Engineering, Faculty of Engineering Technology, Research group ACRO

KU Leuven - University of Leuven, Technology Campus Diepenbeek
Diepenbeek, Belgium

eric.demeester@kuleuven.be

Abstract

Many people may benefit from assistive robots that under-
stand their users’ intentions and aid them with the execu-
tion of these intentions in a safe and intuitive way through
shared control. In the past, our research group has worked
on semi-autonomous robotic wheelchairs transporting people
with mobility challenges. Experimental results with our user-
adaptive Bayesian approach for both intention estimation and
shared human-machine decision-making under uncertainty
have shown that in situations where the driver changes his or
her intention, the assistive behavior by the robot may under
certain conditions be counter-intuitive as it continues to take
actions that are in line with the previous user intention, and
this for too long a period of time. To remedy this, this paper
proposes an approach to detect such changes in user plans in
order to make the robot’s assistive behavior more reactive and
thus more intuitive. The approach adopts a test that checks the
consistency of the posterior distribution over user intentions
with the given steering signals. A proof-of-concept study of
this test’s performance is shown.

Introduction

One of the major distinctions between humans and most ani-
mals may lie in the human’s construction and usage of tools.
As an example, robots were developed as tools to assist hu-
mans in dangerous, heavy-duty or repetitive tasks. One of
the many types of assistive robots are robotic wheelchairs,
which are developed to reduce the mobility challenges of
a large group of elderly and physically impaired people,
thereby also decreasing the number of accidents and increas-
ing these people’s independence from others and quality of
life in general. Many research groups have spent substantial
resources on this noble goal, see e.g. (Simpson and Levine
1999), (Yanco 2000), (Montesano et al. 2010), (Parikh et
al. 2004), (Lankenau and Röfer 2001), (Carlson and Millán
2014).

An effective assistive robot should understand the plans
of its user and aid him or her with the execution of these in-
tentions in a safe and intuitive way through shared control.
In order to realize this, our research group has devised and
tested a user-adapted Bayesian approach for both intention
estimation and joint human-machine decision-making under

Copyright c© 2016, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

uncertainty. However, experimental results with this frame-
work have shown that in situations where the driver changes
his or her intention, the assistive behavior by the robot may
under certain conditions be counter-intuitive as it continues
to take actions corresponding to the previously estimated in-
tention for too long a period of time. This paper proposes an
approach to detect such changes in user intention in order to
make the robot’s assistive behavior more reactive and thus
more intuitive. The approach adopts a test that checks the
consistency of the posterior distribution over user intentions
with the given steering signals.

This paper is organized as follows. First, our approach
to Bayesian intention estimation is briefly reviewed. Then,
an approach to detect user intention changes based on the
Kullback-Leibler distance is proposed. Next, an experimen-
tal evaluation of this consistency test is discussed, before
concluding this paper and pinpointing future work.

Framework for Bayesian Intention Estimation

Our Bayesian plan recognition approach is briefly discussed
in this section. Demeester et al. and Hüntemann et al. pro-
vide further details.

Notation

Consider the control-theoretic view on shared control and
plan recognition shown in Figure 1. A human operator

Figure 1: This control-theoretic view on plan recognition
and shared control introduces the adopted notation.

Yhuman gives user signals g to control the assistive robot
Yrobot, where g represent the measured signals such as po-
tentiometer voltages in traditional joysticks or EEG. Inter-
face signals u can be either discrete or continuous, and can

The 2016 AAAI Fall Symposium Series:
Shared Autonomy in Research and Practice

Technical Report FS-16-05

318

be sampled or occurring at asynchronous time instants. In
case the user signals g are directly observed, as is the case
for most current interfaces, u equals g or Yinterface ≡ 1.
The operator has been simplified in this scheme as an ele-
ment that reacts upon an error signal e, which stems from
the difference between the system’s desired behavior or ref-
erence signal i and the system’s actual behavior y as ob-
served through the human’s senses Ysenses. Yfeed forward

represents internal models the user has of the system.1 The
human’s desired control signal can possibly be corrupted
by physical handicaps Yhand. Plan or intention recognition
in a sense boils down to estimating the reference trajec-
tory i the user has in mind for the robot. The shared con-
troller Yshared control receives signals z from all kinds of
sensors Ysensors, user signals u, and a probability func-
tion over possible states i from the plan recognition mod-
ule Yplan recognition in order to calculate a decision or ac-
tion a while dealing with uncertainty. Except when ground
truth is known such as in simulations, the shared controller
observes the robot’s output or behavior y only through its
sensors Ysensors. This means that y is not always avail-
able, but only indirectly observable as z. The sensor mea-
surements z will not always be directly adopted, but may
be transformed into an estimation of the robot’s surround-
ings, its pose probot in this map, and its twist trobot. The
plan recognition module Yplan recognition estimates the state
or intention i based on the user’s output u and the user’s
input y. All user signals up to discrete time index k are
referred to as u1:k = {u1, . . . ,uk}, all sensor measure-
ments as z0:k−1 = {z0, . . . , zk−1}, all shared control ac-
tions as a0:k−1 = {a0, . . . ,ak−1}, and all robot behavior
as y0:k−1 = {y0, . . . ,yk−1}. The user plan evolution till
time k is referred to as i1:k = {i1, . . . , ik}.

Bayesian Estimation of User Plans

At time k, u1:k, z0:k−1 and a0:k−1 are known to the plan
recognition module. Furthermore, a priori information b0:k
such as known parameters in models or maps of the envi-
ronment may be available. For notational simplicity, b0:k is
omitted in the formulas below (all probabilities are condi-
tioned on b0:k). Bayesian plan recognition then proceeds as
follows:

pk (i1:k|u1:k, z0:k−1,a0:k−1)

Bayes’ rule
= puser (uk|i1:k,u1:k−1, z0:k−1,a0:k−1)

· pk−1 (i1:k|u1:k−1, z0:k−1,a0:k−1) · η
product rule

= puser (uk|i1:k,u1:k−1, z0:k−1,a0:k−1)

· pprocess (ik|i1:k−1,u1:k−1, z0:k−1,a0:k−1)

· pk−1 (i1:k−1|u1:k−1, z0:k−1,a0:k−1) · η
causal system

= puser (uk|i1:k,u1:k−1, z0:k−1,a0:k−1)

· pprocess (ik|i1:k−1,u1:k−1, z0:k−1,a0:k−1)

· pk−1 (i1:k−1|u1:k−1, z0:k−2,a0:k−2) · η

(1)

1Reality is probably much more complex. It is not the purpose
of this scheme to present a truthful model of a human operator
though.

where η is a scalar normalisation factor to ensure that the
probabilities over all user plans sum up to 1.

Our shared control algorithms currently only require
knowledge of p (ik|u1:k, z0:k−1,a0:k−1), which is obtained
by marginalizing over i1:k−1:

p (ik|u1:k, z0:k−1,a0:k−1)

=
∑

i1:k−1

p (i1:k|u1:k, z0:k−1,a0:k−1) (2)

We have given the likelihood function
puser (uk|i1:k,u1:k−1, z0:k−1,a0:k−1) the name user
model, because it yields the likelihood that the user
outputs signals uk given that he or she has had inten-
tion evolution i1:k, given all past user signals u1:k−1,
and given all past system behavior encoded as a0:k−1

and environmental changes encoded as z0:k−1. In a
way, the user model predicts the user signals. Function
pprocess (ik|i1:k−1,u1:k−1, z0:k−1,a0:k−1) is referred to
as the plan transition or plan process model. It models
the dynamics of user plans, i.e. how user plans ik evolve
over time given previous plans i1:k−1, past user signals
u1:k−1, environmental changes z0:k−1 and system behavior
a0:k−1. Factor pk−1 in Equation 1 equals the prior proba-
bility function, i.e. the probability function at time k − 1.
Equation 2 as such is not recursive: it requires to retain
and adopt all previously gathered information to make new
estimates regarding user plans. However, updates can be
made recursive by assuming that information from at most
m past time steps influences the current user plan and user
signal, see (Demeester et al. 2008).

Application to Robotic Wheelchairs

The described Bayesian approach to intention estimation
still leaves many implementation choices open, such that
it can be tailored to a specific application. For robotic
wheelchairs, it can be assumed that the driver desires to drive
to some end pose pe = [xe ye θe]

T with a certain end twist
te = [ve ωe]

T , where θe represents the robot orientation at
the goal position [xe ye]

T , and where ve denotes the desired
linear velocity and ωe the desired rotational velocity at pe.
A velocity or twist t and pose p will be represented jointly
as the robot state x. A user plan or intention ik at time k can
then be generically described as a trajectory that the user
has in mind to achieve the goal state xgoal from the current
robot state xcurrent. This trajectory can amongst others be
represented as a sequence of robot states:

ik = {xcurrent, · · · ,xgoal}. (3)

Hypotheses regarding user plans ik can be generated in a
variety of ways, e.g. by first generating all plausible goal
state candidates xgoal based on knowledge of the robot’s
surrounding environment, and then all trajectories to these
goal states. These trajectories {xcurrent, · · · ,xgoal} can be
calculated using a motion planning algorithm. In order to be
able to recognize also complex user plans such as docking
and parking maneuvers, the motion planner should take the
robot’s kinematics, orientation and geometry accurately into
account.

319

Dealing with Multiple Intent Hypotheses

The probability distribution pk can be represented in vari-
ous ways, and may not always be consistent with the actual
state. For this, lessons can be learned from robot localization
approaches. Grid-based Markov Localization by (Fox, Bur-
gard, and Thrun 1998) discretizes the state space of robot
poses. In order to focus computational resources more to-
wards regions where it is needed, others have used a mixture
of Gaussians to model multiple robot pose hypotheses such
as (Jensfelt and Kristensen 2001), or sets of particles such
as (Lenser and Veloso 2000). After an initial phase where
there is global pose uncertainty, these approaches gradually
focus on a limited set of hypotheses until there is conver-
gence to a single mode in the probability function. However,
the robot pose may be lost again afterwards, for example
by kidnapping the robot and putting it at a random pose.
In that case, after detection that localization is lost, dealing
with unknown robot poses is either performed by localiz-
ing again from scratch by imposing a uniform distribution
over the state space such as by Porta, Verbeek, and Kröse,
by adding additional samples or pose hypotheses to the ex-
isting set such as by Fox, or by replacing existing samples
with more likely samples, see e.g. (Lenser and Veloso 2000).

For assistive robots, the kidnapped robot problem corre-
sponds to a sudden change in user plan when the plan recog-
nition algorithm is strongly focused on another user plan. At
all times, it should be verified that the actual user intention
has not changed, otherwise incorrect assistance will be pro-
vided. For this, consistency tests such as the one discussed
next will prove useful.

Detection of User Intent Changes

In order to effectively deal with intent changes, we have
combined two approaches: (1) ensuring that all user inten-
tions have at all times a minimum probability, and (2) testing
the consistency of the maintained set of user intention hy-
potheses with the given user signals. This section discusses
the adopted algorithms behind both approaches.

Ensuring a Minimum Probability

User plan hypotheses that are assigned zero probability at
one point in time will never obtain a non-zero probability af-
terwards in the Bayesian framework. Furthermore, for plan
hypotheses with a very small probability, it takes some time
to reach a certain probability level again. Therefore, some
researchers such as Larsen advise to avoid probabilities near
0 or 1 in Bayesian statistics, to prevent singular behavior for
plan hypotheses with probabilities around zero. Ensuring a
minimum probability can be compared to the injection of
noise in system models of Kalman filters, or to the replace-
ment of some samples by random samples in particle filters
such as by Lenser and Veloso, prior to performing the obser-
vation update step.

For these reasons, we want to ensure a minimum proba-
bility αmin for all plan hypotheses. Various approaches for
ensuring this minimum probability can be devised. The ba-
sic idea behind approaches implemented in this work is de-
picted in Figure 2 for discrete probability functions. The

Figure 2: The basic idea behind approaches to ensure a mini-
mum probability for each state x. The m states xm that have
a probability below a threshold αmin, are assigned αmin. The
required probability mass for this originates from some or all
states xo that have enough probability. These states xo may
or might not contribute equally to the requested probability
mass.

pseudo code of two possible variants is shown in Algo-
rithms 1 and 2. Algorithm 1 assumes that the probability

Algorithm 1 Ensuring a minimum probability for a discrete
probability function over n states, using subtraction.

1: for i ← 1 to n do
2: hasMinBelief(i) ← false
3: m ← 0 {number of states with minimum probability}
4: repeat
5: sump ← 0
6: for i ← 1 to n do
7: if pi < αmin then
8: sump ← sump + αmin − pi
9: pi ← αmin

10: hasMinBelief(i) ← true
11: m ← m+ 1
12: if sump �= 0 then
13: for i ← 1 to n do
14: if hasMinBelief(i) ≡ false then
15: pi ← pi − sump

n−m
16: until sump ≡ 0

function has been normalised prior to running the algorithm.
It first checks which states xm have a probability below the
minimum αmin (line 7). These states are assigned the min-
imum probability (line 9). Array hasMinBelief keeps
track of the m states that have been assigned αmin. The
probability mass sump that is required to guarantee a mini-
mum probability for these m states is obtained from all other
states xo having a probability p > αmin. These states con-
tribute equally to sump, as the same probability mass is sub-
tracted from each xo (line 15). This subtraction may result
in new states having too low a probability. Therefore, the
algorithm iterates until no new states with too low a proba-
bility are found. Algorithm 2 on the other hand does not as-
sume the probability function to be normalized before run-
ning the algorithm. It checks for each state xi whether its
probability pi would be below threshold αmin after normal-
ization of its current value vi (lines 10-11). Normalization of
a state’s value vi is done by multiplication of vi with a scale

320

Algorithm 2 Ensuring a minimum probability for a discrete
probability function over n states, using multiplication.

1: sumv ← 0
2: for i ← 1 to n do
3: hasMinBelief(i) ← false
4: sumv ← sumv + vi
5: m ← 0 {number of states with minimum probability}
6: repeat
7: mnew ← 0 {number of new states with too low a

probability mass}
8: for i ← 1 to n do
9: if hasMinBelief(i) ≡ false then

10: pi ← (1−m·αmin)·vi
sumv

11: if pi ≤ αmin then
12: sumv ← sumv − vi
13: pi ← αmin

14: hasMinBelief(i) ← true
15: m ← m+ 1
16: mnew ← mnew + 1
17: until mnew ≡ 0
18: for i ← 1 to n do
19: if hasMinBelief(i) ≡ false then

20: pi ← (1−m·αmin)·vi
sumv

factor a, which is obtained as follows. Suppose there are m
states xm with minimum probability αmin, and o = n −m
other states xo with value vo that have not been normalized
yet. The normalized values po of states xo should adhere to:
m · αmin +

∑
o po = 1. Since po = a · vo, a equals:

a =
1−m · αmin∑

o vo
. (4)

If pi ≤ αmin, the state is assigned the minimum probabil-
ity (line 13). If no states are found anymore with too low a
probability mass, the remaining n − m states that were not
assigned the minimum probability are normalized (lines 18-
20).

A simple experiment shows that undesired effects indeed
occur for probabilities very close to zero. Figure 3 (a) shows
a discrete a priori distribution f and a discrete observation
function g over a certain state space x. The a priori distribu-
tion is initialized by assigning to the n = 50 bins a proba-
bility mass pn equal to

pn =
1

σf

√
2π

exp

(
− (xn − μf)

2

2σ2
f

)
(5)

where μf and σf are respectively the mean and standard de-
viation of the Gaussian that is used to initialize the a priori
function f , and xn represents the x−position of the center of
the nth bin. After this initialization, the discrete distribution
is normalized. The domain of the probability function equals
x ∈ [0, 15]. For the observation function g, a similar initial-
ization with a Gaussian is adopted, but with a mean μg and
a standard deviation σg . The observation function is adopted
for k = 100 times to update distribution f using Bayes’ rule.
For k → ∞, this should result in a single peak at the mean

of the observation function. Figure 3 (b) shows the evolu-
tion of the probability function f over time if no minimum
probability is ensured. The darker a cell, the more proba-
ble it is. Figure 3 (c) shows the evolution of the probability
function f over time if a very low minimum probability is
ensured of αmin = 10−10/n. As can be seen, ensuring that
all probabilities are larger than a threshold αmin avoids the
singular behavior for probabilities near zero and allows f to
converge much faster to a position around μg , even if αmin

is very low. Values of αmin as low as 10−30/n yield similar
results, although convergence is more delayed. However, as
the mean of f approaches the mean of g, the effect of en-
suring a minimum probability is decreased, which is shown
in Figures 4 (a) and (b): convergence of f to g is slower.
Increasing the threshold further to αmin = 0.01/n has a pos-
itive effect on convergence in these cases, and this threshold
may be considered to not destroy much of the previously
gathered information.

Figure 3: Figure (a) shows the initial discrete distribution
of f and the observation function g. Figure (b) shows the
evolution of f when updating f for k = 100 times using
Bayes’ rule with g as the observation function. No minimum
probability αmin is adopted, and f converges very slowly
to a position around μg . Darker cells indicate states x that
are more probable. Figure (c) shows that this convergence is
much faster if a minimum probability threshold (in this case
αmin = 10−10/n) is adopted.

Kullback-Leibler Consistency Test

Consistency tests are adopted to check if a running hypothe-
sis is still consistent with new observations. Inconsistent hy-
potheses typically originate from an incorrect state estimate,
an incorrect observation model (puser), or an incorrect sys-
tem model (pprocess). Various consistency tests have been
used for global localization. Jensfelt and Kristensen adopt a
NIS test for checking if new sensor observations match with
one of the robot pose hypotheses in their multi-hypothesis
localisation algorithm. Lenser and Veloso compare the av-
erage likelihood of all samples given the observations to a
user-defined threshold. Porta, Verbeek, and Kröse check if
the sum of the likelihood of the particles exceeds a user-
defined threshold for a user-defined number of consecutive
times. Also outside the field of robot localization, various

321

techniques exist to check whether two histograms are instan-
tiations of the same true probability function. Narsky and
Porter provide an overview.

Figure 4: Figure (a) and (b) depict the same situation as in
Figures 3 (a) and (c), but with as means for f respectively
μf = 7 and μf = 8. Figure (c) depicts the same situation as
in Figures 3 (a) and (c), but with application of a consistency
test with threshold αKLD = 8. Right from time step 1 it is de-
tected that f and g are not consistent, and f is uniformized
and initialized with g by applying Bayes’ rule once. An al-
most instant convergence to the true state is obtained.

Since in this work no single user plan estimate i will be
chosen as the true hypothesis, the compatibility of the com-
plete probability function needs to be compared somehow
to new measurements (user signals u). For this, the sym-
metric Kullback-Leibler distance (KLD) will be adopted to
compare the probability function ppred, which predicts the
probability of user intentions in the next time step:

ppred = pprocess (ik|i1:k−1,u1:k−1, z0:k−1,a0:k−1)

·pk−1 (i1:k−1|u1:k−1, z0:k−2,a0:k−2)

with the likelihood function puser of the latest user signal:

D (ppred||puser) +D (puser||ppred) (6)

where:
D (p1||p2) =

∑
p1 · log p1

p2
(7)

If this measure exceeds a threshold αKLD, an inconsistency
between the user’s steering signals and the robot’s belief
over user intentions is assumed to be present. In that case,
the a priori distribution pk−1 is re-initialized to a uniform
distribution, and user plans are estimated from scratch again.
Figure 4 (c) illustrates this approach for the same param-
eters for f and g as in Figure 3 (a). The Kullback-Leibler
distance threshold was set to 8. The incorrectly estimated
state is detected in the first time step, the probability func-
tion is re-initialised with a uniform distribution, and conver-
gence to the correct state is almost immediate. However, for
Figures 4 (a) and (b), no inconsistencies were detected us-
ing this threshold. The Kullback-Leibler distance depends
on the number of states (intentions), which may vary over
time. This may complicate the choice of an accurate, stable
threshold αKLD. The next section will discuss this further.

Experimental Results

Figure 5 (left) defines the adopted experiment to evaluate
user intent change detection. The user starts in the middle
of a circle of possible goal locations. Using a switch inter-
face containing 3 buttons (left, right, forward) the driver tries

to execute straight-line paths to different goal locations po-
sitioned on a circle, where the driver is either in full con-
trol of the wheelchair, or gets shared control assistance us-
ing the Greedy POMDP algorithm described by (Demeester
2014). Whenever the driver reaches a goal location within
a radius of rgoal = 0.35 m, another goal location is cho-
sen to which the driver should go. The desired driving di-
rection is chosen and indicated to the user by the simulator,
but the intention estimation algorithm has no access to this
ground-truth knowledge on the user’s intent. The adopted
user model puser is modeled to depend only on the relative
angle of the goal position w.r.t. the wheelchair, as shown in
Figure 5 (right), see also (Demeester 2014). Intent changes
occur whenever the driver reaches a goal location. Further-
more, while driving to certain goal locations, sudden intent
changes are introduced by the simulator.

Prior to performing the tests, αmin and αKLD should
be determined. The KLD threshold αKLD is dependent on
αmin. We would like to find a way to automatically deter-
mine an appropriate threshold αKLD. One can devise the
following upper and lower bound to this threshold. Fig-
ure 6 (a) shows the case where we do not want our algo-
rithm to find an inconsistency: this is the case where our
probability function over intentions ppred is uniform and the
user model puser indicates a single intent as the most likely
intent. Vice versa, if the user model is uniform and the prob-
ability function has all probability mass focused on one in-
tent, no inconsistency should be found. Remark that we en-
sured a minimum probability both for ppred and puser, in
this case with αmin = 0.01/n (n representing the number of
intents). As a result, αKLD ≥ 10.64 if n = 24. Figure 6 (b)

Figure 5: (left) Benchmark test for evaluation of the ap-
proach to detect user intent changes. In the tests, the driver
sees the wheelchair and the desired intention from a top-
view perspective (shown at bottom, left). (right) Adopted
user model puser, showing the likelihood of each user signal
depending on the relative angle of the goal position w.r.t. the
wheelchair.

shows the other extreme, where we want our algorithm to al-
ways find an inconsistency. This is the case where ppred has
all probability mass focused on one intent, and puser has
all probability mass focused on another intent. As a result,
αKLD ≤ 22.21 if n = 24. A variation of this is the situa-

322

tion where ppred has all probability mass equally distributed
over h intents, and puser has all probability mass equally
distributed over the other n − h intents. For this case, Fig-
ure 6 (c) shows the KLD as a function of h. A minimum can
be seen for h = n/2, for n = 24 this is αKLD = 15.12.
Other scenarios can be thought of, but for our experiments
we use this minimum KLD as a threshold for detecting an
intent change. Figure 6 (d) shows that the adopted αKLD is
dependent on the chosen minimum probability αmin.

Figure 6: Boundaries for appropriate αKLD values (see text
for explanation).

Tests and discussion. Figure 7 shows the trajectories
executed by the user in full control (a), in shared control
mode with (b) and without (c) KLD consistency test. Fig-
ure 7 (d) shows the evolution of the KL distance over time
for the shared control approach with KL consistency test
(corresponding to (b)). Green circles in (a) indicate posi-
tions where an actual intent change occurs. In (b), green
squares correspond to correctly detected intent changes, ma-
genta squares to undetected intent changes and red squares
to false alarms (an intent change was estimated though there
was no intent change at that time instant). Figures (b) and (c)
also show the paths from figure (a) in grey, as these grey
paths serve as a reference.

These results indicate that the consistency test is indeed
effective in detecting intent changes correctly, though it is
sometimes delayed by one time step. This intent change de-
tection has a positive effect on the behavior of the shared
control assistance. Compared with the user control mode,
shared control allows the user to reach his or her goal posi-
tions with fewer user signals (352 in user control mode ver-
sus 175 in shared control mode with consistency checks).
Compared with the shared control mode without KLD con-
sistency checks, the paths in shared control mode with con-
sistency checks deviate much less from the ideal path (which
we assume to be similar to the paths in user control mode),
and assistance is much more reactive after intent changes.

As a downside of using the consistency check, we have
noticed the occurrence of some false alarms, where the in-
tent estimator incorrectly believes the user changed his or
her mind. The consequence of this is that the probability
distribution is uniformized and that the robot behaves much
more “impulsively”, taking only the latest user signal into

Figure 7: Trajectories executed by the user in full control
(a), in shared control mode with (b) and without (c) KLD
consistency test. Figure (d) shows the evolution of the KL
distance over time for the shared control approach with KL
consistency test (corresponding to (b)).

account. This should be avoided, but it cannot be realized
by raising the αKLD threshold, because the KL distance at
these false alarms was at times higher than the KL distance
at actual intent changes. Although further in-depth research
is required, the cause of the false alarms seems to lie in the
(too) narrowly defined user intention: we have adopted a sin-
gle straight-line path from current robot pose to the goal po-
sition. In reality however, many paths exist to reach that goal
position. In this setup, users sometimes prefer to follow a
less “optimal” (in the sense of: shortest) path if that subop-
timal path would involve less user signal changes, because
changing to a different interface button involves some en-
ergy that may be experienced as more expensive than reach-
ing the goal location as fast as possible.

Conclusions and Future Work

Our long-term goal is to develop a modular control frame-
work for assistive robots that aid their users in executing any
task that is possible with the robot in an intuitive way. For
robotic wheelchairs, we attempt to realize this by modeling
intentions as mental trajectories that the user has in mind
from the current robot pose to a desired goal pose. In order
to avoid “impulsive” robot behavior, information gathered in
the past is accumulated in a probability distribution over user
intentions to accurately understand the user’s plan. In case
the user changes his or her mind however, evidence from the
past should (at least temporarily) be discarded. This paper
focused on detecting such intent changes using the symmet-
ric Kullback-Leibler distance. We have obtained promising
results with this approach in our proof-of-concept tests. Nev-
ertheless, sometimes false alarms are raised. In the near fu-
ture, we intend to optimize this approach and compare it to
other goodness-of-fit tests (Narsky and Porter 2013).

323

References
Carlson, T., and Millán, J. d. R. 2014. Brain-controlled
wheelchairs: A robotic architecture. IEEE Robotics and Au-
tomation Magazine 20(1):65–73.
Demeester, E.; Huntemann, A.; Vanhooydonck, D.;
Vanacker, G.; Van Brussel, H.; and Nuttin, M. 2008. User-
adapted plan recognition and user-adapted shared control: A
bayesian approach to semi-autonomous wheelchair driving.
Autonomous Robots 24(2):193–211.
Demeester, E., H. A. V. P. E. D. S. J. 2014. ML, MAP
and greedy POMDP shared control: Qualitative comparison
of wheelchair navigation assistance for switch interfaces.
Journal of the Chinese Society of Mechanical Engineers
35(4):333–342.
Fox, D.; Burgard, W.; and Thrun, S. 1998. Active markov
localization for mobile robots. Robotics and Autonomous
Systems 25:195–207.
Fox, D. 2003. Adapting the sample size in particle fil-
ters through KLD-sampling. The International Journal of
Robotics Research 22(12):985–1003.
Hüntemann, A.; Demeester, E.; Vander Poorten, E.;
Van Brussel, H.; and De Schutter, J. 2013. Probabilistic
approach to recognize local navigation plans by fusing past
driving information with a personalized user model. In Pro-
ceedings of the IEEE International Conference on Robotics
and Automation (ICRA), 4376 – 4383.
Jensfelt, P., and Kristensen, S. 2001. Active global localiza-
tion for a mobile robot using multiple hypothesis tracking.
17(5):748–760.
Lankenau, A., and Röfer, T. 2001. A versatile and safe
mobility assistant. IEEE Robotics & Automation Magazine
8(1):29–37.
Larsen, T. D. 1998. Optimal Fusion of Sensors. Ph.D.
Dissertation, Technical University of Denmark, Department
of Automation.
Lenser, S., and Veloso, M. 2000. Sensor resetting local-
ization for poorly modelled mobile robots. In Proceedings
of the 2000 IEEE International Conference on Robotics &
Automation (ICRA’00), 1225–1232.
Montesano, L.; Diaz, M.; Bhaskar, S.; and Minguez, J. 2010.
Towards an intelligent wheelchair system for users with
cerebral palsy. IEEE Transactions on Neural Systems and
Rehabilitation Engineering 18(2):193–202.
Narsky, I., and Porter, F. C. 2013. Statistical Analysis Tech-
niques in Particle Physics: Fits, Density Estimation and Su-
pervised Learning. Wiley-VCH.
Parikh, S. P.; Grassi Jr., V.; Kumar, V.; and Okamoto Jr., J.
2004. Incorporating user inputs in motion planning for a
smart wheelchair. In Proceedings of the 2004 IEEE Interna-
tional Conference on Robotics & Automation (ICRA), vol-
ume 2, 2043 – 2048.
Porta, J.; Verbeek, J.; and Kröse, B. 2005. Active
appearance-based robot localization using stereo vision. Au-
tonomous Robots 18(1):59–80.
Simpson, R. C., and Levine, S. P. 1999. Automatic adapta-
tion in the navchair assistive wheelchair navigation system.

IEEE Transactions on rehabilitation engineering 7(4):452–
463.
Yanco, H. A. 2000. Shared User-Computer Control of
a Robotic Wheelchair System. Ph.D. Dissertation, Mas-
sachusetts Institute of Technology MIT, Department of
Electrical Engineering and Computer Science.

324

