
Mixing Formal Methods, Machine Learning, and Human
Interaction Through an Autonomics Framework

Braulio Coronado, Eric Gustafson, John Reeder, Douglas S. Lange
Space and Naval Warfare Systems Center Pacific

53560 Hull Street, San Diego, CA, 92152
{braulio.coronado, eric.a.gustafson1, john.d.reeder, doug.lange}@navy.mil

Abstract

Autonomic approaches aim to manage large complex systems
by enabling self-adaptation in response to the changing state
of these systems. As the size and complexity of systems in-
creases, autonomics helps conceal that complexity and pro-
vides a higher level, more abstract view to human managers
of these systems. One such autonomic approach is the Rain-
bow autonomics framework, developed at Carnegie Mellon
University. This paper describes our use of Rainbow in vari-
ous applications including supervisory control of unmanned
systems and management of operator task assignment. It also
describes enhancements made to the version of Rainbow uti-
lized.

Introduction

Autonomic computing refers to software with the ability to
self-adapt (Cohn 2003; Ganek and Corbi 2003; Murch 2004)
in response to changes in its state. Due to the increasing
complexity, size and speed at which systems change, au-
tonomics has become an important area of research. The
Rainbow autonomics framework (Garlan et al. 2004) pro-
vides a platform to manage networks by collecting data
through probes and processing that data through gauges. Us-
ing probes and gauges, a model of the system is established
and monitored using predefined rules. Strategies and tactics
address rule violations and effectors cause changes on the
managed network. Probes, gauges, strategies, tactics and ef-
fectors are generic and can be customized to autonomously
manage any system that can be mathematically represented
as a network. We begin with a use case detailing the struc-
ture of Rainbow. Next, we outline our usage of Rainbow to
manage disparate systems. Finally, we describe ideas for fu-
ture work and enhancements made to the version of Rainbow
utilized in our applications.

Rainbow Architecture

A use case involves a Rainbow evaluation study managing
server utilization (Cheng 2008) with the addition of simu-
lated Disconnected, Intermittent and Limited connectivity
(DIL) and energy usage metrics (Verbancsics and Lange

Copyright c© 2016, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Figure 1: Rainbow consists of a Model Manager, Architec-
ture Evaluator, Adaptation Manager and Strategy Executor
which collect data and execute changes to a target system
through a Translation Infrastructure in a closed loop. [used
by permission of the author]

2013). In this experiment, the system is a set of virtual-
ized servers providing services with a workload that varies
throughout the day. We observe the individual components
of Rainbow as it manages the number of active servers with
respect to server response time and energy usage while ex-
periencing increasingly degrading communication with the
system.

Model

A key Rainbow feature is the use of Acme, a formal ar-
chitecture description language allowing the modeling of
complex hierarchical systems (Garlan, Monroe, and Wile
2000). Acme enables modeling of systems through the use
of components which represent the elements of a system and
connectors which represent relationships between elements.
Component and connector properties reflect the state of the
system and rules enforce assumptions made on the model’s
architectural design. This formal description of the system
enables validation of the model, housed in the Model Man-
ager (Figure 1) as its state evolves. The Architecture Evalu-
ator performs model checking as attributes within the model
change. Our model in this case consists of components rep-
resenting servers in the system with rules ensuring server
response time and energy usage remain low.

The 2016 AAAI Fall Symposium Series: 
Cross-Disciplinary Challenges for Autonomous Systems 

Technical Report FS-16-03

175



Probes and Gauges

Probes extract data from the target system. They can exist
on the system and communicate data to Rainbow’s gauges
or exist inside Rainbow and receive data from the target sys-
tem. Gauges are internal to Rainbow and update the model
through data collected from its probes. Probes in this case
communicate server load and energy usage to gauges which
update the respective server components. An artificial time
interval of five, ten, fifteen, thirty and sixty minutes between
probe reports is introduced to evaluate Rainbow’s ability to
manage a DIL environment. In our use of Rainbow, we have
introduced machine learning algorithms into the gauges. In
this use case, the system learns a model representing the pat-
tern of operations and utilizes this model to fill in for missing
reports from probes (Verbancsics and Lange 2013).

Strategies, Tactics, and Effectors

Strategies and tactics are written in Stitch, a language for
the expression of adaptation decision trees (Cheng and Gar-
lan 2012). Strategy decision trees consist of tactics with each
tactic describing an action taken to address a rule violation.
Actions cause changes to the system’s configuration through
the invocation of effectors that, like probes, may exist re-
motely or within Rainbow. The Adaptation Manager selects
a suitable strategy and the Strategy Executor carries out the
actions within the strategy. If a strategy fails in its attempt to
correct a rule violation, the Adaptation Manager may select
a new strategy. Strategies and tactics in our DIL example de-
scribe actions taken to address the number of active servers
with respect to response time and energy usage. In periods
of high activity, strategies enlist additional servers to main-
tain low response time. In periods of low activity, strategies
reduce the number of active servers to keep energy usage
low.

Autonomics in Disparate Systems

Due to the generic qualities of Rainbow, any system that can
be described formally is eligible for management by Rain-
bow. This allows us to explore the use of autonomics in dis-
parate use cases as follows:

• Plan Monitor - A module within a command and control
prototype providing mission related feedback and minor
mission corrections.

• Task Manager - A module within a command and control
system prototype assisting in the management and opti-
mization of operator task assignment.

Command and Control Prototype

Plan Monitor and Task Manager coexist in the same system:
Intelligent Multi-UxV Planner with Adaptive Collaborative
Control Technologies (IMPACT), a command and control
prototype controlling teams of simulated unmanned vehicles
under the supervision of a single human operator (Chen et
al. 2014). IMPACT provides a ”playbook” as a control ab-
straction allowing the operator to select ”plays” to manage
these vehicles (Chen et al. 2014; Gutzwiller et al. 2015). An
underlying goal of IMPACT is to invert autonomous vehicle

staffing; from many operators for a single vehicle to one op-
erator for many vehicles (Cummings 2015). As the number
of vehicles increases, complexity of the system outpaces the
operator’s ability to provide effective supervisory control.
Autonomics helps relieve some of this complexity by con-
solidating real time data into plans which are used to contin-
uously evaluate play health. Additionally, it provides recom-
mendations to address an ineffective play and enables global
constraint monitoring. Furthermore, by modeling human op-
erators themselves as components, autonomics can offer the
ability to adjust a ”sliding scale” of autonomy through oper-
ator task assignment (Gutzwiller et al. 2015).

Plan Monitor The first key to our ability to manage plans
with Rainbow is the realization that our definition of a plan
allows plans to be represented as networks. Therefore, we
are able to model a plan within Rainbow. The second key
is the generation of model elements. Clearly one does not
want to manually develop a model for each plan, and es-
tablish probes and gauges to provide data on its execution.
Later we describe how we generate model elements allowing
us to monitor any plan developed in IMPACT. Plan Moni-
tor’s probes and gauges use the ZMQ Distributed Messaging
Framework to subscribe to and process messages published
to a data hub within IMPACT. These messages contain data
about the simulation such as vehicle telemetry, vehicle task
details, restricted zones and mission related events. Plan
Monitor generates vehicle components in the model with
vehicle telemetry updated in real time. Play messages are
used to generate plan components enabling calculation of
mission health metrics such as estimated vehicle arrival to
destination and task quality level. Rules established in the
model monitor global constraints such as fuel thresholds for
all vehicles, vehicle presence in restricted zones and vehi-
cle response time to flight line. Strategies and tactics publish
health and constraint violations to the hub for display to the
operator. Finally, a strategy publishes requests to re plan a
poorly performing or at-risk play.

Task Manager Task Manager explores the use of auto-
nomics to help manage operator workload (Gutzwiller et al.
2015). As the number of vehicles per operator increases,
workload and reduced situational awareness may become
a concern. We address these concerns by providing task
management capability through an interactive panel in IM-
PACT’s interface. This panel displays two queues with tasks
assigned to the operator and tasks assigned to an automated
assistant. Tasks are added automatically as the scenario pro-
gresses and removed as they are completed. The operator is
given control over task assignment with buttons to switch
tasks between queues. We are exploring the use of probes
to collect operator task data such as username, login times-
tamps and task type, duration and priority. Using this data,
gauges can compute operator task performance such as task
completion and cancellation rates. Over time, we can infer
more abstract metrics such as estimated time to task comple-
tion, operator attention level and ultimately, risk of handing
over a task to the assistant (Lange et al. 2014). Strategies

176



Figure 2: Plan Monitor GUI showcasing Working Agree-
ments. The operator is granted greater control over which
strategies the autonomy can use.

and tactics determine the algorithm used for task assign-
ment based on current conditions. A strategy addresses a de-
manding workload by assigning more tasks to the assistant.
Similarly, a strategy assigning more tasks to the operator ad-
dresses a light workload in an effort to maintain operator
situational awareness.

Rainbow Enhancements and Future Work

Machine Learning

In our DIL use case mentioned earlier, we observed Rain-
bow’s reduced effectiveness with the introduction of inter-
mittent communication with the target system. Rainbow re-
lies on the current state of the system to evaluate and effect
changes in a timely manner. One area we have explored is
the use of machine learning to predict system values when
communication with the system is degraded. Instead of act-
ing on system data as it is reported, our system acts on a
combination of real and predicted data while evaluating and
refining its predictions (Verbancsics and Lange 2013).

Component Generation

In a target system backed by object-oriented software, we
can dynamically generate Acme components by analyzing
an object’s structure at runtime and describing its structure
as Acme architectural designs. In Plan Monitor, the system
it manages is written in Java, an object-oriented program-
ming language. Plan Monitor component generation func-
tions by utilizing the Java reflection API for runtime object
analysis. Object metadata is mapped to equivalent structures
in the Acme model resulting in a real time modeling of the
system. Currently, we must express the architectural design
of our models statically, using prior knowledge of our sys-
tem structures to establish rules. Since Acme allows for the
creation of rules at runtime and since we have a complete
picture of our system elements due to component genera-
tion; future work could explore the generation of rules at
runtime. This may allow us to modify our architectural de-
sign assumptions dynamically.

Working Agreements

To promote collaboration and transparency between human-
autonomy teams, a working agreement concept is used to
establish how and when autonomy is allowed to take action.
We are exploring a configurable working agreement to allow
the operator configuration of policy per strategy. By adher-
ing to a working agreement, an operator is granted greater
control over the autonomy. The motivating factor behind
this effort is the fact that the operator might have knowl-
edge about the system that the automation does not. Thus,
the ability for the operator to control the autonomy’s execu-
tion of certain strategies as needed is valuable. Plan Monitor
features a prototype working agreement allowing the oper-
ator to restrict execution of a strategy, allow execution of a
strategy without approval or allow execution but require ap-
proval (Figure 2).

Summary

In this paper, we have described the blending of a formal
methods based autonomics framework with machine learn-
ing algorithms to enhance its operation. Applying object-
oriented instantiation to components of the framework then
allows us to utilize Rainbow to manage such disparate net-
works as plans or human-autonomy teams supervising the
operation of autonomous vehicles.

References

Chen, J. Y.; Procci, K.; Boyce, M.; Wright, J.; Garcia, A.;
and Barnes, M. 2014. Situation awareness-based agent
transparency. Technical report, DTIC Document.
Cheng, S.-W., and Garlan, D. 2012. Stitch: A language for
architecture-based self-adaptation. Journal of Systems and
Software 85(12):2860–2875.
Cheng, S.-W. 2008. Rainbow: Cost-Effective Software
Architecture-Based Self-Adaptation. Ph.D. Dissertation,
Carnegie Mellon University, PittsBurgh, PA.
Cohn, D. L. 2003. Autonomic computing. In Proceedings of
the The Sixth International Symposium on Autonomous De-
centralized Systems (ISADS’03), 5. Pisa, Italy: IEEE Com-
puter Society.
Cummings, M. 2015. Operator interaction with centralized
versus decentralized uav architectures. In Handbook of Un-
manned Aerial Vehicles. Springer. 977–992.
Ganek, A. G., and Corbi, T. A. 2003. The dawning of the
autonomic computing era. IBM systems Journal 42(1):5–18.
Garlan, D.; Cheng, S.-W.; Huang, A.-C.; Schmerl, B.;
and Steenkiste, P. 2004. Rainbow: Architecture-based
self-adaptation with reusable infrastructure. Computer
37(10):46–54.
Garlan, D.; Monroe, R. T.; and Wile, D. 2000. Acme: Ar-
chitectural description of component-based systems. Foun-
dations of Component-based Systems 68:47–68.
Gutzwiller, R. S.; Lange, D. S.; Reeder, J.; Morris, R. L.; and
Rodas, O. 2015. Human-computer collaboration in adaptive
supervisory control and function allocation of autonomous

177



system teams. In International Conference on Virtual, Aug-
mented and Mixed Reality, 447–456. Springer.
Lange, D. S.; Gutzwiller, R. S.; Verbancsics, P.; and Sin, T.
2014. Task models for human-computer collaboration in su-
pervisory control of teams of autonomous systems. In 2014
IEEE International Inter-Disciplinary Conference on Cog-
nitive Methods in Situation Awareness and Decision Support
(CogSIMA), 97–102. IEEE.
Murch, R. 2004. Autonomic Computing. IBM Press.
Verbancsics, P., and Lange, D. S. 2013. Using autonomics to
exercise command and control of networks in degraded envi-
ronments. Technical report, Eighteenth International Com-
mand and Control Reserach and Technology Symposium,
Alexandria, VA.

178


