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Abstract 
Privacy policies are used to communicate company data prac-
tices to consumers and must be accurate and comprehensive. 
Each policy author is free to use their own nomenclature 
when describing data practices, which leads to different ways 
in which similar information types are described across poli-
cies. A formal ontology can help policy authors, users and 
regulators consistently check how data practice descriptions 
relate to other interpretations of information types. In this pa-
per, we describe an empirical method for manually construct-
ing an information type ontology from privacy policies. The 
method consists of seven heuristics that explain how to infer 
hypernym, meronym and synonym relationships from infor-
mation type phrases, which we discovered using grounded 
analysis of five privacy policies. The method was evaluated 
on 50 mobile privacy policies which produced an ontology 
consisting of 355 unique information type names. Based on 
the manual results, we describe an automated technique con-
sisting of 14 reusable semantic rules to extract hypernymy, 
meronymy, and synonymy relations from information type 
phrases. The technique was evaluated on the manually con-
structed ontology to yield .95 precision and .51 recall. 

Introduction   
Mobile and web applications (apps) are increasingly popular 
due to the convenient services they provide in different do-
mains of interest. According to the PEW Research Center, 
64% of Americans own a smart phone (Smith, 2015). They 
found that smart phone users typically check health-related 
information online (62% of Americans), conduct online 
banking (54%), and look for job-related information (63%). 
To fulfill user needs and business requirements, these apps 
collect different categories of personal information, such as 
friends’ phone numbers, photos and real-time location. Reg-
ulators require apps to provide users with a legal privacy no-
tice, also called a privacy policy, which can be accessed by 
users before installing the app. For example, the California 
Attorney General’s office recommends that privacy policies 
list  what kinds of personally identifiable data are collected, 
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how it is used, and with whom it is shared (Harris, 2013). 
However, data practices are commonly described in privacy 
polices using hypernymy (Bhatia, Evans, Wadkar, & 
Breaux, 2016), which occurs when a more abstract infor-
mation type is used instead of a more specific information 
type. Hypernymy allows for multiple interpretations, which 
can lead to ambiguity in the perception of what personal in-
formation is collected, used or shared. To address this prob-
lem, we applied content analysis, which is a qualitative re-
search method for annotating text to identify words and 
phrases that embody the meaning of special codes (Saldaña, 
2015), and grounded theory (Corbin & Strauss, 2014) to dis-
cover heuristics for manually classifying information types 
into a formal ontology. We evaluated these heuristics in a 
second study of 50 mobile app privacy policies. Further-
more, we developed an automated technique to replace the 
manual method and discover prospective hypernyms, mer-
onyms and synonyms. This technique consists of 14 reusa-
ble semantic rules that characterize how to infer these rela-
tionships directly from phrases. 
 This paper is organized as follows: first, we discuss back-
ground and related work; then, we introduce our content 
analysis method and results, including the seven heuristics; 
then, we describe our automated technique for discovering 
hypernym, meronym and synonym prospects, before pre-
senting results of evaluating this technique against the man-
ually constructed ontology. We conclude with future work.  

Important Terminology 

The following terms are used throughout this paper: 
• Hypernym – a noun phrase, also called a superordinate 

term, that is more generic than another noun phrase, called 
the hyponym or subordinate term. 

• Meronym – a noun phrase that represents a part of a 
whole, which is also a noun phrase and called a holonym. 
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• Synonym – a noun phrase that has a similar meaning to 
another noun phrase. 

• Lexicon – a collection of phrases or concept names that 
may be used in an ontology. 

• Ontology – a collection of concept names and relation-
ships between these concepts, including hypernym, mer-
onym and synonym relationships. 

Background and Related Work 
In software engineering, privacy policies are critical require-
ments documents that are used by various stakeholders to 
communicate about data practices (Anton & Earp, 2004). 
Due to different needs and background context, there can be 
disparate viewpoints and assumptions regarding what is es-
sentially the same subject matter (Uschold & Gruninger, 
1996). Stakeholders can use different words for the same 
domain, which reduces shared understanding of the subject. 
This confusion can lead to a misalignment among what de-
signers intend, what policies say, and what regulators expect 
(Breaux & Baumer, 2010).  
 In requirements engineering, Potts and Newstetter iden-
tify two approaches to codifying knowledge: naïve positiv-
ism, and naturalistic inquiry (Potts & Newstetter, 1997). 
Positivism refers to the world with a set of stable and know-
able phenomena, often with formal models. Naturalistic in-
quiry (NI) refers constructivist views of knowledge that dif-
fers across multiple participant observations. The research 
in this paper attempts to balance among these two view-
points by recognizing that information types are potentially 
unstable and intuitive concepts. Our approach initially per-
mits different conceptual interpretations, before reducing 
terminological confusion to reach a shared understanding. 
For example, terminological confusion arises in the mobile 
privacy policy phrase “network information,” which is an 
abstract information type that is occasionally used by policy 
writers in privacy policies. This term can mean any data sent 
over a network as well as network configuration infor-
mation, or it might only mean IP address. 
 Formal ontologies allow us to achieve shared meaning by 
relating concepts to each other using logical relationships 
with hypernymy, meronymy and synonymy, among others 
(Martin & Jurafsky, 2000). An ontology can be used for dis-
ambiguation, when policies contain head words that are hy-
pernyms, e.g., the word “address” in a policy can mean ei-
ther an “IP address” or “e-mail address”. We now review 
prior research on ontology in privacy, before discussing ex-
isting methods to construct ontologies. 

Ontology in Security and Privacy Policy 
In prior work, ontologies have been developed for privacy. 
Heker et al. developed a privacy ontology for e-commerce 
transactions (Hecker, Dillon, & Chang, 2008). The lexicon 
they used to implement the ontology includes information 

about privacy mechanisms and privacy principles from leg-
islative documents, such as European Parliament Directive 
95/46/EC. The ontology includes general entities for e-com-
merce transactions, such as authentication, authorization, 
and identities.  
 In the domain of security policies, Bradshaw et al. pre-
sented KAoS, a policy service framework which includes a 
user interface for presenting a natural language policy spec-
ifications, an ontology management component for express-
ing and reasoning over Description Logic (DL) ontologies, 
and a policy monitoring and enforcement layer that com-
piles the specifications into machine readable policies   
(Bradshaw, et al., 2003). Using this framework, intelligent 
agents continually adjust their behavior with specifications. 
Kagal et al. constructed an ontology to enforce access con-
trol policies in a web services model (Kagal, et al., 2004). 
This ontology is expressed in RDF and OWL-Lite and de-
scribes user and web service specifications about the infor-
mation users agreed to share with web services. Syed et al. 
developed an ontology in OWL DL which provides a com-
mon understanding of cybersecurity domain and unifies 
most commonly used cybersecurity standards (Syed, Padia, 
Finin, Mathews, & Joshi, 2016). This ontology which is 
called Unified Cybersecurity Ontology (UCO) also map 
some existing publicly available cybersecurity ontologies to 
promote ontology sharing, integration and reuse.  
 Breaux et al. utilized an ontology to find conflicts be-
tween the privacy policies regarding data collection, usage, 
and transfer requirements (Breaux, Hibshi, & Rao, 2014). 
An ontology was used to infer data flow traces across sepa-
rate policies in multi-tier applications (Breaux, Smullen, 
Hibshi, 2015). These ontologies include simple hierarchies 
for actors, information types and purpose expressed in DL.   
 To our knowledge, our work is the first privacy-related 
ontology that formally conceptualizes personally identifia-
ble information types and their relationships from 50 mobile 
app privacy policies. This paper describes the empirically 
validated, bootstrap method used to create the ontology, as 
well as new techniques for automating the method. Moreo-
ver, the initial version of the manually constructed ontology 
has been used to find conflicts between mobile app code-
level method calls and privacy policies (Slavin et al., 2016). 

Constructing an Ontology 
According to Uschold and Gruninger, there is no standard 
method to build an ontology (Uschold & Gruninger, 1996). 
However, a general approach includes: identifying the pur-
pose and scope for the ontology; identifying key concepts 
that lead to a lexicon; identifying the relationships between 
concepts in the lexicon; and formalizing those relationships.  
 A lexicon consists of terminology in a domain, whereas 
ontologies organize terminology by semantic relationships, 
including hypernyms, which describe super- and sub-ordi-
nate conceptual relationships, meronyms, which describe 
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part-whole relationships, and synonyms, which describe dif-
ferent words with similar or equivalent meanings (Huang, 
2010). Lexicons can be constructed using content analysis 
of source text, which yields an annotated corpora. Breaux 
and Schaub empirically evaluated crowdsourcing as a 
means to create corpora from annotated privacy policies 
(Breaux & Schaub, 2014). Wilson et al. described the crea-
tion of a privacy policy corpus from 115 privacy policies 
using crowdsourcing (Wilson, et al., 2016). 
 Marti Hearst proposed six lexico-syntactic patterns to au-
tomatically identify hypernymy in natural language text us-
ing noun phrases and regular expressions (Hearst, 1992). 
Example patterns are “such as”, “including”, and “espe-
cially.” After identifying these patterns in a sentence, the as-
sociated noun phrases are extracted using part of speech 
tags. The noun phrases are then verified by comparison with 
an early version of WordNet, which is a popular lexical da-
tabase that contains hyponyms (Miller, 1995). 
 Snow et al. presented a machine learning (ML) approach 
for learning hypernymy relationships in text which also re-
lies on lexico-syntactic patterns (Snow, Jurafsky, & Ng, 
2004). The ML features are derived from hypernym-hypo-
nym pairs in WordNet, which are then found in parsed sen-
tences of newswire corpus. A resulting syntactic depend-
ency path is used to describe each pair. This ML approach 
relies on explicit expressions of hypernymy in text, whereas 
we discovered a rule-based approach to identify hypernyms 
based on shared words among information type phrases. 
 By comparison to Hearst and Snow et al., Bhatia et al. 
applied an extended set of Hearst-related patterns to 15 pri-
vacy policies and found that this approach yields hypernyms 
for only 23% of the lexicon (Bhatia, Evans, Wadkar, & 
Breaux, 2016). This means the remaining 77% of the lexi-
con must be manually analyzed to construct an ontology. 

Ontology Construction Overview 
The ontology construction method (see Figure 1) consists of 
6 steps: steps 1-3 are part of a crowdsourced content analysis 
task based on Breaux and Schaub (2014); and step 4 em-
ploys an entity extractor developed by Bhatia and Breaux 
(2015), to yield a lexicon (artifact A). In this paper, we ex-
tend that prior work with a novel set of heuristics for manu-
ally classifying information types from a lexicon into an on-
tology (step 5), including a technique to automatically iden-
tify prospective hypernym, meronym, and synonym rela-
tionships (step 6). 

Acquiring the Mobile Privacy Policy Lexicon 
The mobile privacy policy lexicon (artifact A in Figure 1) 
was constructed using a combination of crowdsourcing, 
content analysis and natural language processing (NLP). We 
first selected the top 20 English policies across each of 69 
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categories in Google Play1, from which we selected 50 mo-
bile app privacy policies. In step 2, the 50 policies were seg-
mented into ~120 word paragraphs using the method de-
scribed by Breaux & Schaub (2014); this yielded 5,932 
crowd worker tasks with an average 98 words per task.  
 

 
Figure 1. Overview of ontology construction method 

 In the annotator task (see Figure 2, for example), the an-
notators identified phrases that correspond to one of two 
concepts: 
• Platform Information: any information that the app or an-

other party accesses through the mobile platform which is 
not unique to the app. 

• Other Information: any other information the app or an-
other party collects, uses, shares or retains. 

 

 
Figure 2. Example crowdsourced annotation task 

 These two concepts comprise the entire coding frame in 
content analysis. Example phrases that match the platform 
information code include “IP address,” “contact folder,” 
“location information,” “email address,” and “unique device 
identifier.” The annotators were allowed to work on the 
tasks at their own pace, taking breaks when they experi-
enced fatigue or boredom. The other information code was 
used to ensure that annotators remained vigilant, particularly 
when platform information types were sparse in the policy 
text. To construct the lexicon, we selected only platform in-
formation when annotations two or more annotators agreed 
on the annotation. This number follows the empirical anal-
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ysis of Breaux & Schaub (2014), which shows high preci-
sion and recall for two or more annotators on the same task. 
Next, we applied an entity extractor (Bhatia & Breaux, 
2015) to the remaining annotations to itemize the platform 
information types into unique entities to be included in the 
privacy policy lexicon.  

Six annotators, including the first, third, and fourth au-
thors performed the annotations. The cumulative time to an-
notate all tasks was 19.9 hours across all six annotators, 
which yielded a total 720 unique annotations in which two 
or more annotators agreed on the annotation.  

In the next step, the annotations were analyzed by an en-
tity extractor developed by Bhatia and Breaux (2015). The 
extractor yields unique information type names from anno-
tations by identifying type boundaries from annotated word 
lists and incomplete annotations. Based on the 50 policies, 
the extractor yielded 355 unique information type names. 

Manual Ontology Construction 
We now describe our bootstrap method for constructing a 
formal ontology from an information type lexicon. This in-
cludes our choice of formalism, the tools used to express the 
ontology, and the construction method. 
 Description Logic (DL) ontologies enable automated rea-
soning, including the ability to infer which concepts sub-
sume or are equivalent to other concepts in the ontology. We 
chose the DL family ℒ, which is PSPACE-complete for con-
cept satisfiability and concept subsumption. In this paper, 
reasoning in DL begins with a TBox  that contains a col-
lection of concepts and axioms based on an interpretation  
that consists of a nonempty set Δ , called the domain of in-
terpretation. The interpretation function  maps concepts to 
subsets of Δ : every atomic concept  is assigned a subset ⊆ Δ , the top concept ⊤ has the interpretation ⊤  Δ .  
 This ℒ family includes operators for concept union and 
intersection, and axioms for subsumption, and equivalence 
with respect to the TBox. Subsumption is used to describe 
individuals using generalities, and we say a concept  is 
subsumed by a concept , written ⊨ ⊑ , if ⊆  
for all interpretations  that satisfy the TBox . The concept 

 is equivalent to a concept , written ⊨ ≡  , if ⊆
  for all interpretations  that satisfy the TBox .  

 We chose DL, because we only aim to identify which lex-
icon phrases share interpretations. For a given information 
type in a privacy policy, we query a TBox to identify related 
types. In the future, we propose to extend the method to dis-
cover the exact relationships among types. For example, 
parts of wholes are formally interpreted using subsumption, 
because subsumption is not strictly limited to hyponyms. 
Our approach can be extended to separately reason across 
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hypernyms and meronyms using the DL family  that in-
cludes role transitivity, which is PSPACE-complete for TBox 
satisfiability (Horrocks, Sattler, & Tobies, 1999). In this 
family, a meryonym role can distinguish parts of concepts 
that are not co-transitive with a hypernym role to yield un-
intended answers, such as a mobile device “sensor” is a kind 
“mobile device.” We express the DL ontology using the 
Web Ontology Language2 (OWL) version 2 DL and the Pro-
tégé3 tool version 4.3, which is a graphical tool for manipu-
lating the ontology. OWL has a decentralized philosophy 
which allows incremental building of knowledge, and its 
sharing and reuse (Syed, Padia, Finin, Mathews, & Joshi, 
2016).  
 The bootstrap method begins with a “flat” ontology, 
which is automatically generated to contain concepts names 
for each information type name. In the flat ontology, every 
concept name  is only a direct subclass of the top concept, ⊑ ⊤. Next, two analysts define subsumption and equiva-
lence axioms for concept pairs using Protégé by making 
paired comparisons among the concepts in the ontology. 
This method is subject to cognitive bias, including the prox-
imity of concepts to each other in the alphabetical list, and 
to the recency with which the analysts encountered concepts 
for comparison (Postman & Phillips, 1965). 
 The bootstrap method was piloted by the second and third 
authors on five privacy policies. The pilot study resulted in 
a set of seven heuristics that form a grounded theory and that 
explain why two concepts share an axiom in the ontology. 
For a pair of concepts , the analysts assign an axiom 
with respect to a TBox  and one heuristic as follows: 
• Hypernym (H): ⊑  , when concept   is a general 

category of  , e.g., “device” is subsumed by “technol-
ogy”. 

• Meronym (M): ⊑ , when  is a part of , e.g., “in-
ternet protocol address” is subsumed by “internet proto-
col”. 

• Attributes (A): ⊑  and ⊑ , 
when the  phrase contains the  phrase as an attrib-
ute or modifier of  phrase, e.g., “unique device identi-
fier” is subsumed by “unique information” and “device 
identifier”. 

• Plural (P): ≡  , when the  phrase is a plural form of 
the  phrase, e.g., “MAC addresses” is the plural form of 
“MAC address”. 

• Synonym (S): ≡ , when  is a synonym of , e.g., 
“geo-location” is equivalent to “geographic location”. 

• Technology (T): ≡ , when  is a tech-
nology, e.g., “device” is equivalent to “device infor-
mation”. 

3 http://protege.stanford.edu/ 
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• Event (E): ≡ , when  is an event, e.g., 
“usage” is equivalent to “usage information”. 

 The first and third author conducted a 4-step heuristic 
evaluation of the seven heuristics using the lexicon pro-
duced by the 50 mobile app privacy policies as follows: (1) 
two analysts separately apply the bootstrap method on a 
copy of the lexicon; (2) for each ontology, an algorithm ex-
tracts each expressed and inferred axiom between two con-
cepts using the HermiT4 reasoner; (3) each relationship as-
signed to a concept pair appears in one column per analyst 
(in Figure 3, see Analyst1, where ‘Super’ means the LHS is 
a superclass of the RHS, ‘Sub’ means subclass of, ‘Equiv’ 
means equivalence, and ‘None’ means no relationship); and 
(4) each analyst then separately reviews their assigned ax-
iom type, choose the heuristic to match the assignment, and 
decides whether to retain or change their axiom type.  
 In Figure 3, the left-hand side (LHS) concept is compared 
to the right-hand side (RHS) concept by Analyst1 and Ana-
lyst2, whose axiom types appear in their respective column, 
e.g., Analyst1 assigned “Equiv” to “web pages” and “web 
sites” and the heuristic “S” to indicate these two concepts 
are synonyms, whereas Analyst2 assigned “Sub” and heu-
ristic “M” to indicate “web pages” is a part of “web sites.” 
 

LHS Concept RHS Concept Heuristic Analyst1 Analyst2 
web pages web sites S/M Equiv Sub 
ads clicked usage info H Sub Sub 
computer platform H Super Super 

log information system activity M None Super 
device type mobile device type A Super None 

tablet  tablet information T None Equiv 

Figure 3. Example table comparing concept relationships 

 Before and after step 3, we compute the Fleiss’ Kappa 
statistic, which is a chance-corrected, inter-rater reliability 
statistic (Fleiss, 1971). Increases in this statistic indicate im-
provement in agreement above chance. 

Automated lexeme variant inference  
Information types are frequently variants of a common lex-
eme, for example, “mobile device” is a variant of “device,” 
called the head word. The relationship among variants can 
be explained by the heuristics, and we designed a method to 
automatically infer variants based on semantic rules. Figure 
4 shows an example phrase, “mobile device IP address” that 
is decomposed into the atomic phrases: “mobile,” “device,” 
and “IP address,” based on a 1-level typology. 
 The typology links atomic phrases to whether they are one 
of five kinds: attributes, which describe the quality of a 
thing, such as “mobile” and “personal;” things, which is a 
concept that has logical boundaries and which can be com-
posed of other things; events, which describe action perfor-
mances, such as “usage,” “viewing,” and “clicks;” agents, 
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which describe actors who perform actions or possess 
things; and the special type α which includes “information,” 
“data,” “details,” and any other synonyms of “information.” 
 

 
Figure 4. Example Lexicon phrase, grouped and typed 

 The typed, atomic phrases are recomposed using rules to 
infer variants. Rules consist of a type pattern, a heuristic, 
and an inferred ontological relationship. The following rules 
R1-R13 are expressed using the types: attribute (A), thing 
(T), event (E), agent (G), and α. Subscripts indicate the order 
of same-typed phrases in asymmetric ontological relations: 
R1.  implies ⊑ ⊔  (heuristic 

A), e.g., “mobile device identifier” is a kind of “mo-
bile information” and “device identifier”. 

R2.  implies ⊑ ⊔  (heuristic M and 
heuristic H), e.g., “internet protocol address” is a part 
of “internet protocol” and a kind of “address”. 

R3.  implies ≡  (heuristic T), e.g., 
“device” is a synonym of “device information”. 

R4.   implies ⊑ ⊔  (heuristic A), 
e.g., “mobile device information” is a kind of “mo-
bile information” and “device information”. 

R5.  implies ⊑ ⊔  (heuristic 
H), e.g., “device log information” is a kind of “device 
information” and “log information”. 

R6.  implies  ≡  (heuristic E), e.g., 
“usage” is a synonym of “usage information”. 

R7.  implies that ⊑ ⊔ , e.g., “click count” 
is part of “click” and a kind of “count”. 

R8.  implies that ⊑ ⊔  , 
only if  is tagged as a verb. Otherwise, ⊑ ⊔

, e.g., “pages viewed” is a kind of “pages” and 
“views,” which is corrected to present simple, third-
person tense. 

R9.  implies that ⊑ ⊔ ⊔⊔ , e.g., “website 
activity date” is a part of “website activity” and a 
kind of “activity date”. 
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R10.  implies that ⊑ ⊔ ⊔ , e.g, 
“language modeling data” is a part of “language” and 
a kind of “language data” and “modeling data”. 

R11.  implies that ⊑ ⊔ , e.g. “ag-
gregated user data” is a kind of “aggregated data” and 
“user data”. 

R12.  implies that ⊑ ⊔ , 
e.g., “anonymous demographic information” is a kind 
of “anonymous information” and “demographic in-
formation”. 

R13.   implies that ⊑ ⊔ , e.g., 
“user content” is a kind of “user information” and 
“content”. 

 The above rules were discovered by the first and third au-
thor who classified the 355 lexicon phrases using the typol-
ogy as a second-cycle coding frame (Saldaña, 2015). The 
automated technique applies the rules to phrases and yields 
inferred relations for evaluation in three steps: (1) a phrase 
from the lexicon is decomposed and typed, once, as shown 
in Figure 4; (2) the semantic rules are matched to the typed 
phrases to infer new candidate phrases and relations; (3) for 
each inferred phrase, we repeat step 2 with the inferred 
phrase. The technique terminates when no rules match a 
given input phrase. For example, in Figure 4, we perform 
step (2) by applying the rule R1 to infer that “mobile device 
IP address” is a kind of “device IP address” based on heu-
ristic A. However, the phrase “device IP address” is not in 
the lexicon, i.e., it is potentially a tacit concept name. Thus, 
we re-apply the rules and rule R2 matches this phrase’s typ-
ing to infer that “IP address” is part of “device,” which are 
two explicit concept names in the lexicon. Thus, we accept 
both inferences for further evaluation. 
 Heuristic P establishes equivalence relations between plu-
ral and singular noun phrases as described by R14: 
R14. For any plural form of a phrase, this phrase is equiva-

lent to its singular form, e.g., “access devices” is 
equivalent to “access device.” 

 The R14 relies on part-of-speech (POS) tags to identify 
plural nouns. A mapping is maintain between plural forms 
tagged “NNS” and singular forms tagged “NN,” which can 
be discovered in the lexicon based on suffixes –ies, -es, etc. 
After each word in a phrase is POS-tagged, the words with 
“NNS” tags in each lexicon phrase are reduced to singular 
form using the mapping. Finally, an equivalence relation is 
expressed between the original plural phrase and the in-
ferred singular form. The resulting equivalence can be be-
tween explicit and tacit concept names. For example, R14 
yields “unique application number” from the phrase “unique 
application numbers,” which are deemed equivalent. 
 The automated technique yields relation prospects that we 
evaluate using the manually constructed, ground truth (GT) 
ontology. We first compare the axioms in the prospective 

ontology with the GT ontology to measure precision and re-
call of expressed subclass and equivalence relations. Next, 
we use the HermiT Reasoner to compute the entailment of 
the prospective ontology and GT ontology to measure pre-
cision and recall of inferred axioms. The second evaluation 
shows how transitivity and equivalence explains any 
changes or improvements in precision and recall. 

Evaluations and Results 
We now describe our results from the manual ontology con-
struction and automated lexeme variant inference. 

Manual ontology construction evaluation 
The ontology was constructed using the bootstrap method 
and evaluated in two iterations (see Figure 5): Round 1 cov-
ered 25/50 policies to yield 235 concept names and 573 ax-
ioms from the 4-step heuristic evaluation, and Round 2 be-
gan with the result of Round 1 and added the concepts from 
the remaining 25 policies to yield a total 368 concept names 
and 849 axioms. The resulting ontology produced 13 new 
concepts that were not found in the lexicon, because the an-
alysts added tacit concepts to fit lexicon phrases into exist-
ing subsumption hierarchies. Figure 5 presents the results of 
the number of “Super,” “Sub,” and “Equiv” axioms and 
“None” identified after the bootstrap method.  
 

Iteration Analyst Super Sub Equiv None 

Round 1 1 151 203 77 142 
2 157 172 78 166 

Round 2 1 304 343 142 60 
2 313 352 151 33 

Figure 5. Number of ontological relations identified by each ana-
lyst during each round 

 Round 1 (c=235, a=573) Round 2 (c=368, a=849) 
Initial Reconciled Initial Reconciled 

Agreed 252 543 743 808 
Disagreed 321 30 106 12 
Consensus 43.9% 94.8% 87.5% 98.4% 

Kappa 0.233 0.979 0.813 0.977 

Figure 6. Number of agreements, disagreements and Kappa  
for c concepts and an axioms per round 

 Figure 6 presents agreements, disagreements, the consen-
sus (ratio of agreements over total axioms compared), and 
Kappa for the bootstrap method without reconciliation, 
called Initial, and after reconciliation, called Reconciled. 
The round 1 ontology began with 235 concepts and 573 re-
lations from both analysts. The round 2 ontology extended 
the reconciled round 1 ontology with 132 new concepts. 
 Figure 7 presents the number of heuristics by type that are 
assigned to relations by two analysts: (H)ypernym, (M)ero-
nym, (A)ttribute, (P)lural, (S)ynonym, (T)echnology, and 
(E)vent. Multiple heuristics may apply to some phrases, 
such as comparing “device information” to “mobile device 
IP address,” which can be compared using the H, A, and M 
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heuristics depending on which order the analyst applies the 
heuristics. The automated approach, which we now discuss, 
resolves this ambiguity by decomposing each heuristic into 
separate rules and applying all relevant rules to each phrase. 
 

Heuristic Round 1 Round 2 
Analyst 1 2 1 2 
Hypernym 349 354 248 357 
Meronym 38 38 100 56 
Attribute 29 36 108 39 
Plural 13 13 12 13 
Synonym 55 55 57 57 
Technology 10 10 17 15 
Event 0 0 4 3 

Figure 7. Number of heuristics applied by type 

Automated lexeme variant inference evaluation 
The 14 rules to infer new information type variants were ap-
plied to the 355-phrase lexicon. Figure 8 shows the number 
of phrases that match each rule in each level (L#) of recur-
sion, e.g., R2 matched 88 phrases and recursively matched 
24 variants after other rules were applied. The technique 
yields 865 phrases after typing and decomposition, which 
consists of 355 explicit concept names from the original lex-
icon, and 510 potential tacit concept names, and it yielded 
1607 total axioms. Rule R3 was most frequently used, in-
cluding recursively after “things” were separated from “at-
tributes” and other “things.”  
 

Rule Pattern No. phrases, matched  
L1 L2 L3 L4 

R1 A-T 52 - - - 
R2 T1-T2 88 24 4 - 
R3 T 158 201 42 4 
R4 A-T-α 8 - - - 
R5 T1-T2-α 28 7 - - 
R6 E 7 27 18 - 
R7 E-T 23 11 - - 
R8 T-E 10 9 - - 
R9 T1-E-T2 11 - - - 
R10 T-E-α 8 3 - - 
R11 A-G-α 1 - - - 
R12 A1-A2-α 17 1 - - 
R13 G-T 4 - - - 

Figure 8. Number of phrases matched per rule, including matches 
per level (L#) of recursive rule applications 

 We compute precision and recall using the GT ontology, 
as follows:  an axiom is counted as a true positive (TP), only 
if it appears in the GT ontology with reasoning. Otherwise, 
it is counted as false positive (FP).  Figure 9 shows the pre-
cision (Prec.) and recall (Recall) for the automated tech-
nique: expressed axioms are generated by the technique and 
included in the prospective ontology; entailed axioms are 
entailed by the HermiT Reasoner. The evaluation is over the 
subset of 711 GT ontology axioms wherein concept names 

share one or more words in the lexicon. Despite this limita-
tion, the technique produces few FPs that are all explained 
as analyst omissions during manual construction. 
  

 Subclasses Equivalence 
Axioms Prec. Recall Prec. Recall 
Expressed 0.446 0.446 0.765 0.302 
Entailed 0.956 0.653 0.944 0.361 

Figure 9. Evaluation of Subsumption and Equivalence Relations  

 Overall, the automated technique correctly identifies 41% 
or 293/711 of hypernyms, meronyms and synonyms in the 
355-concept GT ontology. We observed that 59% or 
118/199 of false negatives (FNs) are between concept names 
that require an additional ontology to reason about similar-
ity, exceeding the limits of our typology. For example, to 
discover that “mobile phone” is a kind of “mobile device,” 
we need to know that a “phone” is a kind of “device.” Add-
ing this ontology could potentially improve recall to 0.891 
and 0.596 for sub- and equivalent classes, respectively.  
 We observed that 18/60 FNs of equivalence relations re-
quire further domain understanding, e.g., “postal code” is 
equivalent to “zip code,” or in case of acronyms, “internet 
protocol address” is equivalent to “IP address.” Finally, we 
discovered that 24/199 total FNs were due to GT ontology 
errors from inconsistencies with the automated technique, 
e.g., an analyst’s equivalence axiom was identified by the 
technique as subclass axiom, and all 14/14 FPs are axioms 
missed by the analysts. 

Discussion and Future Work 
We now discuss our results and the impact of our work. We 
present an automated technique that we evaluated on a 355 
phrase lexicon acquired from 50 mobile app privacy poli-
cies. The technique yields 41% of all subsumption and 
equivalence axioms in a manually constructed GT ontology 
with an average precision=0.95 and recall=0.51.  
 The automated technique requires analysts to code each 
lexicon phrase using a 1-level, 5-type typology. This step is 
significantly less burdensome than performing n pairwise 
comparisons for n-phrases to manually identify these axi-
oms. For example, a 355-phrase lexicon has a total 62,853 
pairwise comparisons, and the automated technique reduces 
this space by at least 7,719 comparison, and by a total 
21,163 comparisons when including the 510 tacit classes 
generated by the technique to fill gaps in the lexicon.  
 The typology types can be applied independently to each 
phrase word, which provides minimal semantic information 
to distinguish when to vary phrases to infer hypernyms, mer-
onyms and synonyms. The POS tags may provide a means 
to automate this typing; however, the tags alone cannot de-
termine when a word in a phrase is the phrase head. For ex-
ample, in “Android id,” the word “Android” cannot be rec-
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ognized as a modifier of “id” from the “NN NN” tag se-
quence; the “NN” is a common POS tag for technology, as 
well as modifiers. However, the word “identifying” in the 
phrase “identifying information” tagged “VBG NN,” may 
be perceived as an event due to the POS tag, which is a verb. 
Other VBG-tagged words that are typed as events include 
advertising, forwarding, and referring. 
 When comparing the prospective and GT ontologies, we 
recognized some axioms in the GT ontology that are not 
consistent with the heuristics and therefore are identified as 
FNs in the analysis. The GT ontology is manually con-
structed and is highly influenced by the ontologist. We be-
lieve that the automation of ontology construction improves 
consistency in the final ontology by eliminating some hu-
man error due to fatigue and recency effects. 
 In future work, we envision a number of extensions to im-
prove the method and technique. Within the automated 
method output, we further discovered 171 meronyms that 
we classified into six different meronym relationships pro-
posed by Gretsl and Prinnebow (Gerstl & Pribbenow, 1996) 
(Pribbenow, 1997). In future work, we plan to refine the GT 
ontology to distinguish among these meronym relationships, 
and to refine the technique to discover these relationships 
semi-automatically. We also envision expanding the 
knowledge base to include relationships among concepts, 
e.g., “phone” is a kind of “device,” which would enable new 
rules to infer additional axioms over a larger number of con-
cept name variants. Moreover, we plan to conduct a satura-
tion study with a larger privacy policy lexicon acquired from 
new privacy policies across multiple domains. 
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