
Probabilistic Verification for Cognitive Models:
Controller Synthesis and Model Evaluation

Sebastian Junges and Joost-Pieter Katoen
RWTH Aachen University, Germany

Nils Jansen and Ufuk Topcu
The University of Texas at Austin, USA

Abstract

Many robotics applications and scenarios that involve interac-
tion with humans are safety or performance critical. A natural
path to assessing such notions is to include a cognitive model
describing typical human behaviors into a larger modeling
context. In this work, we set out to investigate a combination
of such a model with formal verification. We present a general
and flexible framework utilizing methods from probabilistic
model checking and discuss current pitfalls. We start from
information about typical behavior, obtained from generaliz-
ing specific scenarios by the usage of inverse reinforcement
learning. We translate this information in order to define a
formal model exhibiting stochastic behavior (whenever sig-
nificant data is present) or nondeterminism (if the model is
underspecified or no significant data is present) that can be
analyzed. This model for a human can be combined with a
robot model by using standard parallel composition. The ben-
efit is manyfold: First, safe or optimal strategies for involved
robots regarding a human can be synthesized depending on
the given model. In general, verification can determine if such
benign strategies are even possible. Furthermore, the cognitive
model itself can be analyzed with respect to possible unnatural
behaviors; thereby feedback to developers of such models is
provided. We evaluate and describe our approaches by means
of a well-known model for visiomotor tasks and provide a
framework that can readily incorporate other models.

Methodology

In this paper, we give an intuitive overview on our methodol-
ogy and provide some necessary background. We consider
shared autonomy settings that roughly incorporate a human
and potentially multiple controllable robots. The key issue is
that optimal or safe robot strategies are dependent on human
behavior. In order to enable formal reasoning, one can make
use of a human model, from which data about typical behav-
ior in specific scenarios shall be collected. Note that defining
a closed-form formal model is already hard for static envi-
ronments because of possibly very large state spaces. Such
a model becomes even more intractable when considering
dynamic environments which give rise to possibly infinite
state spaces.

In the past, it has been investigated, how data about typical
human behavior can be obtained by reinforcement learning

Copyright c© 2016, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

(RL) (Sutton and Barto 1998). Basically, RL describes al-
gorithms addressing the optimal control problem through
learning, i.e., an agent learns how to solve a task based on ac-
cumulated experience while interacting with an environment.
Costs and rewards of actions with respect to a certain measure
of success are thereby quantified; resulting in a quantitative
description of possible actions. So-called Q-learning main-
tains this information in form of Q-values over actions, stored
in a Q-table. RL is typically performed in several episodes to
approximate the globally optimal behavior, i. e., actions are
chosen to improve previous choices with respect to already
learned global information in each episode.

RL connects to typical human behavior in the follow-
ing way: A human does not select globally optimal actions,
but rather those which obtain locally high rewards or low
cost, corresponding to a high Q-value. Executed for several
episodes, globally optimal values are approximated by hu-
mans, cf. (Barto 1995; Daw and Doya 2006). When such a
technique is used to collect behavioral data, randomness and
noise needs to be factored in. In particular, one cannot assume
that every human always takes the action with the highest
value. Therefore, a human is assumed to make choices based
on a distribution over the actions, where the distribution is
based on the Q-values (e.g. by an applied softmax-function).

To illustrate such behavior using an example, consider
Figure 1 which is taken with permission from Ballard
from (Rothkopf and Ballard 2013). The setting is as fol-
lows: A human walks down a sidewalk containing features of
different kinds (obstacles, litter, and a pathway) and is asked
to attend to three tasks:

(i) avoid obstacles,

(ii) collect litter,

(iii) and follow a specific path on the walkway.

Figure 1 shows an avatar inside a simulation environment
for our scenario. We see a division of the features of the
given scenario into features relevant for the specific tasks.
The arrows depict point for each of the tasks to the closest
relevant feature. This modularization can be utilized to first
describe the behavior if only one task would be given, while
the action values are obtained following the results of several
episodes of RL for this objective. The so obtained Q-table
maps a relative position of the human with respect to relevant

The 2016 AAAI Fall Symposium Series:
Cross-Disciplinary Challenges for Autonomous Systems

Technical Report FS-16-03

185

Figure 1: Visiomotor setting with different tasks while walk-
ing down a sidewalk shown in a simulation environment. The
state space is divided into the modular tasks (i) approach
targets (blue), (ii) avoid obstacles (purple), and (iii) follow
walkway (gray).

features in the environment and an action-choice to an action
value.

Notice, that in this example setting a particular human
might have a different interpretation of the objectives, for
instance one might prefer to collect as much litter as possible
while a more risk-averse person rather tries to avoid obstacles
at all cost. If such different objectives of humans can be
identified, data— interpreted as probability distributions over
possible actions— with respect to each individual objective
needs to be collected as explained above.

The question is then how these different data sets can be
combined formally by, e. g., assigning weights to different
actions to reflect a preference over different objectives. One
approach uses the assumption of modularity of the human
mind, see for instance (Pinker 1999). Modularity now means
that a human assigns weights to possible actions according to
his/her preference of individual objectives. The assumption
is, that the human actually wants to maximize the objective,
e. g., collecting as much litter as possible. Put differently,
the choice of actions is assumed to be according to RL and
the reward or cost of a chosen action is inferred under this
assumption. Such methods are called inverse reinforcement
learning (IRL) (Ng, Russell, and others 2000). Given indi-
vidual Q-tables for different objectives and obtained weights
on these objectives, the result is a multi-dimensional Q-table
over the relative position with respect to several relevant fea-
tures, mapping this relative position and action-choice to an
action-value for the combined objectives. This is for instance
employed in (Rothkopf and Ballard 2013).

Our goal is to use these weighted Q-tables together with
a description of the environment to obtain a formal descrip-
tion of typical human behavior within this environment. Note
that the variability or noise in the action-values give rise to
probability distributions over actions inside the environment.
In addition to the weights over actions the model might also
employ nondeterminism for two reasons. First, often the dis-
cretized state set is an abstraction, and different behaviors are

grouped within one state, which leads to under-specification.
Second, not all combinations above might have been consid-
ered in the experiments, which might lead to a lack of data.
In such cases, it seems reasonable to assume the worst-case
and not assume any probability distribution over the actions.

The underlying model for the human can be specified
by a Markov decision process (MDP) (Puterman 1994). An
MDP is a transition system having nondeterministic choices1.
Each choice is associated with a probability distribution over
successor states. Starting from some initial state, a run of an
MDP is thus based on a series of choices that all result in a
probabilistic determination of the next state. If all possible
nondeterministic choices in an MDP are resolved—by an
entity called scheduler or strategy—the resulting system is
fully stochastic and a probability measure can be associated
to events like finally reaching a certain state.

In our setting, we want to compute a strategy of the human
that induces a certain measure of success. We also want to
account for best-case or worst-case behaviors of the human.
Naturally, the method of choice is probabilistic model check-
ing, cf. (Baier and Katoen 2008), referring to the question
if a given property, like “The probability of reaching a bad
state shall be lower than 10%”, is satisfied or not. If yes, one
is returned a strategy that induces such a satisfactory event.

The necessary techniques are provided by state-of-the
art probabilistic model checkers like PRISM (Kwiatkowska,
Norman, and Parker 2011), ISCAS-MC (Hahn et al. 2014)
or PROPhESY (Dehnert et al. 2015). In case there is no such
benign strategy, one is interested in diagnostic information,
e. g. in the form of probabilistic counterexamples (Ábrahám
et al. 2014). Tool-support is given by DiPro (Aljazzar et al.
2011) or COMICS (Jansen et al. 2012).

Assume now we have such an MDP representing typical be-
havior of humans in a certain specific context, i. e., inside the
given environment. This model is merged with a given model
of robot movement, adding a second level of nondeterminism.
The resulting model is then called a 2-player stochastic game.
Model checking enables to resolve any nondeterminism in
the possible human actions by assuming worst-case behavior
of the robot. Such an analysis can be performed by (Chen et
al. 2013a).

Note that as with any model-based approach, our result is
as most as good as the model, while due to the formal guaran-
tees we can state that our result is in fact as good as the model.
To improve the quality of models, we propose to utilize coun-
terexamples. In particular, a technique providing feedback on
errors based on the modeling language (Wimmer et al. 2015)
might provide feedback to the model learning block (yielding
a guided RL idea), as the feedback focusses on the most rele-
vant parts of the human behavior with respect to our robot. On
top of that, one can employ model repair (Bartocci et al. 2011;
Chen et al. 2013b; Pathak et al. 2015), where a model is au-
tomatically repaired towards satisfaction of a property. The
changes can reflect what changes need to be made to the
original model.

1This is often called actions; however these actions do not corre-
spond to the actions the human takes in our setting.

186

Figure 2: Graphical representation of our gridworlds

Case Study

To show the applicability of the technique described above,
we chose the specific scenario based on the original case study
from (Rothkopf and Ballard 2010). Recall that we have a
human subject who is to collect litter while avoiding obstacles
when following a specific path. This is depicted in Figure 1.
Consider moreover Figure 2, where the path to follow is
abstracted by waypoints depicted as black dots. Obstacles to
avoid are red crosses and the blue squares indicate litter to
collect. These three entities are called features.

Addressing the problem of potentially very large state
spaces, in (Rothkopf and Ballard 2013) an approach was
suggested which was based on modular IRL, assuming that
behavior is organized in a modular way. Basically, separate
representations of individual tasks are available and actions
influence these tasks individually. As described above, our
starting point is this methodology, based on an cognitive
architecture for visiomotor tasks as in Figure 2, first presented
in (Rothkopf and Ballard 2010).

Moreover, the methodology used in (Rothkopf and Bal-
lard 2013) leaves room for nondeterminism in movements,
either by inherent underspecification in the sense that only
the closest litter and obstacles is accounted for (which is not
uniquely defined in the grid), or because there is very low
confidence on which movement to take.

While the underlying state space is indeed shown to grow
exponentially in the number of features (obstacles or litter)
within the scenario, the encoding in the PRISM-format can be
done in a cubic fashion. Notice that the parallel composition
of modules – typically used for parallel (modular) processes –
does not help to encode the human behavior due to the nature
of the modularity considered here. Domain specific insights
allow us to cut-off the model when specific conditions are
met, with automatic error bounds obtained. This ensures that
both the construction of the model as well as the final state
space can be managed towards the originally considered grid-
sizes. First experiments show that for some scenarios the un-
derspecification is serious while for others this is only a minor
issue. An important insight is that the resulting MDP graph
has an irregular structure. This irregularity renders the inter-

nal symbolic representation of the MDP (Baier et al. 1997;
Parker 2002) larger than for the typical benchmarks from the
probabilistic verification community as for instance given
by the PRISM benchmark suite (Kwiatkowska, Norman,
and Parker 2012). This means that the memory consump-
tion for models typically referred to as medium-sized (106
- 107 states) already takes a significant amount of computa-
tion resources. Moreover, typical reduction strategies such
as bisimulation (Katoen et al. 2007) are mostly ineffective.
However, by applying aforementioned optimizations on the
model construction and by selecting the best model checking
configurations in terms of solving method and state space
representations, the scalability is significantly improved.

We conclude that while the methodology is promising,
its practical realization suffers from scalability issues on
several levels (translation, encoding, internal representation).
Tailored techniques for the representation or abstraction are
promising future directions to remedy these problems.

Acknowledgements

This work has been partly funded by the awards AFRL #
FA9453-15-1-0317, ARO # W911NF-15-1-0592 and ONR
N00014-15-IP-00052. We want to thank Dana H. Ballard,
Mary M. Hayhoe, and Matt Tong for their kind providing of
data, resources, and advice for this work.

References

Ábrahám, E.; Becker, B.; Dehnert, C.; Jansen, N.; Katoen,
J.; and Wimmer, R. 2014. Counterexample generation for
discrete-time markov models: An introductory survey. In
SFM, volume 8483 of Lecture Notes in Computer Science,
65–121. Springer.
Aljazzar, H.; Leitner-Fischer, F.; Leue, S.; and Simeonov,
D. 2011. DiPro – A tool for probabilistic counterexample
generation. In Proc. of SPIN, volume 6823 of LNCS, 183–
187. Springer.
Baier, C., and Katoen, J.-P. 2008. Principles of Model
Checking. The MIT Press.
Baier, C.; Clarke, E. M.; Hartonas-Garmhausen, V.;
Kwiatkowska, M. Z.; and Ryan, M. 1997. Symbolic model
checking for probabilistic processes. 430–440.
Barto, A. G. 1995. 11 adaptive critics and the basal ganglia.
Models of information processing in the basal ganglia 215.
Bartocci, E.; Grosu, R.; Katsaros, P.; Ramakrishnan, C.; and
Smolka, S. A. 2011. Model repair for probabilistic systems.
In Proc. of TACAS, volume 6605 of LNCS. Springer. 326–
340.
Chen, T.; Forejt, V.; Kwiatkowska, M.; Parker, D.; and
Simaitis, A. 2013a. PRISM-games: A model checker for
stochastic multi-player games. In Proc. 19th International
Conference on Tools and Algorithms for the Construction
and Analysis of Systems (TACAS’13), volume 7795 of LNCS,
185–191. Springer.
Chen, T.; Hahn, E. M.; Han, T.; Kwiatkowska, M.; Qu, H.;
and Zhang, L. 2013b. Model repair for Markov decision
processes. In Proc. of TASE, 85–92. IEEE CS.

187

Daw, N. D., and Doya, K. 2006. The computational neurobiol-
ogy of learning and reward. Current opinion in neurobiology
16(2):199–204.
Dehnert, C.; Junges, S.; Jansen, N.; Corzilius, F.; Volk, M.;
Bruintjes, H.; Katoen, J.-P.; and Abraham, E. 2015. Prophesy:
A probabilistic parameter synthesis tool. In Proc. of CAV,
volume 9206, 214–231.
Hahn, E. M.; Li, Y.; Schewe, S.; Turrini, A.; and Zhang, L.
2014. iscasMc: A web-based probabilistic model checker. In
Proc. of FM, volume 8442 of LNCS, 312–317. Springer.
Jansen, N.; Ábrahám, E.; Volk, M.; Wimmer, R.; Katoen,
J.-P.; and Becker, B. 2012. The COMICS tool – Computing
minimal counterexamples for DTMCs. In Proc. of ATVA,
volume 7561 of LNCS, 349–353. Springer. (to appear).
Katoen, J.; Kemna, T.; Zapreev, I. S.; and Jansen, D. N. 2007.
Bisimulation minimisation mostly speeds up probabilistic
model checking. In TACAS, volume 4424 of Lecture Notes
in Computer Science, 87–101. Springer.
Kwiatkowska, M.; Norman, G.; and Parker, D. 2011. PRISM
4.0: Verification of probabilistic real-time systems. In Proc.
of CAV, volume 6806 of LNCS, 585–591. Springer.
Kwiatkowska, M.; Norman, G.; and Parker, D. 2012. The
PRISM benchmark suite. In Proc. of QEST, 203–204. IEEE
CS.
Ng, A. Y.; Russell, S. J.; et al. 2000. Algorithms for inverse
reinforcement learning. In Icml, 663–670.
Parker, D. 2002. Implementation of Symbolic Model Check-
ing for Probabilistic Systems. Ph.D. Dissertation, University
of Birmingham.
Pathak, S.; Ábrahám, E.; Jansen, N.; Tacchella, A.; and Ka-
toen, J. 2015. A greedy approach for the efficient repair of
stochastic models. In NFM, volume 9058 of Lecture Notes
in Computer Science, 295–309. Springer.
Pinker, S. 1999. How the mind works. Annals of the New
York Academy of Sciences 882(1):119–127.
Puterman, M. L. 1994. Markov Decision Processes: Discrete
Stochastic Dynamic Programming. John Wiley and Sons.
Rothkopf, C. A., and Ballard, D. H. 2010. Credit assignment
in multiple goal embodied visuomotor behavior. Embodied
and grounded cognition 217.
Rothkopf, C. A., and Ballard, D. H. 2013. Modular inverse
reinforcement learning for visuomotor behavior. Biological
cybernetics 107(4):477–490.
Sutton, R. S., and Barto, A. G. 1998. Reinforcement learning:
An introduction, volume 1. MIT press Cambridge.
Wimmer, R.; Jansen, N.; Vorpahl, A.; Ábrahám, E.; Katoen,
J.; and Becker, B. 2015. High-level counterexamples for prob-
abilistic automata. Logical Methods in Computer Science
11(1).

188

