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Abstract 
Over the past several years, pilot-oriented mobile applica-
tions have seen widespread adoption among recreational pi-
lots. Pilots have reported they provide significant workload 
savings by eliminating the need to manage paper charts, 
manuals, and checklists in the cockpit. The pilot, nonethe-
less, still must go looking for the information when it is re-
quired, increasing accident risk by diverting attention away 
from control of the aircraft. In this paper, we provide an 
overview of a cognitive assistant that determines when in-
formation is required based on flight context and automati-
cally provides it to the pilot at the appropriate time. In addi-
tion to an overview of the concept, a recent evaluation is 
discussed alongside future plans to evaluate the safety of the 
Digital Copilot. 

 Introduction  
In an old aviation anecdote, a commercial pilot, accus-
tomed to flying as part of a two-person crew in a multi-
engine jet, decides to fly a solo General Aviation (GA) 
flight in a small, single-engine piston aircraft for fun. Prior 
to the flight, he declares an emergency with the Flight Ser-
vice Station (FSS). The briefer, somewhat incredulous, 
asks why the pilot is declaring an emergency before the 
plane has even left the ground.  The pilot says "I am down 
to one engine, one pilot, and one radio; in my line of work 
that is an emergency.” 
 It is often said that flying is the safest form of transpor-
tation, and for commercial air transport that is absolutely 
true. Recreational flight is, however, a wholly different 
animal. Failure Analysis Associates (1993) estimates that, 
while the risk of dying in a commercial aviation accident 
was 0.2 per million flight hours, the recreational flight rate 
was 15.6 fatalities per million hours (nearly double the 
motorcycle rate). 
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 Equipment that is less reliable and lacks redundancy 
plays a large role in recreational flight risk, but it is not the 
only contributor; flying solo (i.e., without a trained copilot) 
is another important factor. According to Robert E. Breil-
ing and Associates (2010), the accident rate for turbine 
aircraft certified for single-pilot operations is 3.4 times 
higher than the rate for aircraft requiring two pilots.  The 
fatal accident rate was 13 times higher.  
 There's no mystery as to why this is. Flying an aircraft 
by yourself is demanding. Among other things it requires 
frequent mental calculations, communications with air traf-
fic control, accessing paper or electronic charts and manu-
als, and scanning for traffic.  On top of all that, the pilot 
must fly the airplane, controlling for all four dimensions.  
This last and most critical task can be deceptively difficult 
as an input on one dimension can impact all other dimen-
sions. Consider that when banking an aircraft into a turn, 
the pilot must raise the nose to avoid losing altitude, which 
in turn causes a loss of speed unless the pilot also increases 
the power. So, the pilot must adjust the aircraft power 
while using two different control inputs (stick and rudder) 
to effect the bank and, at the same time, monitor the air-
speed, bank angle, and altitude. 
 Those in commercial aviation have long recognized the 
safety benefits of having two pilots in the cockpit, and 
have formalized each pilot’s role under the concept of 
Crew Resource Management (CRM). CRM works under 
the principles that each pilot has a unique role to play dur-
ing the flight and each should crosscheck the other 
(Helmreich, Merritt, & Wilhelm 1999). In other words, the 
pilots act as living, breathing cognitive assistants to one 
another. CRM has been a hugely successful safety innova-
tion in commercial aviation, and its success invites the 
question: can we use existing technologies to bring some 
components of CRM to pilots flying without a copilot?  
More to the point, can we build a Digital Copilot? 
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Design 
Before deciding whether it was possible to build a Digital 
Copilot, it was necessary to define what the system must 
do. In CRM, the second pilot (often referred to as the Pilot 
Monitoring) has a wide variety of responsibilities, some of 
them more amenable to a digital cognitive assistant than 
others.  For instance, the second pilot is typically responsi-
ble for communications with Air Traffic Control. While 
allocating that responsibility to a Digital Copilot is a tech-
nical possibility, the implementation would require a near 
zero failure rate (and, would surely be met with stiff regu-
latory resistance). Other constraints existed as well. Most 
recreational aircraft, for example, do not have an internet 
connection nor do they have readily available connections 
to the avionics or other aircraft systems.  
 With tradeoffs between feasibility, level of effort, and 
effectiveness in mind, a set of design guides and guardrails 
were constructed to direct development. The first clear 
guide coming from design team discussions was the prin-
cipal of providing the right information at the right time.  
By using context to anticipate a pilot’s need for specific 
information, the Digital Copilot could perform one of the 
essential roles of the Pilot Monitoring: retrieving and man-
aging situational information based on operational context. 
 Any functionality developed was also to rest safely be-
tween the guardrails of reliability and recoverability. If a 
feature could not be developed so that it worked reliably, it 
was not to be considered for inclusion.  Similarly, if loss of 
a feature would put the pilot in a situation from which he 
or she might not recover, it was eliminated. Reliability and 
recoverability are both principles that are widely applied 
when evaluating automation in aviation (Sheridan and Par-
asuraman 2006) and, as cognitive assistance is an intelli-
gent form of automation, those principles should be ap-
plied to the design of a Digital Copilot as well. 

Feature Types 
Features for consideration were collected by reviewing the 
tasks performed by the Pilot Monitoring, taking flights in 
which we observed a recreational pilot flying solo, and 
hosting a workshop in which we asked pilots with a wide 
range of experience to suggest tasks that a Digital Copilot 
may usefully perform.  Features were then downselected 
by applying the guides and guardrails as well as assessing 
technical feasibility and cost.  What was left was a set of 
features that largely focused on reduction of workload 
through information management. These information man-
agement features can be grouped into categories of on-
demand information and contextual notifications. 

On-Demand Assistance 
Using a speech recognition based interface, the pilot can 
request information directly. For example, the pilot can ask 
“Will the tower be open” to which the Digital Copilot will 
reply either yes or no.  The reply is based on the Digital 
Copilot’s estimate of time to destination and the air traffic 
control tower schedule (stored on the device). As a result, 
the pilot does not need to pull the appropriate book from 
the flight bag to get the tower closing time nor is it neces-
sary to calculate the time to destination and then determine 
whether the arrival will occur before the tower closing 
time.  Workload is offloaded with simple cognitive assis-
tance. Examples of other information that the pilot can 
request include: information about the approach altitude 
and direction, basic position information relative to the 
destination, and checklists, which the Digital Copilot can 
also read to the pilot. 
 
Assistance via Contextual Notifications 
The heart of a Digital Copilot concept is its ability to infer 
pilot intent.  Accurate and reliable inferences allow the 
Digital Copilot to automatically deliver relevant infor-
mation to the pilot based on context. Currently, the Digital 
Copilot is able to infer the destination airport, the phase of 
flight, and phase of the approach. Using these inferences, 
the Digital Copilot determines when to provide some types 
of information. For example, prior to contacting the air 
traffic control tower on arrival, the pilot must have the cur-
rent weather information.  That information is broadcast on 
a unique frequency at each airport. So, the pilot must re-
member to look up the frequency, tune it in, and listen to 
the current weather broadcast at an appropriate point prior 
to contacting the tower. The Digital Copilot helps the pilot 
complete this task by automatically presenting the correct 
frequency to the pilot at the onset of a particular inferred 
phase of flight.  This assists the pilot both by eliminating 
the workload of having to lookup the frequency as well as 
by reminding the pilot to complete the task. 

Evaluation 
The current set of features were implemented in Swift for 
iOS and deployed on an Apple iPad for testing.  In all, 
about 25 different cognitive assistance features were de-
veloped, driven by a set of 10 algorithms. A speech recog-
nition system running locally on the device (most recrea-
tional aircraft do not have internet access) was deployed 
for on-demand information requests. Visual and aural in-
terfaces were developed for contextual notifications. To 
determine whether the cognitive assistance features re-
duced pilot workload, a longitudinal evaluation was con-
ducted.   The evaluation goal was to assess the usability 
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Figure 1: Typical Interaction with Digital Copilot During Evaluation. 

 

and utility of the assistance provided by the Digital Copi-
lot. 
 Fourteen recreational pilots participated in the study 
during which they flew a series of flights in a modified 
FRASCA flight simulator while using the Digital Copilot. 
An example of some of the interactions between the pilot 
and Digital Copilot can be seen in the Figure 1.  Pilots re-
turned a month after the first simulation activity to com-
plete a second. In the second simulated set of flights they 
used a version of the Digital Copilot that had been updated 
based on comments received during the first simulation 
activity.  
 In exit surveys all fourteen pilots agreed that the Digital 
Copilot reduced workload and had the potential to improve 
safety. When asked whether the Digital Copilot could po-
tentially be distracting, one of the fourteen pilots replied in 
the affirmative and two were unsure. 
 Overall, pilots found that the Digital Copilot - using a 
combination of if-then, fuzzy, and Bayesian logic to enable 
cognitive assistance for pilots - reduces workload and im-
proves safety. While these findings suggest the human fac-
tors methods used to identify and select features were suc-
cessful, there remains a need for quantifying the safety 
benefits that the system provides. Ultimately, utility must 

be measured by a user’s ability to understand flight situa-
tions and take appropriate action. 

Measuring Safety 
In parallel with current system design efforts, we are de-
veloping methods for formally evaluating the system’s 
safety. Our approach combines quantitative methods at 
three levels of analysis, each addressing a different level of 
utility in the hierarchy illustrated in Figure 2. 
 At the topmost level we are using methods of Probabilis-
tic Risk Assessment (PRA), such as event trees and fault 
trees, to model critical safety functions and potential fail-
ure modes (Modarres 2008). These methods are used to 
compute fatal and non-fatal accident frequencies, which 
represent overall measures of operational safety. 
 At the middle level we are using methods of Human 
Reliability Analysis (HRA), such as time-reliability corre-
lations, to model pilot errors that contribute to accidents  
(Bell and Holroyd 2009). The methods compute error 
probabilities as a function of the time windows for action 
along with other performance shaping factors such as stress 
and workload. These error probabilities are needed as input 
to the PRA models that quantify accident sequences as 
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combinations of aircraft system failures and human pilot 
errors. 
 

 
Figure 2: Process for Assessing Digital Copilot Utility. 

 
 Finally, at the bottom level we are using Computational 
Cognitive Modeling (CCM) to model errors in pilot situa-
tional awareness and decision making, which are the func-
tions for which Digital Copilot is intended to provide assis-
tance. Failure probabilities for these cognitive functions are 
needed as input to the HRA models of pilot errors, which 
in turn are needed as input to the PRA models of accident 
sequences. 
 Starting from the bottom of the hierarchy, our approach 
starts by quantifying the inferential utility of the system to 
the pilot; as a basis for quantifying the behavioral utility of 
the pilot to the mission; and as a basis for quantifying the 
operational utility of the human-system teaming needed to 
achieve flight safety. Clearly the bottom level of inferential 
utility is crucial, and yet methods for analyzing utility at 
this level are currently much less mature than existing 
methods for PRA and HRA used to quantify risk in avia-
tion and other hazardous industries. 
 To advance the state of analysis at the bottom level, our 
research is leveraging a Bayesian-probabilistic framework 
presented at the 2015 AAAI Symposium on Cognitive As-
sistance in Government and Public Sector Applications. 
The framework, dubbed HELP (Hypotheses, Evidence, 
Likelihoods, and Priors and Posteriors), offers a principled 
structure for analyzing how, and how well, a human rea-
sons to the hypothesis that most likely explains available 
evidence (Burns 2015). This framework can be used to 
quantify the probability that a pilot will correctly diagnose 
a given situation, as a function of the information that the 
pilot obtains manually or automatically with or without the 
Digital Copilot. 
 Our research in this area has three objectives: develop 
formal methods that can be used to quantify the operational 
safety of the Digital Copilot; quantify the safety benefits of 
potential changes to the system, thereby informing ongoing 
development efforts; and to identify how methods of CCM, 
HRA, and PRA can be extended beyond evaluation of Dig-
ital Copilot to quantify the inferential, behavioral, and op-
erational utilities of cognitive assistance in domains other 
than single-pilot aviation. 

Summary 
General Aviation single-pilot operations offer an excellent 
applied problem for cognitive assistants, but success in this 
area requires a thorough knowledge of the task at hand. 
The flight deck, whether a small recreational aircraft or 
large commercial jet, already demands the pilot’s atten-
tional resources in the form of aural alerts, communica-
tions, displays, paper, and the like. A cognitive assistant 
must lessen those demands, not increase them. As such, 
applying basic human factors principles to the system de-
sign and, just as importantly, evaluating the overall utility 
is critical.  The system should do no harm. Developing 
methods to ensure this is the case is an important compo-
nent of not just the Digital Copilot, but any cognitive assis-
tant. 

References 
Bell, J. and Holroyd, J. 2009. Review of human reliability as-
sessment methods. Derbyshire, UK: HSE Books. 
Burns, K. 2015. Bayesian HELP: Assisting Inferences in All-
Source Intelligence. In Proceedings of the 2015 AAAI Fall Sym-
posium Series. Arlington, VA: 2015 AAAI Fall Symposium Se-
ries. 
Failure Analysis Associates Inc. 1993. Comparative Risk of Dif-
ferent Activities. Design News October 4, 1993. 
Helmreich, R., Merritt, A. and Wilhelm, J. 1999. The Evolution 
of Crew Resource Management Training in Commercial Avia-
tion. The International Journal of Aviation Psychology. 9(1):19-
32.  
Modarres, M. 2008. Probabilistic Risk Assessment. In ed. K. B. 
Misra, 669-718. Handbook of Performability Engineering. Lon-
don: Springer. 
Robert E. Breiling and Associates. 2010. Business Turbine Air-
craft Accident Review.  Robert E. Breiling and Associates, Boca 
Raton, FL. 
Sheridan, T., and Parasuraman, R. 2006. Human-automation 
interaction. In ed. R. S. Nickerson, 89-129. Reviews of human 
factors and ergonomics. Santa Monica, CA: Human Factors and 
Ergonomics Society. 
 
 
Approved for Public Release; Distribution Unlimited. Case Num-
ber 16-3225 

144


