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Abstract

We introduce ACTORSIM, the Actor Simulator, a toolkit for
studying situated autonomy. As background, we review three
goal-reasoning projects implemented in ACTORSIM: one
project that uses information metrics in foreign disaster re-
lief and two projects that learn subgoal selection for sequential
decision making in Minecraft. We then discuss how ACTOR-
SIM can be used to address cross-disciplinary gaps in several
ongoing projects. To varying degrees, the projects integrate
concerns within distinct specializations of AI and between
AI and other more human-focused disciplines. These areas
include automated planning, learning, cognitive architectures,
robotics, cognitive modeling, sociology, and psychology.

1 Introduction

Autonomous systems are increasingly called upon to augment
human capabilities; i.e., to work with a human in an assistive
way or to perform tasks that humans would not otherwise
be able to do. A clear example of such integration is that of
robotic systems, which have become a common addition to
many industrial and residential applications and are widely
used within close proximity to humans.

The challenges of autonomous systems most often arise
from the integration of distinct disciplines of research. In this
paper, we discuss two kinds of cross-disciplinary challenges.
First, we focus on cross-disciplinary challenges within the
field of Artificial Intelligence that pertain to the integration of
two or more sub-disciplines. Specializations such as machine
learning, vision, automated planning, or cognitive systems (to
name some that we focus on in this paper) have substantially
advanced our understanding of learning, perception, and rea-
soning. Yet the way these specializations represent and solve
problems is distinct enough to create challenges in how to
integrate them effectively and in how to generalize a tech-
nique perfected within one specialization. Second, we focus
on the continued integration of insights from human-focused

sciences such as sociology, psychology, and cognitive mod-
eling. Challenges in this focus relate to how to integrate
insights from those sciences or how to provide those sciences
with tools that advance knowledge about human behavior and
cognition. Addressing both kinds of challenges will be impor-
tant because an embodied autonomous system will usually
integrate insights from a variety of these fields.

We highlight a toolkit called ACTORSIM, which we believe
provides a strong starting point for studies of autonomous
systems. We begin with a description of ACTORSIM (Sec-
tion 2) followed by a brief review of its use in several existing
projects (Section 3) that have already taken some steps to-
ward addressing within-AI challenges. We then highlight
three projects that both extend this focus and broaden AC-
TORSIM’s cross-disciplinary areas to include human-focused
sciences. The first project (Section 4) will extend ACTOR-
SIM with a cognitive architecture in support of long-term
autonomy and perpetual learning in open environments. The
second project (Section 5) will build on this cognitive ar-
chitecture to improve robot safety by leveraging work from
cognitive science and robotic safety. The final project (Sec-
tion 6) seeks to integrate findings from psychology, sociology,
and narratology.

Throughout the paper we will focus on our research
agenda, which is guided by several questions concerning
an autonomous system’s interactions with either its environs
or other entities; these questions include: How to improve
its decision making with experience and context? How to
determine the extent to which it should modify or disregard
instructions? How to justify and clarify its choices to a hu-
man? How to embed information metrics for making priority
decisions among goals? Another set of questions originate
from our assumption of modeling decision making as hier-
archical decomposition via Goal-Task Networks (Alford et
al. 2016) and include: How to design or learn heuristics for
choosing the best decomposition for a particular context?
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Figure 1: The Component Architecture of ACTORSIM

How to determine when to enlist a reactive approach rather
than decompose? How to safely interleave execution for
potentially hundreds of simultaneous goals?

2 The Actor Simulator, ACTORSIM

ACTORSIM1 (Figure 1) is a general platform for conduct-
ing studies of autonomy in simulated environments; it was
originally conceived of during projects centered on the study
of goal reasoning. Although goal reasoning has strong ties
to planning, acting, and robotics, it is an understudied area
of research partly because there exists no publicly available
language, definition, and generic implementation. We view
goal reasoning as leveraging the work of Ghallab, Nau, and
Traverso (2014, 2016), wherein deliberation takes place on
(1) descriptive models of what to accomplish and (2) op-
erational models of how to perform a task. A descriptive
model for a goal to be (in rooma) might be decomposed
into the subgoals moveTo(doora), open(doortoA) if
applicable, and enter(rooma). An operational model of
opening the door is a more detailed sequence of actions such
as: determine the type of door, door configuration, and han-
dle, grasp the handle, unlatch the handle, and push (or pull
or slide) the door. Thus, the deliberation in such systems
resembles a hybrid goal-task network with goals interspersed.
To this we add goal reasoning, which supports Planning and
Acting by allowing an actor to determine and prioritize its
goals dynamically.

ACTORSIM partially implements the goal lifecycle of
Roberts et al. (2016), shown in Figure 2. ACTORSIM comple-
ments existing open source planning systems with a standard-
ized implementation of goal reasoning that is run by a goal
reasoner, or GRPROCESS. The main components consist of
the following.

ACTORSIM Core provides the interfaces and minimal im-
plementations of the platform. It contains the essential ab-
stractions that apply across all simulators. This component

1Available at http://makro.ink/actorsim/

Figure 2: The goal lifecycle. Refinement strategies (arcs)
denote possible decision points of an actor, while modes
(rounded boxes) denote the status of a goal in memory.

contains information about Areas, Locations, Actors, Vehi-
cles, Symbols, Maps, Sensors, and configuration details.

ACTORSIM Planner contains the interfaces and minimal
implementations for linking to existing open source planning
systems. This component unifies Mission Planning, Task
Planning, Path Planning, and Motion Planning. It currently
includes simple, hand-coded implementations of these plan-
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ners, although we envision linking this component to many
open source planning systems.

ACTORSIM Connector links to existing simulators di-
rectly or through a network protocol. Currently sup-
ported simulators include George Mason University’s MA-
SON (Luke et al. 2005) and two computer game simula-
tors: StarCraft and Minecraft. We envision links to common
robotics simulators (e.g., Gazebo, ROS, OpenAMASE), addi-
tional game engines (e.g., Mario Bros., Atari arcade, Angry
Birds), and existing competition simulators (e.g., RDDLSim,
Robocup Logistics League).

ACTORSIM Coordinator (not shown in the figure) houses
the interfaces that unify all the other components. This com-
ponent contains abstractions for Tasks, Events, Human in-
terface Interaction, Executives (i.e., Controllers), and Event
Notifications. It uses Google’s protocol buffers2 for messag-
ing between distributed components.

The Goal Refinement Library is a standalone library that
is integral to ACTORSIM, but could be used on its own. It
provides goal management and the data structures for transi-
tioning goals throughout the system. It contains the default
implementations for goals, goal types, goal refinement strate-
gies, the goal memory, domain loading, and domain design.

As ACTORSIM is applied to the projects we detail below,
it should become more accessible for other researchers to use.
A focus of the next year of development will be generating
better documentation and tutorials to accompany the software
with the aim of lowering the threshold for adoption of the
tool by other researchers.

3 Existing Projects Using ACTORSIM

ACTORSIM has been used to study autonomy in Foreign
Disaster Relief, a paradigmatic and Navy-relevant domain,
and Minecraft, a challenging computer game studied by re-
searchers (e.g., (Kope, Rose, and Katchabaw 2013), (Abel
et al. 2015)) and for which a research platform was recently
released by Microsoft Research (c.f., http://bit.ly/232bxhV).

3.1 Foreign Disaster Relief

Cross-disciplinary focus: robotics, LTL synthesis, plan-
ning and execution.

An early prototype of ACTORSIM was embedded in a
larger system called the Situated Decision Process (SDP),
which links hierarchical task planning (i.e., a goal network)
with reactive vehicle controllers (Roberts et al. 2015). The
controllers were automatically built by synthesizing correct-
by-construction Finite State Automatas (FSAs) from a re-
stricted variant of Linear Temporal Logic. This work intro-
duced Coordination Variables that allowed task planning to
control and receive feedback from a reactive layer. It also
saved considerable computation during FSA synthesis. In
a small demonstration, we showed that the SDP adjusts to
notable events (e.g., finding a survivor) or retasks vehicles to
continue stalled missions when such events occur.

This system was extended to a more recent study on Goal
Reasoning with Information Measures (GRIM) (Johnson et

2https://developers.google.com/protocol-buffers/

al. 2016). In this system ACTORSIM was integrated with a
Multi-Agent Goal Reasoner, which acted as the simulation
engine (cf., top right of Figure 1). GRIM presented initial
efforts towards grounding a goal reasoning system in the
metrics used by the controlled vehicles during execution. We
showed that the goal lifecycle provided a formal structure
upon which to refine and resolve goals and, when paired with
information measures, GRIM satisfied more goals than the
baseline system without resolve strategies.

Future extensions will investigate additional goal types as
well as more complex algorithms and information measures.
The initial study used a simple approximation for the mea-
sure of uncertainty in the survey goal, and a more accurate
measure of the uncertainty (e.g., tracking the total area cov-
ered by the vehicles sensors) and corresponding expectations
would allow GRIM to improve its performance estimates and
react accordingly. Additionally, a planner or scheduler could
be used to SELECT goals while accounting for the likelihood
of discovering an official in each region, thus enabling GRIM
to more intelligently choose which goals to pursue. Like-
wise, adapting plan expectations (e.g., recognizing that the
vehicles are not completing the survey at the expected rate,
and changing the expectations accordingly) would enable
GRIM to more quickly identify and evaluate problems, and
thus improve the likelihood that it could RESOLVE-BY any
discrepancies. These extensions will enable a more thor-
ough evaluation of GRIM’s benefits via an experiment with
randomly generated scenarios.

3.2 Overcoming Obstacles in Minecraft

Cross-disciplinary focus: planning and learning in
episodic autonomy.

ACTORSIM has also been used in two studies to learn
subgoal selection in the game of Minecraft. Both studies
task the GRPROCESS, acting as a virtual player, with control-
ling Steve to achieve the goal of navigating to a gold block
through an obstacle course. We represent this as a top goal
of moving to the gold block and with five subgoals (walk
forward, walk around, build a staircase, mine, and build a
bridge) that help the character lead to that objective. The or-
der of subgoal choice impacts performance. These subgoals
do not contain operational knowledge, so preconditions on
actions ensure that the character will not violate safety by
falling too far or walking into a pool of lava or water. The
character’s movement is axis aligned and discrete. We coded
an expert decision maker that chose the best subgoal based on
observations of the state of blocks directly around the player.
We collected traces from the expert procedures, capturing the
state, distance to the goal, sub-goal chosen, and whether the
chosen subgoal succeeded.

In the first study, the character made decisions using these
observations (Roberts et al. 2016). In addition to the expert
choice, we implemented randomized choice and an ordered
choice to study the impact of the training set on learning
an effectiveness. We trained a decision using traces from
Random, Ordered, and Expert procedures and showed that,
for this limited domain, learning from structured exploration
(i.e., the Ordered traces) is as effective as Expert exploration
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and costly knowledge gathering is ineffectual. In the second
study (Bonanno et al. 2016), we extended subgoal selection
to learn from raw pixels using deep learning. In a limited pilot
study where a virtual character must overcome obstacles, we
showed that a deep learning architecture built upon AlexNet
learned an effective policy 93% of the time with very little
training.

Future extensions will extend planning and learning. An
important part of better learning is to apply deep learning (and
other learning approaches) for object classification within
Minecraft. Another learning task is to better recognize the
context of the character. For better planning, we are extending
the planning models to include richer variants of automated
planning such as PDDL+ (Fox and Long 2006), and extend-
ing the tasks to include mining resources and surviving.

4 Perpetual Learning

Cross-disciplinary focus areas: long-duration auton-
omy, planning and learning, and cognitive architectures.

Robotic and autonomous systems increasingly operate for
longer durations and often for longer than their engineered
lifespan (e.g., the Mars Rovers). Yet many systems are often
evaluated within a closed episodic paradigm with a minimal
set of tasks. A long-running process will likely encounter a
variety of tasks and contexts and could ideally progress its
own agenda for over hundreds or thousands of tasks, some of
which may be assigned externally. We call such a system a
perpetual learner because it directs its own curricula to con-
tinually create and master new tasks, incrementally revises
previously mastered tasks, or halts learning for tasks it has
sufficiently mastered.

We aim to study perpetual learning in dynamic, open,
multi-agent, simulated environments where a perpetual
learner continuously performs hundreds of tasks appropri-
ate to the context while responding to requests from team-
mates. Researchers have already investigated some aspects
of perpetual learning, namely how to move beyond episodic
evaluation, how to partition computational effort through de-
composition, and how to maintain and update memory. The
literature in these three areas provides a foundation from
which to build, and we discuss the challenges of integrating
them into a perpetual learner in the remainder of this section.

For moving beyond episodic learning, perpetual learn-
ing can leverage successes in never-ending learning
(Mitchell et al. 2015), continual learning (Ring 1997), life-
long learning (Thrun and Mitchell 1995), and transfer learn-
ing (Isele, Rostami, and Eaton 2016), which have each signif-
icantly advanced our understanding of learning across tasks
and time. One of the challenges is determining where and
when to integrate these approaches into the perpetual learner.

At a minimum, a perpetual learner must maintain a retriev-
able memory of its current tasks and its own performance.
Many disciplines contribute to the study of memory in intel-
ligence. Here we plan to focus on the literature in cognitive
systems, which has refined a crisp computational definition
of memory structures. In particular, we will supplement
ACTORSIM with key concepts from the Icarus architecture
(Langley and Choi 2006) as shown in Figure 3. These will

include a long-term memory to store knowledge, a short-
term (i.e., working) memory to focus computation, plus a
retrieval and learning processes to transfer knowledge be-
tween these. Space limitations prevent a detailed comparison
between this proposed architecture and other cognitive ar-
chitectures (e.g., SOAR (Laird 2012) and ACT-R (Anderson
and Lebiere 1998)), but two distinctions worth noting here
are ACTORSIM’s the use of the goal lifecycle and the separa-
tion of planning and goal reasoning into distinct processes.
The challenge in integrating memory stems from determin-
ing what to store in a perpetual learning system and when
to enlist memory versus when to rely on more reactive or
reflexive approaches. Another challenge is how to retrieve
the best goal templates for instantiating goals with respect
to the long-term and working memories; we plan to leverage
priming defined by Hiatt & Trafton (2015) for retrieval and
ranking.

ACTORSIM provides a starting point for implementing
a perpetual learner in the two domains mentioned above.
We plan to implement the cognitive architecture shown in
Figure 3 and augment a baseline agent with a self-directed
agenda for curricula learning. Tasks will vary for each envi-
ronment and will be encoded as Goal-Task Networks. We will
hand-code the initial networks while exploring ways to learn
them from scratch and ablate provided or learned networks
to assess their impact on performance. For curricula learning,
we will extend insights from NELL, the Never-Ending Lan-
guage Learner, which is a state-of-the-art, semi-supervised,
continuously learning agent that built a word ontology of
thousands of concepts by passively reading web pages over
10 years (Mitchell et al. 2015). The insights from NELL
include: (1) coupling the training of inter-related learning
tasks; (2) allowing the agent to learn new inter-task cou-
plings; (3) allowing the agent’s representation to grow; and
(4) graduating the agent through progressively harder tasks
as its competency increases. We will focus on three research
questions of understanding under conditions does perpetual
learning improve an agent’s (1) adaptation to a new task;
(2) responsiveness to commanding from or cooperation with
simulated teammates; and (3) long-term performance over a
system that lacks perpetual learning.

Figure 3: Integrating a cognitive architecture into ACTOR-
SIM. Boxes indicate data, ovals indicate processes, and gray
indicates new components.
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5 Robotic Safety During Concurrent

Execution

Cross-disciplinary focus areas: Robotic systems, safety,
planning and execution

One area of research that has been identified as a chal-
lenge area by the Office of the Secretary of Defense (OSD)’s
Autonomy Community of Interest is combining autonomy
skills developed by different researchers, and possibly in dif-
ferent disciplines. We envision a paradigm for combining
autonomy skills in which multiple, different behaviors can be
active at the same time and their actions can be combined at
various levels of abstraction in the ACTORSIM architecture;
e.g., combining similar trajectories into a composite path, or
interleaving atomic actions reach its goal faster.

There are at least two questions to answer in order to ac-
complish this, which traditionally lie in different disciplines.
The first is how to support goal reasoning and planning for
a domain where multiple actions can be executed simultane-
ously? This research question is distinct from literature on
single- and multi-agent planning as well as literature on goal
reasoning because of the interdependence of the physical
robot resources that the behaviors utilize. A second question
is how to ensure that concurrently executed skills are being
executed safely? The way in which these active behaviors in-
teract can be constrained both by the behaviors themselves, as
well as by the overall architecture. For example a humanoid
robot could combine a grasping behavior which moves the
robot’s left hand with speech processing behavior but could
prohibit the combination of grasping with the robot moving
to a new location.

These two questions are coupled, so solving them grace-
fully requires a cross-disciplinary approach. Researchers
investigating goal reasoning and planning for this paradigm
must model the behavioral constraints as well as include
any abstract programming interfaces that are put in place to
ensure safety. Likewise, work on the concurrent execution
must be aware of the goals and plans that may arise when
planning for this domain and account for them. In addition
to ACTORSIM being well-suited to each of these challenges,
it is also an appropriate platform for researching their com-
bination because of its support for modeling activities at all
levels of abstraction, from abstract goals to simulated (or
real) execution.

Our technical approach will extend the cognitive archi-
tecture from Figure 3 with constraint-based planning (e.g.,
(Frank and Jonsson 2003; Jonsson et al. 2000)) that repre-
sents durative actions as tokens on a timeline with constraints
existing between the start and end of those tokens. A plan
is a partially ordered sequence of such tokens, and is con-
sistent when it has no conflicting constraints. ACTORSIM
will be modified to incorporate such constraints into goal
refinement and leverage constraints from other components
in the system. Robotic safety is thus ensured by allowing
only consistent plans.

6 Rebel Agents

Cross-disciplinary focus areas: Robotic systems, narra-
tology, psychology, sociology, cognitive science.

Rebel Agents (Coman, Gillespie, and Muñoz-Avila, 2015)
are goal-reasoning agents capable of refusing an externally-
assigned goal (or a course of action associated with that
goal) that conflicts with their own internal motivation (which
can be based on various factors, such as models of memory,
emotion, social relationships, etc.). Our research objectives
and intended outcomes pertaining to Rebel Agents include
establishing a framework for AI agent rebellion informed
by social and personality psychology, investigating poten-
tial benefits and challenges pertaining to Rebel Agents in
various application domains (including human-machine inter-
action and interactive storytelling), and implementing Rebel
Agents driven by various motivation models. Rebel Agents
were initially proposed in an interactive storytelling context,
for the purpose of enhancing character believability as well
as providing a source of conflict, a key aspect of narrative
in any medium. Decentralized autonomy consists of allow-
ing agents playing characters in an interactive narrative to
largely self-determine their behavior (Evans and Short 2014).
Goal reasoning holds promise for narrative intelligence. Sam-
sonovich & Aha (2015) propose a model of character reason-
ing in terms of actors and characters, but this model has not
yet been translated into a digital-narrative implementation.

While decentralized autonomy can alleviate the content
generation burden by not requiring fully scripted or closely
guided character behavior, it also makes it more difcult to
maintain the narrative coherence of the story. A radically
different alternative is the strong-story-type system, in which
all story decisions are made by a drama manager. There are
approaches covering the middle ground between the two, and
this is where Rebel Agents would fit in: a drama manager
oversees the story, but the agents can rebel against the drama
manager’s decisions when reasoning that they could handle
their own character arcs in more engaging ways.

This application of the Rebel Agent model to enhanc-
ing character arcs in narrative-intelligence contexts would
allow us to explore the use of ACTORSIM for interactive-
storytelling tasks. We are also interested in trying to con-
nect ACTORSIM with story-centric interactive fiction envi-
ronments which are fully or partially text-based, similar to
work by Sharma et al. (2010).

In addition to interactive narrative, autonomous agents
could express protest regarding assigned tasks for reasons
including ethics, safety, concern for their self-development,
or teaming considerations. Our planned cross-disciplinary ap-
proach, which draws on psychology and sociology, will take
into account the fact that, when it comes to human behavior,
refusal, reluctance, protest, rebellion, and similar attitudes
occur in varied situations and manifest in varied ways. A
task can be refused immediately after it is assigned; a general
process for this in human-robot interaction is proposed by
Briggs and Scheutz (2015). However, a person might also
start questioning the assigned task during execution because
its implications become clear, because something changes
in the environment, thus affecting the task’s implications, or
because the motivation of the person conducting the task has
changed in ways affecting how they view the task. Humans
are often proactive in expressing their protest regarding spe-
cific tasks they are expected to conduct as well as the general
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context of their activities.
Here is one example of rebellion based on a self-

development motivation model. In personality psychology,
the strengths-based leadership approach (Rath and Conchie
2009) argues that every person, whether a leader or not,
should be offered the opportunity to routinely conduct activi-
ties in line with their strengths. We envision a Rebel Agent
that can assess whether its currently assigned task plays up
to its strengths, and express protest if that is not the case.
Self-monitoring/assessment and, possibly, outside feedback,
would be used by the agent not only to improve its perfor-
mance, but also to maintain awareness of how well it per-
forms certain tasks relative to others. Outside feedback and
self-monitoring can be used to improve the agents ability to
conduct various tasks over time. However, for reasons either
endogenous or exogenous to the agent, certain abilities can
plateau at an average level, while others are developed into
exceptional skills (the agents strengths). The agent would
be aware of these strengths and proactive in ”selling them”.
Alternatively, the agent could proactively request tasks that
provide it with better learning opportunities.

We will explore ways in which the goal reasoning within
ACTORSIM can accommodate such processes pertaining to
rebellion. To accomplish this we intend to draw on the psy-
chology and sociology literature to identify a wide range of
situations reflecting human rebellion and related attitudes
and search for ways in which these could be applicable to AI
agent autonomy in useful ways.

7 Summary
Cross-disciplinary approaches are critical to solving some
of the challenges faced within autonomous systems research
and development. We discussed specific challenges with
respect to a toolkit called ACTORSIM. To date, much of
the development effort on ACTORSIM has focused within
sub-disciplines of AI. We identified new directions that will
broaden ACTORSIM to include disciplines outside of AI.
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based local and global percept processing for rebel agents. In
Kendall-Morwick, J., ed., ICCBR (Workshops), volume 1520
of Proc. of the CEUR Workshop, 23–32. CEUR-WS.org.
Evans, R., and Short, E. 2014. Versu - a simulationist
storytelling system. IEEE Trans. Comput. Intellig. and AI in
Games 6(2):113–130.
Fox, M., and Long, D. 2006. Modelling mixed discrete-
continuous domains for planning. JAIR. 28:236–297.
Frank, J., and Jonsson, A. 2003. Constraint-based attribute
and interval planning. Journal of Constraints 8(4):339–364.
Ghallab, M.; Nau, D.; and Traverso, P. 2014. The actor’s
view of automated planning and acting: a position paper.
Artificial Intelligence 208:1–17.
Ghallab, M.; Nau, D.; and Traverso, P. 2016. Automated
Planning and Acting. Cambridge University Press.
Hiatt, L. M., and Trafton, J. G. 2015. An activation-based
model of routine sequence errors. In Proc. of the Interna-
tional Conference on Cognitive Modeling.
Isele, D.; Rostami, M.; and Eaton, E. 2016. Using task
features for zero-shot knowledge transfer in lifelong learning.
In Proc. of IJCAI, 1620–1626. AAAI Press.
Johnson, B.; Roberts, M.; Apker, T.; and Aha, D. 2016. Goal
reasoning with information measures. In Proc. ACS.
Jonsson, A.; Morris, P.; Muscettola, N.; Rajan, K.; and
Smith., B. 2000. Planning in interplanetary space: The-
ory and practice. In Proceedings of AIPS 2000, 177–186.
Kope, A.; Rose, C.; and Katchabaw, M. 2013. Modeling au-
tobiographical memory for believable agents. In Sukthankar,
G., and Horswill, I., eds., Proc. AIIDE. AAAI.
Laird, J. 2012. The Soar Cognitive Architecture. MIT Press.
Langley, P., and Choi, D. 2006. A unified cognitive architec-
ture for physical agents. In Proc. AAAI. AAAI Press.
Luke, S.; Cioffi-Revilla, C.; Panait, L.; Sullivan, K.; and
Balan, G. 2005. MASON: A multi-agent simulation envi-
ronment. In Simulation: Trans. of the soc. for Modeling and
Simulation International, volume 82(7), 517–527.
Menager, D., and Choi, D. 2016. A robust implementation
of episodic memory for a cognitive architecture. In Proc. of
Annual Meeting of the Cognitive Science Society.
Mitchell, Tom et al. 2015. Never-ending learning. In Proc.
AAAI.
Rath, T., and Conchie, B. 2009. Strengths-based leadership:
Great leaders, teams, and why people follow. Gallup Press.
Ring, M. B. 1997. Child: A first step towards continual
learning. Machine Learning 28(1):77–104.
Roberts, M.; Apker, T.; Johnston, B.; Auslander, B.; Well-
man, B.; and Aha, D. W. 2015. Coordinating robot teams for
disaster relief. In Proc. FLAIRS.
Roberts, M.; Alford, R.; Shivashankar, V.; Leece, M.; Gupta,
S.; and Aha, D. 2016. Goal reasoning, planning, and acting
with ActorSim, the Actor Simulator. In Poster Proc. ACS.

207



Samsonovich, A. V., and Aha, D. W. 2013. Character-
oriented narrative goal reasoning in autonomous actors. In
Goal Reasoning: Papers from the ACS Workshop (Techni-
cal Report CS-TR-5029). College Park, MD: University of
Maryland, Department of Computer Science, 166–181.
Sharma, M.; Ontan, S.; Mehta, M.; and Ram, A. 2010.
Drama management and player modeling for interactive fic-
tion games. Computational Intelligence 26(2):183–211.
Thrun, S., and Mitchell, T. M. 1995. Lifelong robot learning.
Robotics and Autonomous Systems 15:15–46.
Trafton, G.; Hiatt, L.; Harrison, A.; Tamborello, F.; Khem-
lani, S.; and Schultz, A. 2013. ACT-R/E: An embodied
cognitive architecture for human-robot interaction. Journal
of Human-Robot Interaction 2(1):30–54.

208


