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Abstract

By logical proportion, we mean a statement that ex-
presses a semantical equivalence between two pairs of
propositions. In these pairs, each element is compared
to the other in terms of similarities and/or dissimilari-
ties. An example of such a proportion is the well known
analogical proportion: a is to b as c is to d. Analogi-
cal proportions have been recently characterized in log-
ical terms, but there are many other proportions that
are worth of interest. Some of them can be related
to the analogical pattern, others are related to seman-
tical equivalence between conditional objects and ex-
press statements such as a ressembles to b and differs
from b in the same way as c with respect to d. We show
that there are 5 direct proportions, including the analog-
ical one and 4 others having a conditional object flavor,
where the change (if any) from a to b goes in the same
direction as the change from c to d (if any), together
with 5 reverse proportions obtained by switching c and
d. Moreover, there exists only one auto-reverse propor-
tion called paralogy and stating that what a and b have
in common, c and d have it as well. It is then estab-
lished that there is none other proportion than these ones
(with the exception of 4 degenerated ones) that satisfies
a natural “full identity” requirement. The paper pro-
poses a structured and unified view of these logical pro-
portions and discusses their characteristic properties. It
extends previous works where only proportions related
to analogy were considered. It also explores the use
of these logical proportions in transduction-like infer-
ence, where new items are classified on the basis of al-
ready classified items without trying to induce a generic
model, considering similarities and differences between
items only. Taking advantage of different proportions, a
transduction procedure is proposed.

Reasoning may handle generic pieces of knowledge that ap-
ply to a class of situations, as well as particular facts. De-
ductive reasoning goes from generic to generic; or applies
generic to particular (e.g. “all men are mortal” and “Socrates
is a man” then “Socrate is mortal”), while induction infers
from particular to generic (“a, b, c are mortal men” then “all
men are mortal”). Obviously, after an inductive step, which
allows us to establish generic rules from a limited set of ex-
amples, we can apply these rules in a deductive way to a
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new case, “Socrate” for instance, and again deduce “Socrate
is mortal”: these generic rules are then used as a prediction
tool to be applied to not previously seen data. Nevertheless,
at least from a philosophical viewpoint, this way to reason is
not absolutely satisfactory since, basically we go from par-
ticular to particular, but going through generic. Moreover,
when we only have a limited set of observable situations,
it is not a straightforward task to extract generic rules that
apply to all possible cases.

In fact, there exists some well-known inference processes
allowing to go from particular to particular in a direct way.
This type of reasoning process is sometimes named as trans-
duction (this word was coined by (Gammerman, Vovk, and
Vapnik 1998), but the idea at least dates back to (Russell
1912)). Case-based reasoning is typically a transductive
process since, starting from a limited sample of previously
observed situations/cases, we try to match a current incom-
plete case with a similar, previously observed one in order to
guess the missing part. More generally analogical reasoning
puts in parallel two particular situations that hold between
related items. A noticeable form of analogical reasoning is
based on analogical proportions that are statements of the
form a is to b as c is to d. A very specific instance of analog-
ical proportion-based reasoning (which the name ‘propor-
tion’ comes from) is the well known “rule of three” where
in a numerical setting we extrapolate the value of a number
x starting from the assumption that a

b
= c

x
holds.

It has been recently advocated in (Miclet and Prade 2009;
Prade and Richard 2010), that such extrapolation reasoning
could be formalized for Boolean proportions as well. In the
latter work, the authors highlight the existence of two other
proportions, namely reverse analogy and paralogy, also suit-
able for inference purpose. In fact, a careful reexamination
of this work has led us to consider other proportions first
studied in this paper, which are related to non monotonic
reasoning which may cover other inference cases of interest
when used in a transduction procedure.

In this paper, we first study the existing proportions in detail.
Through basic properties requirements, we identify those
ones that may provide the basis for new inference princi-
ples, suitable for transduction. In the next section, we recall
the 3 proportions related to analogy, and we highlight the
existence of other noticeable proportions. Then we provide
Boolean interpretations for all the previous proportions, and
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investigate their formal properties. In the second half of the
paper, we examine how formal proportions could be the ba-
sis of a general transductive paradigm. Finally, we overview
related works and we conclude by indicating some lines for
further research.

Logical proportions

Informally speaking, logical proportions are expressions that
involve 4 terms, here denoted a, b, c, d, and where the re-
lation existing between a and b is equated to the relation
between c and d. Generally speaking, a logical proportion
establishes an equivalence between similarities / dissimilar-
ities existing between a and b with similarities / dissimilar-
ities existing between c and d. In the following, we choose
to denote this equivalence by “::” (in agreement with current
practice in analogical reasoning).
To start our investigation, the most suitable viewpoint is
to consider the items a, b, c, d as representing sets of bi-
nary features belonging to a universe U (i.e. an item is
viewed as the set of binary features in U possessed by the
item). In that case, each item can be viewed as a sub-
set of U . Then, the dissimilarity between a and b can

be appreciated in terms of a ∩ b and / or a ∩ b, where
a denotes the complement of a in U , while the similar-

ity is estimated by means of a ∩ b and / or a ∩ b. Let
us briefly review the results of (Prade and Richard 2009;
2010) where analogy, reverse analogy and paralogy have
been fully investigated. This will be of great help to un-
derstand the place of the other proportions of interest.

Analogy, reverse analogy and paralogy

An analogical proportion, usually denoted a : b :: c : d,
focuses on differences and should hold when the differences
between a and b and between c and d are the same. This is
formally defined (Miclet and Prade 2009) as:

a ∩ b = c ∩ d and a ∩ b = c ∩ d (A) (1)

Then, two other proportions have been introduced (Prade
and Richard 2009): reverse analogy, the sister proportion
denoted a ! b :: c ! d, which is defined as:

a ∩ b = c ∩ d and a ∩ b = c ∩ d (R) (2)

If instead of focusing on differences, we emphasize similar-
ities, we get a new proportion denoted a ; b :: c ; d called
paralogy, whose definition is:

a ∩ b = c ∩ d and a ∩ b = c ∩ d (P ) (3)

Obviously the second part of this definition is equivalent to
a ∪ b = c ∪ d. But, for the sake of homogeneity, we prefer
to only use ∩ in the definition. The two following properties
can be easily checked; see (Prade and Richard 2009; 2010)
respectively:

Property 1 a : b :: c : d iff a ! b :: d ! c iff a ; d :: c ; b

Property 2 When the analogical proportion holds for a tu-
ple (a, b, c, d), it also holds for a set of 7 other permutations
of this tuple, obtained by exchanging the two mid terms or

permuting the two first terms with the two last ones, or re-
peating these two operations alternatively. The two other
proportions can be also equivalently written in 8 different
ways.

The first property establishes a strong link between the three
proportions: we can go from a proportion to another one
just by permuting some parameters. The second property
tells us, in particular, that any proportion that holds for
(a, b, c, d), can be rewritten equivalently through an appro-
priate permutation of (a, b, c, d) in such a way that the last
term is a, b, c, or d. This remark will be of interest when
dealing with the equation solving problem considered later
in this paper. Let us now examine other possibilities for
defining proportions.

Other interesting proportions

As explained, analogy and reverse analogy focus on dissim-
ilarities, while paralogy refers to similarities. But other op-
tions become available if we accept to mix similarity and
dissimilarity constraints.Starting from the definitions of ana-
logical and paralogical proportions, we have several options:

• a ∩ b = c ∩ d and a ∩ b = c ∩ d, denoted b|a :: d|c

• a ∩ b = c ∩ d and a ∩ b = c ∩ d, denoted a|b :: c|d

• a ∩ b = c ∩ d and a ∩ b = c ∩ d, denoted b|a :: d|c

• a ∩ b = c ∩ d and a ∩ b = c ∩ d, denoted a|b :: c|d

As for reverse analogy, one may switch c and d to get:

• a ∩ b = c ∩ d and a ∩ b = c ∩ d, denoted b|a :: c|d

• a ∩ b = c ∩ d and a ∩ b = c ∩ d, denoted a|b :: d|c

• a ∩ b = c ∩ d and a ∩ b = c ∩ d, denoted b|a :: c|d

• a ∩ b = c ∩ d and a ∩ b = c ∩ d, denoted a|b :: d|c

This makes 8 new proportions. We use the notation | for
all of them, since the constraints that define them are rem-
iniscent of the semantical equivalence between conditional
objects. Indeed, it has been advocated by (Dubois and Prade
1994) that a rule “if a then b” is not a two-valued entity, but
a three valued one that is called ‘conditional object’ and de-
noted b|a. To see it, consider a database containing item de-
scriptions. If the rule “if a then b” is to be evaluated against
this database, it clearly creates a partition of 3 kinds of situ-
ation, namely:

• the set of items, examples of the rule, that are character-
ized by a ∩ b.

• the set of items, counter-examples of the rule, that are

characterized by a ∩ b.

• the set of items for which the rule is irrelevant, that are
characterized by a.

Each case should be encoded by means of a different truth-
value. The two first cases correspond to the usual truth-
values “true” and “false” respectively. The third case corre-
sponds to a third truth-value. A rule is thus modeled as a pair
of disjoint sets representing its examples and its counter-

examples, namely (a∩b, a∩b). Interestingly enough, this tri-
valued representation also tolerates non-monotonicity, and
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can offer a tri-valued semantics to nonmonotonic conse-
quence relations obeying postulates of the Preferential en-
tailment system of (Kraus, Lehmann, and Magidor 1990);
see (Dubois and Prade 1994; Benferhat, Dubois, and Prade
1997). It is indeed intuitively satisfying to consider that a
rule r1 = “if a then b” is safer than a rule r2 = “if c then
d”, if r1 has more examples and less counterexamples than
r2 (in the sense of inclusion). The semantical equivalence

between rules then write a ∩ b = c ∩ d and a ∩ b = c ∩ d,
which clearly entails a = c, which agrees with the intu-
ition that in order to be equal two rules should have the same
set of applicability situations. This idea of a rule as a “tri-
event” actually goes back to (De Finetti 1936), where this
equivalence is defined for the first time. This idea is also
the backbone of De Finetti’s approach to conditional proba-
bility (De Finetti 1974). The three-valued representation of
a rule also casts new light on “paradoxes of confirmation”,
a question which goes back to Nicod and Hempel (Hempel
1965), where the rules “all ravens are black” and “all non
black items are not ravens” (which might seem to be equiv-
alent from a material implication point of view), have the
same counter-examples (ravens that are not black), but not
the same examples, and then can no longer be confirmed by
the same observations, as soon as we leave the pure material
implication understanding; see (Benferhat et al. 2008). Still,
we have to keep in mind that we are not interested here in
generic (default) rules, but we are rather putting in parallel
and comparing particular items described in terms of binary
features (even if these items may be the basis of inductive
generalizations). Leaving the set interpretation, let us now
examine the Boolean interpretation.

Boolean interpretation

It is easy to adopt a Boolean viewpoint, considering our pro-
portions as Boolean operators. It is then sufficient to trans-
late the set operators into Boolean connectors: ∩ becomes ∧
and a is just the negation of a. Equality is changed into ≡.
Thus, the Boolean connective representing the (direct) ana-
logical proportion a : b :: c : d can be written as the logical
formula:

a : b :: c : d = ((a∧¬b) ≡ (c∧¬d))∧((¬a∧b) ≡ (¬c∧d))

This formula is true for the 6 truth value assignments of
a, b, c, d appearing in the left part of Table 1, and is false
for the 24 − 6 = 10 remaining possible assignments. The
most “visual” way to understand the behavior of the propor-
tions is to examine their truth tables that are given in Table 1,
Table 2 and Table 3. It is worth noticing that all the 11 pro-
portions, viewed as Boolean connectives in the above sense,
hold true for only 6 cases, and this is why we have restricted
Tables 1, 2, 3 to the 4-tuples corresponding to these cases.
Let us note that both Table 2 and Table 3 highlight the fact
that their corresponding proportions behave similarly inside
each table on the 4 first lines, which are respectively the 4
first lines of direct analogy and reverse analogy tables (see
Table 1). Moreover for all of them, the first two lines express
that T (a, a, a, a) holds, where T denotes the considered pro-
portion; we come back to the meaning of this property later

Table 1: Analogy-related proportions

(Direct) Analogy Rev. Analogy Paralogy
a : b :: c : d a ! b :: c ! d a ;b :: c ;d

a b c d a b c d a b c d
0 0 0 0 0 0 0 0 0 0 0 0
1 1 1 1 1 1 1 1 1 1 1 1
0 1 0 1 0 1 1 0 0 1 0 1
1 0 1 0 1 0 0 1 1 0 1 0
0 0 1 1 0 0 1 1 0 1 1 0
1 1 0 0 1 1 0 0 1 0 0 1

Table 2: Direct proportions (other than analogy)

b | a :: d | c a | b :: c | d b | a :: d | c a | b :: c | d

a b c d a b c d a b c d a b c d
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1
1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0
0 0 0 1 0 0 1 0 1 0 1 1 0 1 1 1
0 1 0 0 1 0 0 0 1 1 1 0 1 1 0 1

in this paper. The 3rd and 4th lines in Table 2 (resp. Table 3)
express that the change from c to d goes in the same (resp.
reverse) sense with respect to the change from a to b.

Then natural questions arise. How many proportions can
be defined through 6 4-tuples of binary values which are the
4-tuples for which they are true, as in the above tables ?
Does any set of 6 distinct 4-tuples of binary values give birth
to a proportion? Generally speaking, are there proportions,
other than the 11 proportions already identified, which are
worth considering? Before exploring all the possibilities, let
us examine the construction process of proportions first.

Definition 1 A logical proportion is defined via a couple of
equalities of the form α ∩ β = γ ∩ δ, α ∈ {a, a}, β ∈

{b, b}, γ ∈ {c, c}, δ ∈ {d, d}, and where
- i) the equalities have to be distinct,
- ii) the order of the equalities is irrelevant.

This leaves (16×16 − 16)/2 = 120 possibilities. Indeed,
there are 4 choices for the left member of the first equality

constraint (a ∩ b, a ∩ b, a ∩ b, a ∩ b), leading to 4 × 4 = 16
equalities, and to 16 × 16 = 256 pairs of equalities, from
which we have to subtract 16 pairs where the two constraints
are identical. Finally, we divide by 2 since the order of the
equalities is irrelevant.
Besides, it is worth pointing out that there are sets of 6 4-
tuple assignments associated to 1 in the truth table that do
not correspond to any formal proportion (simply because,
from a purely combinatorial viewpoint, there are many more
such assignments than 120). For instance, it can be checked
that the set {0000, 1111, 0011, 1100, 1010, 0110} does not
correspond to any formal proportion. As can be seen, this
set of 6 assignments includes the first four lines of the tables
of direct and reverse analogical proportions, which corre-
spond to their common part (see Table 1), and just “mix”
their two last lines, expressing respectively a direct and a
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Table 3: Reverse proportions (other than rev. analogy)

b | a :: c | d a | b :: d | c b | a :: c | d a | b :: d | c

a b c d a b c d a b c d a b c d
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0
1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1
0 0 1 0 0 0 0 1 1 0 1 1 0 1 1 1
0 1 0 0 1 0 0 0 1 1 0 1 1 1 1 0

reverse change when going from c to d, with respect to the
change taking place in the pair (a, b).

All the 120 logical proportions do not seem equally inter-
esting. Let us notice that the 11 proportions obtained in the
two previous subsections are true for the assignments 0000
and 1111. In case of the analogical proportion, it can be
read “a is to a as a is to a” (whatever the value of a). A pro-
portion T that holds as true for (0, 0, 0, 0) and (1, 1, 1, 1) is
said to satisfy the full identity property, which is formally ex-
pressed as T (a, a, a, a). More generally, since our intended
use of these proportions is based on the observation of sim-
ilarities and differences, there is indeed no point to distin-
guish the pair (a, a) from the pair (a, a). In some sense, full
identity is a very natural requirement and is a kind of mini-
mal property expected to be satisfied. Indeed in such a case,
identity holds both inside each pair and between the pairs.
Obviously, this is not the case for the pairs (a, a) and (b, b)
and, as we will see, we cannot expect T (a, a, b, b) to hold
for every proportion.
It does not come as a surprise that it is possible to define
logical proportions following the same scheme of construc-
tion, as in the previous subsection, which do not satisfy full
identity. For instance,

- a ∩ b = c ∩ d and a ∩ b = c ∩ d holds for 0000, but not
for 1111.

- a∩ b = c∩ d and a∩ b = c∩ d holds for 1 1 1 1, but not
for 0 0 0 0.

- any proportion defined via a ∩ b = c ∩ d does neither
hold for 0000, nor for 1111.1

However as explained above, it makes sense to restrict our-
selves to proportions satisfying full identity. Finding the
number of such proportions is a rather tedious exercise and
relies on a careful investigation about the diverse ways to
build up proportions such that their two defining conditions
of the form α ∧ β ≡ γ ∧ δ, where α ∈ {a,¬a}, β ∈
{b,¬b}, γ ∈ {c,¬c}, δ ∈ {d,¬d} hold as true for entries
(a, b, c, d) = (1, 1, 1, 1) and (a, b, c, d) = (0, 0, 0, 0). This
leads to the following result:

Property 3 There are exactly 15 logical proportions satis-
fying full identity. They include the 11 logical proportions

1Let us note that there is a specific proportion defined by a∩b =

c ∩ d and a ∩ b = c ∩ d, which obviously does not hold for 1111

nor 0000. This proportion is obtained from the paralogy definition
by switching the second half of the equalities. This is why we may
call it inverse paralogy. It expresses that “what a and b have in
common, c and d do not have it, and vice-versa”. Due to lack of
space, we will not investigate this proportion more deeply in this
paper.

Table 4: The 4 generated proportions satisfying full identity

1.b⊆a c=d 2.a=b d⊆c 3.a=b c⊆d 4.a⊆b c=d

a b c d a b c d a b c d a b c d
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1
1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0
1 0 0 0 0 0 1 0 0 0 0 1 0 1 0 0
1 0 1 1 1 1 1 0 1 1 0 1 0 1 1 1

previously examined, plus the 4 following ones:

a ∩ b = c ∩ d and a ∩ b = c ∩ d (1)
a ∩ b = c ∩ d and a ∩ b = c ∩ d (2)
a ∩ b = c ∩ d and a ∩ b = c ∩ d (3)
a ∩ b = c ∩ d and a ∩ b = c ∩ d (4)

We exhibit their truth table in Table 4. It can be easily seen
that the first pair of constraints entails b ⊆ a and c = d,
the second a = b and d ⊆ c, the third a = b and c ⊆
d, and the fourth a ⊆ b and c = d. So these proportions
can be regarded as degenerated ones, but it is worth noticing
that they cover a classical entailment situation inside one
of the pairs each time. Note also that the tables of these
four proportions share the same 4 first lines, lines that can
be also found in the tables of direct analogical and reverse
analogical proportions.
Thus, if we ignore these 4 “degenerated” proportions, we
are back to the 11 logical proportions initially generated by
equating similarities on the one hand, and dissimilarities on
the other hand, between pairs.

Properties of logical proportions

Let T denote a Boolean proportion. Apart from the full iden-
tity property, T (a, a, a, a) with a ∈ {0, 1}, which has been
already discussed, there are other properties that are worth of
interest for proportions. A property also related to the idea
of identity, but stronger than full identity, is for a, b ∈ {0, 1}

• T (a, a, b, b) (identity)

Clearly, full identity postulate simply forces T to hold for
both assignments 0000 and 1111, while identity postulate
forces T to also hold for assignments 0011 and 1100: this
is definitely a stronger requirement. As already said, the 15
proportions of Tables 1 to 4 satisfy T (a, a, a, a), while only
direct analogy, reverse analogy, and the 4 “degenerated” pro-
portions appearing in Property 3 satisfy identity.
This remark singles out paralogy which rather satisfies

• T (a, b, a, b) (reflexivity)

• T (a, b, b, a) (reverse reflexivity)

together with full identity. Clearly, reflexivity postulate
forces T to hold for 0101 and 1010, while reverse reflex-
ivity postulate forces T to hold for 0110 and 1001. Thus,
direct analogy also satisfies reflexivity (and violates reverse
reflexivity), while reverse analogy satisfies reverse reflexivity
(and violates reflexivity). Paralogy violates identity.
Furthermore, the notation “::” suggests that a logical pro-
portion should be symmetric in the sense that we could ex-
change the left hand side and the right hand side of “::” with-
out changing the truth value of the proportion. Namely
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Table 5: Postulates

Analogy A Rev. analogy R Paralogy P
a : b :: a : b a ! b :: b ! a a ; b :: a ; b
a:b ::c:d⇒c:d ::a:b a!b ::c!d⇒c!d ::a!b a;b ::c;d⇒c;d ::a;b
a:b ::c:d⇒a:c ::b:d a!b ::c!d⇒c!b ::a!d a;b ::c;d⇒a;b ::d;c

Definition 2 Let T denote a Boolean proportion. T satisfies
the symmetry postulate iff T (a, b, c, d) ⇒ T (c, d, a, b)

It can be checked that the direct proportions, including anal-
ogy, as well as reverse analogy and paralogy satisfy sym-
metry. However, the reverse proportions of Table 3 violates
symmetry (in fact symmetry exchanges the proportions in the
table).

Property 4 Only 7 proportions satisfy full identity and sym-
metry: namely A, P, R and the 4 (direct) conditional pro-
portions of Table 2.

Another property which is worth discussing is independence
with respect to encoding. The 0/1 coding is just a matter of
convention and could be replaced with the reverse coding
1/0, i.e. for instance if a proportion holds for 1001, then
it should hold for 0110 also. We call this property mirror-
ing for short. Still, observe that, although apparently de-
sirable for logical proportions, this very strong property is
violated in classical reasoning for many connectives, since,
e.g., a → b is equivalent to ¬b → ¬a, and not to ¬a → ¬b.
This tends to indicate that the mirroring property is indeed
interesting, but not necessarily compulsory for having the
considered logical proportion useful. In other words, the
very meaning of the proportions that satisfy mirroring does
not change when we switch from one coding system to the
other one. This can be formalized as follows.

Definition 3 Let T denote a Boolean proportion. T satisfies

the mirroring property iff T (a, b, c, d) ⇒ T (a, b, c, d).

We have the following result:

Property 5 Among the logical proportions satisfying full
identity, only 3 proportions satisfy mirroring, namely anal-
ogy, reverse analogy and paralogy.

This result highlights the fact that analogy, reverse analogy
and paralogy play a particular role among all the propor-
tions. These 3 proportions do not only satisfy mirroring
(and symmetry), but are also characterized by permutation
properties. In fact, the postulate-based definitions of anal-
ogy, reverse analogy and paralogy have been given in (Prade
and Richard 2010) and are recalled in Table 5. Each pro-
portion is defined via 3 postulates. Obviously, the second
postulate is just the previous symmetry property. The third
postulate specifies under which permutation the proportion
is preserved (e.g., central permutation for analogical pro-
portions). As a consequence of the postulates, we retrieve
Property 1 that establishes a strong link between the three
kinds of analogy-related proportion. In agreement with their
third postulate, it appears that A satisfies T (a, b, a, b) and
T (a, a, b, b) by central permutation, R satisfies T (a, b, b, a)
and T (a, a, b, b) by permuting the first and the third compo-
nent and symmetry, and finally P satisfies T (a, b, a, b) and
T (a, b, b, a) by permuting the two last components. But we
have the following property:

Property 6 If A is an analogy, then 
/ A(a, b, b, a);
If R is a reverse-analogy, then 
/ R(a, b, a, b);
If P is a paralogy, then 
/ P (a, a, b, b).

It simply means that, for instance, we can build up a model
of analogical proportion A (i.e. satisfying the 3 required
postulates for analogy) such that A(a, b, b, a) does not hold
in the given model.

In the set and Boolean models, analogy and paralogy are
transitive, reverse analogy is not transitive and satisfies the
property:

a ! b :: c ! d and c ! d :: e ! f ⇒ a : b :: e : f
This means that transitivity, when it holds for a proportion,
is not a consequence of the corresponding postulates in Ta-
ble 5, but a peculiarity proper to some interpretations such
as the Boolean one; see (Prade and Richard 2010).

Equation solving with formal proportions

Let us now turn to an effective way of using these propor-
tions, as we apply the rule of three for numerical propor-
tions. The rule of three involves 3 items a, b, c and allows
to find out a fourth one x such that the numerical propor-
tion a

b
= c

x
holds. This is exactly the kind of process we

want to clone for the logical proportions, but with more
freedom since we have the choice between different propor-
tions. Given only 3 Boolean values a, b, c, is it possible to
find out a proportion T among the 7 symmetrical propor-
tions of Tables 1 and 2 (we mainly restrict ourselves to these
ones in the following), and an item x ∈ {0, 1} such that
T (a, b, c, x) holds? In the case of a positive answer, a new
question arises: is the solution unique? Given a proportion
T , the problem of finding x such that T (a, b, c, x) holds will
be referred as “equation solving”.

For example, starting from 1, 0, 0 we can check that 1 ! 0 ::
0 ! 1), i.e. a reverse analogy holds between these 4 items.
If we rather consider a direct proportion in Table 2, the so-
lution may not exist (e.g., for (a, b, c) = (1, 1, 0)), or the
solution may be not unique for two of them. Indeed, taking
for instance the proportion b | a :: x | c, (a, b, c) = (0, 0, 0)
may be completed both by x = 0 or by x = 1, and it is the
same for (a, b, c) = (0, 1, 0). This might be found as agree-
ing with the idea of implicit tolerance associated with de-
fault rules, however this is not specific of direct (or reverse)
proportions as we shall see. If we focus on the “perfect”
proportions of Table 1, namely analogy, reverse analogy and
paralogy, the solution becomes unique, when it exists, as
now restated in logical terms (these results have also their
counterparts in a set interpretation setting; see (Prade and
Richard 2009)).

Property 7 The analogical equation a : b :: c : x is solv-
able iff ((a ≡ b) ∨ (a ≡ c)) = 1. In that case, the unique
solution is x = a ≡ (b ≡ c) (Miclet and Prade 2009).

The reverse analogical equation a ! b :: c ! x is solvable iff
((b ≡ a)∨ (b ≡ c)) = 1. In that case, the unique solution is
x = b ≡ (a ≡ c).
The paralogical equation a ; b :: c ; x is solvable iff ((c ≡
b) ∨ (c ≡ a)) = 1. In that case, the unique solution is
x = c ≡ (a ≡ b).
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Despite these apparently intricate conditions, it is generally
easy to find out if there is a solution by matching the pattern
(a, b, c) at hand with Table 1 above. For instance (0, 1, 1) is
solvable for reverse analogy and paralogy with 0. It can be
easily deduced that:

Property 8 For any 3-uple (a, b, c), there exists at least
2 distinct proportions T among A, R, and P such that
T (a, b, c, x) is solvable and the solution is the same.

Let us remember that (Klein 1982), who is the author of the
first attempt to give a logical-like reading of analogical pro-
portions, used an implicit definition that in fact covers the
3 proportions together, since the unique solutions of their
equations are the same (due to the associativity of ≡). His
initial proposal has been refined here by splitting it in sev-
eral definitions, providing a much more accurate view of the
analogical proportion, and of the related proportions.
Besides, the equation “find x such that T (a, b, c, x) holds”,
may have no solution for the reverse proportions of Table
3, or several solutions for two of them, (as in the case of
direct proportions of Table 2). It is exactly the same for the
“degenerated” proportions of Table 4 that always lead to a
unique solution for two of them (1 and 4), while the two
others (2 and 3) may have several solutions in some cases.

Reasoning with logical proportions

Let us now investigate the potential use of these proportions
to design a general inference mechanism where we apply a
kind of “continuity” principle. When a logical proportion
holds for some observable features describing items a, b, c,
and d, we may assume that the same proportion still holds
between the other features of d, and the corresponding, ob-
servable and known features of a, b, and c. This simple idea,
when implemented as a prediction rule, provides the basis
for a transductive engine.

The transductive reasoning problem

We focus here on a simple binary classification task. Each
element of the problem universe is represented as a vector of
n binary features, i.e. our input space is X = B

n. Moreover,
each element of X (representing one item, or several distinct
items, in the problem universe) belongs to a class encoded
by 0 or 1. In other words, we try to classify an incoming
item and the output space is {0, 1}). A set S of already clas-
sified items is supposed to be given, which is then just a
subset of X ×{0, 1} = B

n+1, i.e., a set of labeled examples
(x, cl(x)). In the following, it is assumed that the class of an
element is unique. This means that � ∃(x, c) and (x, c′) ∈ S,
with c �= c′. This agrees with the existence of an underlying
classifying function cl from X to {0, 1}, this function being
only known for the elements in S. The basic idea underlying
transductive reasoning is that one tries to predict the class of
a new piece of data on the basis of the previously observed
data S, without any attempt to guess a generic model for the
observed data (which would be induction). In the approach
proposed here, given a new instance d whose class is un-
known, one looks for triples (a, b, c) of examples in the input
space S such that some logical proportion T holds simulta-
neously between the binary features associated to (a, b, c, d)

(i.e. T holds on the input space) in order to predict the class
of d by applying the same proportion T to the output space
{0, 1} (i.e. the space of classes).
In the absence of external knowledge, the only thing that we
have at our disposal for predicting the class of a new element
d is the observation of the behavior of the data at hand, try-
ing to relate the variations of cl(x) with the variation of the
features of x.

This first amounts to examine in what respect vectors are
similar or different, and this is exactly what logical propor-
tions are designed for. We use the following notations:

〈a, b〉 = {j ∈ [1, n], aj = bj = 1} (agreement set)

〉a, b〈 = {j ∈ [1, n], aj �= bj} (disagreement set)

where [1, n] denotes here an interval in the integers. Consid-
ering the Boolean lattice B as ordered with 0 < 1, we can
refine our definitions with:

〉a, b〉 = {j ∈ [1, n], aj > bj}

〈a, b〈 = {j ∈ [1, n], aj < bj}

Clearly, 〉a, b〈 = 〉a, b〉 ∪ 〈a, b〈, 〈a, b〉 ∪ 〉a, b〈 = [1, n] and
〈a, b〉 = [1, n] iff a = b. Let us now consider four vec-
tors a, b, c, d. If A, P, R stands respectively for analogical,
paralogical and reverse analogical proportion, our previous
definitions lead to:

A(a, b, c, d) = 1 iff 〉a, b〉 = 〉c, d〉 and 〈a, b〈 = 〈c, d〈

P (a, b, c, d) = 1 iff 〈a, b〉 = 〈c, d〉 and 〉a, b〈 = 〉c, d〈

R(a, b, c, d) = 1 iff 〉a, b〉 = 〈c, d〈 and 〈a, b〈 = 〉c, d〉

For a new item b, one may consider that the obstacle to be
classified as a previously labeled element a is just the set
〉a, b〈, since if this set is empty then we classify b as a. A
first natural idea is to try to minimize this set, and more gen-
erally the distance between a and b, which is reminiscent of
the principle underlying k-nn-like (k nearest neighbors-like)
methods. Namely in that view, when k = 1, letting | | denote
cardinality, one takes

cl(b) = cl(argminx |〉b, x〈|).

General inference principle

As already said, it is assumed that the items we are dealing
with are vectors a = (a1, . . . , an) of Boolean values that
encode the values of n binary attributes associated to a situ-
ation. Starting from a 4-tuple of vectors (a, b, c, d), we con-
sider that if there is a formal proportion that holds between
the first p components of these vectors, then this proportion
should hold for the last remaining components as well. This
inference principle can be stated as below:

∀i ∈ [1, p], T (ai, bi, ci, di)

∀j ∈ [p + 1, n], T (aj, bj, cj , dj)

This is a generalized form of analogical reasoning, where we
transfer knowledge from some components of our vectors
to their remaining components. Another way to put it is to
define a formal proportion T k over B

k with

T k(a, b, c, d) iff ∀i ∈ [1, k], T (ai, bi, ci, di)
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It is immediate that this extension T k (whatever the value of
k) has the properties of T and for the sake of simplicity, we
denote T k as T . Our inference principle can then be restated
as:

∀i ∈ [1, p], T (ai, bi, ci, di)

T (a, b, c, d)

This simple rule should allow us to devise a transductive
process that we examine below, letting p = n and k = n+1.
It is worth pointing out that properties such as full identity
or mirroring are especially relevant in that perspective. In-
deed, it is expected that in the case where d is such that it
exists a ∈ S with ∀i ∈ [1, p], di = ai, then T (ai, ai, ai, di)
holds. Thus, the approach includes the extreme particular
case where we have to classify an item whose representa-
tion (in the input space) is completely similar to an already
classified item. The mirroring property that expresses in-
dependence with respect to the encoding seems also very
desirable since it ensures that whatever the convention used
for the positive or the negative encodings of the value of each
feature and of the class, one shall obtain the same classifica-
tion result. However, mirroring is only a sufficient condition
for ensuring this, as we shall see later in the paper. For the
time being, we thus require both full identity and mirroring
for the logical proportions that we are going to use. Thanks
to Proposition 5, this means that we are only using the set
of the three proportions A, R, and P , for the moment. Ob-
serve that these proportions are also symmetrical in agree-
ment with the idea that the comparisons of a and b on the
one hand and of c and d on the other hand play symmetrical
roles.

Logical proportions-based transduction

In our approach, we apply a strategy very different from k-
nn methods, since the new item d to be classified is not just
compared with classified items on a one-to-one basis. For
the sake of uniformity with previous sections, we continue
to denote d the new item to be classified: d is known, but
cl(d) is unknown. Instead of looking for a c minimizing the
disagreement set 〉c, d〈, we consider any 3-tuples (a, b, c) ∈
S3 such that 〉a, b〈 = 〉c, d〈. Thus we focus on the common
features where the pairs (a, b) and (c, d) differ, i.e. in order
to see if these changes of feature values (between a and b,
and between c and d) are associated or not with classification
changes.
As already said, when ∃s ∈ S, |〉s, x〈| = 0, T (s, s, s, x)
holds for any proportion satisfying full identity, and the
unique solution for having T (cl(s), cl(s), cl(s), cl(x)) to
hold is cl(s) = cl(x). Let us now examine first the case
where |〉a, b〈| = 1, i.e., they differ on only 1 feature. To bet-
ter understand the strategy, let us first consider the following
example where n = 6 and the class is in the last column:

1 2 3 4 5 6 cl
a 1 1 0 1 0 0 1
b 1 1 0 1 1 0 0
c 1 0 0 1 1 1 0
d 1 0 0 1 0 1 ?

We observe a variation for component 5 since we have a5 =

0, b5 = 1, c5 = 1, d5 = 0. The following questions have to
be answered in order to predict the class for d:

• Do we have a proportion T (among A, P , R) such that
T (a, b, c, d) holds? In that case, only reverse analogy R
works.

• Do we have a solution for the class equation
R(cl(a), cl(b), cl(c), x)? We have 1 as a unique so-
lution for reverse analogy, which leads us to conclude
cl(d) = 1.

We have simply applied the previous inference principle:
roughly speaking, when a proportion holds for the features,
it should also hold for the class. Note that this mechanism
agrees here with the fact that the comparison of (a, cl(a))
with (b, cl(b)) leads us to conclude that the only known rea-
son for having cl(a) �= cl(b), is the difference between a and
b on their 5th component. Since a similar difference is ob-
served on c and d, this also plausibly leads to the conclusion
that we should have cl(c) �= cl(d). If we have had cl(a) =
cl(b), we would have concluded cl(c) = cl(d) by the propor-
tion mechanism, in agreement with the idea in such a case
that the change in feature value (here the 5th one) does not
affect the class. Moreover, it can be checked that we can-
not have situations such that 〉a, b〈=〉a′, b′〈=〉a, a′〈= {j},
where cl(a) = cl(b) while cl(a′) �= cl(b′) (otherwise there
is no possible function underlying S). It means that in a
common context where all the features values are equal on
the 4 tuples, except for one feature, it cannot exist examples
suggesting that there is no class change and other ones that
there is.

The above example is indeed representative of a rather
general situation, which amounts to say that a kind of “ce-
teris paribus” principle is at work here: If in a given con-
text it is observed that a change in a feature value leads to
a classification change, and that there does not exist another
context where the same change has no impact on the classifi-
cation, then one is led to assume that it would be true in any
context (which agrees with the idea that the function under-
lying the examples should not be more complicate than re-
quired by the examples). This principle would still apply for
more complex changes involving several features that would
be repeatedly associated with the same classification change
(or absence of change).

Still it is possible even in the case where 〉a, b〈=
〉c, d〈= {j} that a proportion T holds for a, b, c, d, while
T (cl(a), cl(b), cl(c), cl(x)) has no solution. Let us examine
the different possible situations.

Indeed, in such case for ∀i �= j, (ai, bi, ci, di) ∈
{(1, 1, 1, 1), (0, 0, 0, 0), (1, 1, 0, 0), (0, 0, 1, 1)}. If only the
two first 4-tuples appear among the n features, T ∈
{A, R, P}, while if one of the last two 4-tuples is obtained
for some i �= j, then T ∈ {A, R} and P is excluded. Thanks
to Property 8, we are sure to be able to complete with a
unique class cl(d) a given 4-tuple (a, b, c, d), for which ∃!j
such that 〉a, b〈= {j}, where cl(a), cl(b), cl(c) are known,
only if the proportion(s) that hold(s) for i = 1, n (including
i = j) has a solution for the corresponding class equation.
This is illustrated by the following example.
There is one suitable proportion T such that T (a, b, c, d)
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holds in the following example:

1 2 3 4 5 cl
a 1 1 0 1 1 0
b 1 1 0 1 0 1
c 1 0 0 1 1 0
d 1 0 0 1 0 ?

It is A, and this proportion makes the class equation with
(a, b, c) solvable, and leads to cl(d) = 1. But if only one
proportion, (say, e.g. A) is compatible with (a, b, c, d), it
may be the case that T (cl(s), cl(s), cl(s), cl(x)) has solution
only for T = P , or T = R, as in the example below.

1 2 3 4 5 cl
a 1 1 0 1 1 1
b 1 1 0 1 0 0
c 1 0 0 1 1 0
d 1 0 0 1 0 ?

It can be checked that this happens only if the same value
of j is associated with two different classes in the con-
texts defined by {ai = bi for i �= j} and {ci = di for
i �= j}. For instance, in the above example, for j = 5,
a5 = 1 = c5, the item a is in class 1 in the context
a1 = 1, a2 = 1, a3 = 0, a4 = 1, while c is in class 0 in the
context c1 = 1, c2 = 0, c3 = 0, c4 = 1. In such a case, this
means that the context, and not only j, influence the clas-
sification. This is why it seems preferable not to use such
triples (a, b, c) for predicting the value of d (at least if we
have better triples available; see however the section “More
options” in the following for a possible way of inferring a
class even in this case).

Towards an algorithm

The above analysis highlights an important point for
designing a tranduction algorithm. Instead of consid-
ering any triple (a, b, c) in order to classify d, for
each proportion T (among A, R, and P ) we consider
the set ST of triples (a, b, c) such that the equation
T ((a, cl(a)), (b, cl(b)), (c, cl(c)), (x, cl(x))) is solvable:

ST={(a,b,c) |T ((a,cl(a)),(b,cl(b)),(c,cl(c)),(x,cl(x)))solvable}

Obviously the other triples are useless for our objective be-
cause, whatever the coming d, they cannot constitute a log-
ical proportion with d. This preparation of the suitable set
can be done offline. Generally, one finds more than one suit-
able triple (a, b, c) such that T (a, b, c, d) then we have to
choose among diverse solutions for the classes. Here, we
have to decide what is the most “suitable” solution among
all the potential options. Let us take an example where a, b,
c, b′, c′ ∈ S:

1 2 3 cl 1 2 3 cl
a 1 1 1 0 a 1 1 1 0
b 1 0 1 0 b′ 1 1 0 1
c 0 1 1 1 c′ 0 0 0 1
d 0 0 1 ? d 0 0 1 ?

Clearly, on the left hand side, (a, b, c) ∈ SA and by ana-
logical proportion we get cl(d) = 1, while on the right

hand side, (a′, b′, c′) ∈ SR and we get cl(d) = 0 by re-
verse analogy. However, observe that 〉a, b〈=〉c, d〈= {2},
while 〉a, b′〈= {3} and 〉c′, d〈= {3}. Indeed, such a sit-
uation may take place only when the differences concern
different features (a situation where the extrapolation is ob-
viously bolder). In the above example, the first prediction
(cl(d) = 1) may be preferred, since a, b, c, d are similar on at
least one component (here the 3rd one) where we have ‘full
identity’, just making the 4 situations closer (while there are
pairwise identities only for a, b′, and for c′, d).
This leads us to another point: each set ST can be broken
down into a sequence of distinct subsets ST =

⋃
σ∈[1,n] S

σ
T

where Sσ
T = {(a, b, c) ∈ ST | |〉a, b〈| = σ} (i.e. a and b

differ on σ bits). When there is a choice between (a, b, c) ∈
Sσ

T and (a′, b′, c′) ∈ Sτ
T ′ to classify d, preference will be

given to the class associated with the smallest of the indices
σ and τ . We can view this principle as common sense since
we choose to consider the most similar items to classify the
new one.

Algorithm

Let us now translate all the previous remarks into an al-
gorithm. In the following, we consider that we have at
our disposal a procedure for solving a logical equation and
more precisely: for each considered proportion T , a method
T.solveEq(a, b, c) gives the unique solution of the equa-
tion T (a, b, c, x) = 1 when this solution exists (and returns
false otherwise).
Below, we provide the algorithmic scheme defining a
transductive engine based on logical proportions A, R, P .
As general input, we have the set S of labeled examples and
dynamically, we have to classify new data not belonging
to S. It appears that a pre-process work of S can be done
offline, before any observation of new data to be classified.

Offline work:
1) For T ∈ {A, P, R}, build up the set ST :

ST={(a,b,c) |T ((a,cl(a)),(b,cl(b)),(c,cl(c)),(x,cl(x)))solvable}

Note that these 3 sets are not necessarily disjoint. Obviously,
here we keep a record of the solution of the class equation
T (cl(a), cl(b), cl(c), z) to avoid to call again the function
T.solveEq() during the online part of the algorithm.

2) For σ = 1 to n, for T ∈ {A, P, R}, build up the fol-
lowing sets:

Sσ
T = {(a, b, c) ∈ ST | |〉a, b〈| = σ}

For a given T , these sets are necessarily disjoint.

Online work:
1) input: S ⊂ U × {0, 1}, d ∈ U such that (d, cl(d)) /∈ S

2) σ ← 1; //we start our loop. σ is the number of “differing”
bits

Cl1 ← 0; Cl0 ← 0;

3) for each T , build up the set Sσ
T,d equals to

{(a, b, c) ∈ Sσ
T | T (a, b, c, d) and 〉a, b〈=〉c, d〈}
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4) if
∑

T∈{A,P,R} | Sσ
T,d |= 0

then {σ ← σ + 1; goto 3} //we have no solution at this
level

else {for T ∈ {A, P, R}, for(a, b, c) ∈ Sσ
T,d

if T.solveEq(cl(a), cl(b), cl(c)) = 1 then Cl1++ else
Cl0++;

if Cl1 > Cl0 then cl(d) = 1 else

if Cl1 < Cl0 then cl(d) = 0 else

cl(d) = undefined
return cl(d) }
Let us examine each step of this algorithm.

Step 1 obviously does not consider a d such that (d, cl(d))
belongs to S: in that case, it simply means the new item d to
be classified has been already classified and there is no need
to go further.

Step 2 initializes 3 counters:

• σ that defines in some sense the level of difference be-
tween d and a previously labeled item c. If we are not
successful in classifying d at this level, the algorithm will
go to the next level.

• Cl1 (resp. Cl0) which is the number of proportions clas-
sifying d as 1 (resp. 0).

Step 3 looks for all the context c differing from d on ex-
actly the same σ bits and corresponding to a solvable pro-
portion. At this step, the preprocessing of the initial set is
useful to minimize the number of cases to be checked. At
the end of this step, we have built up 3 sets Sσ

A,d, S
σ
P,d, S

σ
R,d.

Roughly speaking, Sσ
T,d is the set of triples (a, b, c) such that

T (a, b, c, d) holds and where the pairs (a.b) and (c, d) differ
in the same manner.

Step 4 is the final one: if the 3 previous sets are empty,
it means that there is no solvable proportions involving d as
last element at difference level σ: then we try to find out a
solution at level σ+1 and are back to step 3. On the opposite,
if at least one of these sets is not empty, then we can solve
the class equation, get a solution 1 or 0. The 2 counters
Cl1 for class 1 (resp. Cl0 for class 0) have to be updated.
Then we implement a basic majority vote: for instance, if
Cl1 > Cl0, it means that among the holding proportions,
we have a majority of proportions giving 1 as solution for
the cl(d), then we decide to classify d as 1.

It appears here that, while most learners are able to general-
ize to any new input, this is not the case for our transductive
learner. From time to time, the current form of our algorithm
cannot decide between 1 and 0. Obviously, some improve-
ments can be done, depending on the extra knowledge we
have of the problem at hand. One of the simplest general-
ization we could consider is to have an order over the set
of binary features indicating their relative importance for in-
stance, as discussed in the ”More options” section below.

Complexity

Le us provide a complexity estimation of the algorithm.
From an algorithmic viewpoint, the equation solving pro-
cess is quite straightforward and in fact linear in the size

of the input, i.e. n. Then it appears that we have to ex-
plore the set S3 which could reveal untractable when the
size of S is huge. Nevertheless, we do not need to explore
the whole set S × S × S since we are only interested in
triples (a, b, c) such that there is a T where the equation
T (a, c(a)), (b, c(b)), (c, c(c)), (x, cl(x))) is solvable. Obvi-
ously, this computation can be done offline, and then the size
of the space to explore online can be reduced. This is the aim
of the offline section of the algorithm. It is quite clear that
we can take advantage of the properties of the considered
logical proportions in terms of substitutions to subsequently
reduce the search space: for instance if A(a, b, c, d) holds
(resp. does not hold) then 8 permutations of (a, b, c, d) will
hold (resp. not hold) decreasing by a factor 8 the size of the
space to be investigated.

Step 1 of the offline part is of the order of 3 × |S|3

Step 2 of the offline work is of the order of 3 × n × |S|3

where n is the dimension of the input space U .

It then appears that the offline part is (O(n|S|3)), but ob-
viously this is not satisfactory since the power 3 can quickly
lead to huge numbers. At least, we remain polynomial at
this stage.

Step 3 of the online part is of the order of 3 × |S|3

Step 4 of the online part is in the range of
3 × |S|3 multiplied by the time of the Boolean test
T.solveEq(cl(a), cl(b), cl(c)) = 1 since, as previously ex-
plained,the solving process itself has been carried out during
the offline part of the algorithm. This Boolean test is time
constant since this is just the observation of the last element
in the line starting with (a, b, c). Finally Step 4 is linear in
|S|3 as well.

It appears finally that the online part of our algorithm is
O(|S|3). There is obviously a need for optimisation. This
can be done using the symmetry and permutation properties
of our 3 proportions. We leave this issue for future works,
but it is known from (Stroppa and Yvon 2005) that, in the
case of analogical proportion, there are rooms for improve-
ment.

Some previous similar experiences have shown the effi-
ciency of an approach of this kind (see (Miclet, Bayoudh,
and Delhay 2008) for instance). However the proposed ap-
proach differs from this work in several respects:

• We never consider approximate proportions, we consider
only exact proportions. If there is no exact proportions,
then we are not able to predict. Obviously, if we want to
be able to predict whatever the context, we have to define
an approximate prediction process. This could be done
using techniques in (Miclet, Bayoudh, and Delhay 2008)
for instance, or using the ideas outlined in the next sec-
tion.

• Moreover, instead of considering a unique proportion
(namely analogy), we allow 3 proportions to hold. Ob-
viously, this will enlarge the range of situations, where
we can decide and in some sense, somewhat balance the
drawback coming from the fact that we consider only ex-
act proportions (rather than approximate ones as in (Mi-
clet, Bayoudh, and Delhay 2008)).

553



More options

The above proposed procedure makes use only of propor-
tions A, R, or P . It may happen that the procedure is not
able to recommend a particular class for a new item. In order
to at least partially overcome these limitations, some further
options may be considered.

• An ordering on the features may be available, either from
experts, or from some preliminary analysis of the data
(by means of some principal component analysis for in-
stance). This ordering is supposed to rank-order the fea-
tures according to their decreasing capability to induce a
classification change when their value changes, in a large
number of distinct contexts. Which such an ordering, one
may expect to identify features that have no influence or
almost no influence, and to neglect them in the procedure.
This may help diminishing the number of situations where
one cannot find a proportion that holds for the feature de-
scription part and that has a solution for extrapolating the
unknown class, since the number of useful features to be
considered will be reduced.

• Another interesting option when it does not exist any
triple a, b, c such that componentwise a formal proportion
of Table 1 holds, is to look for a proportion of Table 2 that
tolerates some “variability’ as in the following example
(see feature 2, or 4 , vs. feature 3):

a 1 0 0 0 1
b 1 1 1 0 0
c 1 0 0 0 1
d 1 0 1 1 ?

Here the application of the proportion b | a :: d | c will
yield cl(d) = 0, while no proportion of Table 1 is ap-
plicable. Another example is provided by the simple self
explanatory example below,

a lay eggs (1) small (0) fly (1) bird (1)
b lay eggs (1) big (1) notfly (0) bird (1)
c lay eggs (1) small (0) fly (1) bird (1)
d lay eggs (1) big (1) fly (1) ?

where the third proportion in Table 2 would allow us to
conclude that d flies.

• Another situation of interest where the proposed proce-
dure cannot conclude, is when, given a d to be classified,
one cannot find a suitable triple (a, b, c) in S where a pro-
portion T is applicable for all features, but where there
exists a triple a, b, c such that, componentwise some for-
mal proportion holds (not necessarily the same one for
each component). For instance,

1 2 3 4 cl
a 1 0 0 0 1
b 1 1 1 0 0
c 1 1 0 1 1
d 1 0 1 1 ?
T A, R, P R, P A, P A, R

In that case, we see that there is no proportion T such
that T (a, b, c, d). Nevertheless, there still exists a unique

solution cl(d) = cl(c) ≡ (cl(a) ≡ cl(b)) thanks to Prop-
erty 7 (since any triple cl(a), cl(b), cl(c) can be completed
by two of the proportions of Table 1, due to Property 8).
In the above example, the solution is indeed unique and
equal to 0). Such an option is to be used only when no
other option applies.

Related works

When it comes to infer new information from the compar-
ison of cases, we are obviously led back to analogical rea-
soning, which has received much attention from a cogni-
tive science point of view. This kind of reasoning has been
mainly formalized in the setting of first order logic (Davies
and Russell 1987; Melis and Veloso 1998), also taking in-
spiration from the idea of functional dependency. It can be
stated as:

• two particular terms s and t share a common property P ,
i.e. P (s) and P (t) both hold,

• s satisfies an additional property Q, i.e. Q(s) holds,

• then t should satisfy Q, i.e. Q(t) holds.

See (Prade and Richard 2010) for a discussion of the relation
with the analogical proportion approach. These approaches
take only 2 terms into consideration: the source s and the
target t. Analogical inference based on analogical propor-
tion allows to consider the source and the target as pairs of
terms (a, b) and (c, d). Instead of handling 2 items, we rather
deal with 4 items and we have to break down the initial rea-
soning to take into account the relation between these items
as an essential ingredient for an inferential step. Obviously,
this makes also a difference with the case-based reasoning
(Aamodt and Plaza 1994) where the new case at hand has
to be matched to only one previously seen case. In (Miclet,
Bayoudh, and Delhay 2008), a first use of Boolean analog-
ical proportion has been designed and very successfully ap-
plied to a classification task. Nevertheless, they use only one
type of proportion: our way to proceed generally provides
more options, involving more 3-tuples (a, b, c) and allows
to make a full use of the available information. Besides, af-
ter the pioneering preliminary investigation made in (Lepage
2001) for analogical proportions only, and its logical coun-
terpart provided in (Miclet and Prade 2009), the more re-
cent work by (Prade and Richard 2009) has introduced two
new proportions (paralogy and reverse analogy) which cap-
ture intuitions different from the one underlying the standard
analogical proportion, while (Prade and Richard 2010) has
provided a detailed study of the core properties underlying
these formal proportions. But, this work missed the other
natural options, laid bare in our paper, coming from condi-
tional objects, and did not discuss transduction. In view of
transduction, this gives us more potentialities for exploiting
every piece of information.

(Katona, Keszler, and Sali 2010) have recently proposed
a distance between two databases, which remains zero be-
tween an initial database and this database completed with
a new item, provided that this item leaves the existing func-
tional dependencies unchanged. This seems relevant for our
transduction problem, since the knowledge of the functional
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dependencies that determine the class from a subset of fea-
tures, and which can be induced from a set of observed data,
may help classifying a new item.

Conclusion

In this paper, we have investigated all the logical proportions
involving 4 Boolean items that acknowledge a so-called full
identity requirement. We have provided a unified approach
for identifying these proportions. Relying only on the ob-
servation of existing similarities/disimilarities between pairs
of items, these proportions capture common sense intuition,
going from standard analogical proportion to conditional ob-
jects. It has been shown that among all the available pro-
portions, only 11 seem to be particularly meaningful: they
equate similarities on the one hand, and dissimilarities on
another hand, between pairs. Moreover, we have established
the uniqueness of analogy, reverse analogy and paralogy as
the proportions satisfying an ultimate requirement reminis-
cent of the very meaning of the word ”proportion”: the code-
independence (mirroring). Starting from a given proportion,
it has been shown that a simple inference mechanism al-
lows to deduce new information, in a way reminiscent of
the well known ”rule of three”. This mechanism appears to
be the basis of a transductive reasoning process, allowing us
to complete information when only a limited sample of data
is available. Since we make only use of exact proportions,
our algorithm cannot always classified a new item. We have
given diverse ways to overcome this issue. Another solu-
tion would be to accept imperfect proportions and to define
a kind of distance to perfection, as it has been done in other
approaches. Obviously, it remains to implement and experi-
ment such a proportion-based transductive machinery, to ex-
periment it on benchmarks and to compare the results with
existing classification methods. Previous works by (Miclet,
Bayoudh, and Delhay 2008) only based on pure analogical
proportions, allow us to be rather optimistic.
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