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Introduction

Our research seeks to enable social robots to ask intelligent
questions when learning tasks from human teachers. We use
the paradigm of Learning from Demonstration (LfD) to ad-
dress the problem of efficient learning of task policies by
example (Chernova and Thomaz 2014). In this work, we
explore how to leverage human domain knowledge for task
model construction, by allowing users to directly select a set
of the salient features for classification of objects used in the
task being demonstrated.

In the context of task learning, feature selection focuses
on selecting a subset of relevant features to be used for build-
ing the task model. Within LfD, the problem of feature se-
lection has been largely ignored with the premise that the
most representative set of features will be selected manu-
ally a priori by the system developer or teacher (Chernova
and Thomaz 2014). However if the goal is to enable robots
to autonomously learn and perform general tasks, then au-
tonomous construction of the task model state representation
is an important step toward that end. With that, automatic
feature selection is an active area of research; however the
number of examples required to build an accurate model in-
creases exponentially with the number of features in the state
space representation. In LfD, only a small number of exam-
ples is typically provided by the human teacher to train the
robot so this may be an insufficient amount of data for a sta-
tistical feature selection algorithm. Therefore, we explore an
approach that leverages the human teacher’s expertise in ac-
quiring the set of relevant features to be used in constructing
the task model, given a small number of object demonstra-
tions.

In terms of prior work on learning task features, Cobo et.
al. presented Abstraction from Demonstration, an LfD al-
gorithm for learning state abstractions (subsets of relevant
task features from the original state space) then subsequently
using reinforcement learning on the abstract state spaces to
generate an optimal policy (Cobo et al. 2011). Though this
work also seeks to learn feature subsets through demonstra-
tion, we seek to enable the robot to actively query the human
teacher for the relevant features associated with the task. The
first step towards that end is presented here, a user study
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(a) Empty Dishwasher Task (b) Unpack Groceries Task

Figure 1: Illustration of one of the task demonstrations given for
each of the tasks used in the with images condition of the user study.

evaluating whether humans are able to directly provide this
information to the robot, by enumerating features used to
distinguish between object categories in a classification task.

Specifically, we conducted a user study on Crowdflower,
directly requesting from human naive users the most useful
features for determining which category an unknown object
belongs to amongst four classes of objects given a priori, for
two different multiclass classification tasks. In the study, we
examine two conditions: (1) only class names were provided
with no examples (images) of the objects given to illustrate
each class or (2) images of objects used as examples to il-
lustrate each class were provided to introduce bias and asses
how this impacted user characterization of the object classes
(see Figure 1). Our preliminary findings suggest that in both
conditions: (1) users are not reliably able to directly select
the set of useful features for classifying the objects in a task
and (2) the ability of users to do this in a way that is compa-
rable to baseline performance is task-dependent. These find-
ings however are at least partially consistent with our hy-
potheses and to conclude, we discuss some next steps in this
ongoing project.
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Feature Selection from Demonstration

Problem Statement and System Overview

We seek to explore the following research questions:
• Learning: Using only a small number of examples, is a

human teacher able to characterize the most salient fea-
tures of a classification task, such that a robot can better
learn the task interactively than it would be able to au-
tonomously?

• Interaction: If so, how do we enable the robot to ex-
tract this information from a human teacher? And does
physical embodiment impact how humans characterize
the task?
A diagram of the high-level system we are developing to

address these questions is illustrated by Figure 2. This is on-
going work, and the experiment presented in this paper is
the first step in exploring both the Learning question and the
first Interaction question, as highlighted in red on the dia-
gram.

Figure 2: Diagram of System Overview

In our learning scenario, a robot and a human are perceiv-
ing the same environment, and there is a set of perceptual
features associated with the observed state of the world s.
The goal is to perform feature selection in order to prune the
state representation to only the set of features relevant for the
task, s′. The process of feature selection using human input
is intended to be iterative and the outputted set of features is
used to construct the state representation for the task model.

Approach

Our approach uses demonstrations from human users to
learn sets of relevant features, for each class of objects re-
quired for a task. As our running example, we situate the
robot within a kitchen setting, learning tasks which require
commonly encountered objects in that setting. We experi-
ment with two tasks: emptying the dishwasher and unpack-
ing the groceries, each a multiclass classification problem
involving four different object classes.

We define a high-level task, t ∈ T , as a sequence of primi-
tive actions, a1,a2, . . . ,an ∈A, where A is the set of actions in
the task. We assume that tasks are object-centric and there-
fore A is used to manipulate a set of objects in the situated
environment, when performing task t. In order to success-
fully perform the task, a robot must first be able to select

objects in its environment which are members of each tar-
get object class in the task for use in task execution; then
subsequently act on the selected objects.

In terms of selecting feature subsets, in the feature selec-
tion literature, features are typically described as being use-
ful or relevant (Blum and Langley 1997; Kohavi and John
1997) and feature subset selection algorithms can be parti-
tioned into filters, wrappers, and embedded methods (Guyon
and Elisseeff 2003).

Feature relevance measures correlation between inputted
feature values and outputted class labels and is therefore
only dependent upon the dataset given. Filters are the least
computationally intensive class of feature selection algo-
rithms; they are employed as a preprocessing step before
classification and are used to eliminate all irrelevant features
from the original feature set. Feature usefulness, in contrast,
measures how useful a feature is in contributing to the learn-
ing goal; it is dependent on both the data and the classifier
being used for learning. Wrappers and embedded methods
both conduct a search in the space of possible feature sub-
sets, using learning performance as a metric for evaluating
feature subsets, and are used to compute feature usefulness.
Whereas wrappers conduct an exhaustive search through the
feature subset space, embedded methods use a greedy search
strategy to incrementally add or remove features.

Even when employing wrappers or embedded methods
though, filters are typically used as a baseline feature sub-
set selection approach. Therefore in this work, we use filters
for the baseline computational feature subset selection ap-
proach at every iteration of the learning episode. The goal
here is to first examine whether human selection of features
is comparable to even a baseline statistical feature selection
algorithm; other computational feature selection algorithms
can always be added later. Toward that end, there are two
different methods we use to autonomously compute feature
subsets. Both compute a new subset of relevant features each
time new object demonstrations are given.

The first method, we call the Dynamic Binary-Union Fea-
ture Set. Given n object classes, this approach involves
splitting the original multiclass dataset into n binary class
datasets, where each dataset Di has samples of object class
oi as positive samples and all other samples as negative
samples and where {i ∈ Z |0 ≤ i ≤ n−1}. To construct this,
each object class oi, in the set of object classes O used in task
t, can be characterized by a subset of features Foi that enables
an agent to correctly recognize a previously unseen member
of oi. Each subset of relevant features generated for a class
is computed using a filtering algorithm, which ranks features
by information gain, as shown in Equation 1 with f j ∈ F , the
set of all features. At each iteration of the learning episode
(after new object demonstrations have been added), Foi is
initialized as an empty set, and all features with a positive in-
formation gain are added to Foi . The subset of features Fb se-
lected for the task, called the Binary-Union Set, is the union
of all such subsets Foi , such that {∀oi ∈ O |Fb =

⋃
Foi}.

IG(oi, f j) = H(oi)−H(oi| f j) (1)
The second method for automatically generating feature

subsets, we call the Dynamic Multi-Class Feature Set, FO.
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Here again, a filtering algorithm, which ranks features by in-
formation gain is used. However, in contrast to the previous
method described, this method ranks features according to
their information gain for all n object classes simultaneously
At each iteration of the learning episode, FO is initialized
as an empty set, and all features with a positive information
gain are added to FO, such that IG(O, f j) = ∑oi IG(oi, f j).

After validating learning performance with three different
classifiers (k-nearest neighbors, support vector machines,
and random forests), we observed comparable performance
and selected a kNN classifier for the remainder of this work.

Evaluation

The research questions we examine in the experiment pre-
sented explore (1) whether humans are able to characterize
the most salient features of object classes used in a task,
given only a small number of examples (which may in-
clude no examples at all), and (2) how a robot should query
or extract this information from a human teacher. Toward
that end, we have two hypotheses that we are testing: (1)
Humans intuitively understand and are able to character-
ize the salient features of a task, and (2) humans can more
effectively communicate this information indirectly (select-
ing representative instances) than directly (enumerating rel-
evant features).

In this work, we test the first hypothesis (user ability to
effectively characterize a task) using only the second con-
dition of the second hypothesis (by enumerating all salient
features of the task). The baselines for comparison are the
statistical feature selection algorithms described in the Ap-
proach section, and the primary evaluation metrics are learn-
ing performance and sample complexity.

We evaluate our approach on two different tasks. The
emptying the dishwasher task has four classes: (1) bowls,
(2) cups, (3) pitchers, and (4) plates, as illustrated in Fig-
ure 1a. Similarly, the unpacking the groceries task has four
classes: (1) beverages, (2) produce, (3) pantry food, and (4)
food cans and jars, as illustrated in Figure 1b.

Data Collection and Training

Image Dataset We used the University of Washington
RGB-D Object Dataset to obtain images of common house-
hold objects as input for task model construction. There
are over 300 objects in the dataset, organized into 51 cat-
egories and within each category (e.g. soda can), there are
multiple object instances (e.g. pepsi can, mountain dew
can, etc.). For each object instance, there are several hun-
dred images captured from different viewpoints and dis-
tances from the camera, and some objects in the dataset
have been captured under more than one lighting condi-
tion (Lai et al. 2011). Each image has a unique label that
includes the object category name and object instance id
number, used for ground truth assignment of images in
the dataset to object classes associated with the task being
learned by the robot. Additionally, the dataset includes a
cropped version of each rgb and depth image, whereby the
background scene has been cropped and the object isolated.

Given this as input, we fit a rotated bounding box1 to the iso-
lated object in the image and extract the following features:
{x, y, z, orientation, r, g, b, bounding box volume, bound-
ing box area, bounding box length, bounding box width,
bounding box height, bounding box aspect ratio, surface-
area volume ratio, compactness, number SIFT features}

The image dataset includes over 200,000 images in total.
For each task, we only consider the subset of images corre-
sponding to objects used in that task. So for the emptying the
dishwasher task, the task-relevant dataset includes only im-
ages of bowls, cups, pitchers, and plates. The task-relevant
dataset is partitioned into a 60/40 split, such that 60 percent
of the dataset can be randomly sampled for training demon-
strations. For this experiment, we randomly sampled 10 dif-
ferent training sets from the 60 percent partition (similar to
teaching the same tasks in ten different environments); from
the remaining 40 percent, we generated a test set of 2000
instances used to evaluate all classifiers.

Learning Episode In a typical LfD interaction, human
teachers provide only a small number of demonstrations;
therefore, we collect up to a maximum of twenty demon-
strations of each object, such that by the end of a learning
episode, the training set is a uniformly distributed sample
of 20 ∗m object images, where m is the number of object
classes in the task. In the experiments presented, m = 4 for
both tasks. The test set is also sampled uniformly.

At each iteration of the learning episode, a set of ob-
ject demonstrations are given (1 example per class) and the
learner can then reassess the set of features to be used in task
model construction, based upon the new information. The
statistical feature selection algorithms compute information
gain from the instances in the updated training set and gen-
erate new subsets of relevant features. From the user study,
we obtain one set of features for each {task, training set}
pair, based upon the examples provided at the beginning of
the learning episode and keep the same human-selected fea-
ture subset throughout the learning episode. A classifier is
trained and tested for each feature subset selected.

Crowdsourced User Study We conducted a user study on
Crowdflower to collect data from humans about what fea-
tures they would use to differentiate between object classes
given in household task. There were two parts to the basic
instructions, in both conditions, provided below as follows:

(a) You are teaching a robot to 〈task〉. In order to do this,
the robot must learn from you how to distinguish between:
〈classes〉. (b) If the robot is doing the task and encounters
a new object, what features below would be most useful for
the robot in determining which one of the above categories
the new object belongs to? (Check all that apply)

There were two conditions examined in the study: (1)
Given no images to illustrate each category and (2) Provided
with images as examples of each class. In condition two (im-
ages), there was one additional part to the instructions. After
part a of the above instructions and before part b, we added
one sentence: Below you provide the following examples of

1We assume the rotation is only with respect to the countertop
normal
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each type of object, though there may be others. This was
followed by an image like the one shown in either Figure 1a
or Figure 1b for dishwasher and groceries tasks respectively.

For both conditions, we collected 20 user responses per
questionnaire. The images condition had ten questionnaires
since there are ten different training sets being used as input.
In the images condition however, after pruning users who
were not able to successfully answer the test questions, we
were only left with 10 user responses per questionnaire. In
order to include a feature in the selected subset for a {task,
training set} pair, at least half of the users who completed
that questionnaire had to select the feature as relevant.

Preliminary Results

As an important note, in the experiments run, the test set
is approximately two orders of magnitude larger than any
training set provided to the robot, so there are many exam-
ples of objects the learner will be tested on that it may never
have seen in training. This makes generalization more chal-
lenging. However in this work, our goal is to compare the
different feature subset selection approaches and thereby as-
sess relative (rather than absolute) learning performance.

Figures 3a and 3b show the learning curves (bias) for the
Emptying Dishwasher and Unpacking Groceries tasks re-
spectively. Here the yellow and orange curves represent the
performance of the human selected feature sets, and other
curves are all baselines we use for comparison, described
in the Approach section. On the Emptying the Dishwasher
task, the human selected feature sets perform on average
worse than even the baseline with no feature selection. On
the Unpacking Groceries task, the human selected feature
sets both perform on par with the other baselines. The or-
ange learning curve is an average performance across all ten
of the training sets for each task.

Overall our results indicate that humans are not reliably
good at selecting the low-level features directly. At best,
users are able to perform comparably to the ”baseline” com-
putational feature selection algorithms. We also observe that
performance of the human-selected feature sets is not con-
sistent across tasks. People were able to better characterize
the object categories used in the unpack groceries task than
in the empty the dishwasher task.

As a follow-up question, we asked users to list any addi-
tional features they believed would be helpful in distinguish-
ing between the provided object categories for the task. We
got responses such as: shape, weight, sound of the object,
hardness, texture and material the object is made of, pres-
ence of a handle, smell, and taste of the object. Some of
these attributes are more abstract and difficult to quantify.
This additional data suggests that directly communicating
the low-level features involved in concept characterization is
insufficient to capture all of the prior domain knowledge and
high-level features people use in determining which objects
are appropriate for serving a particular purpose in a task.

Our second hypothesis was that humans can more effec-
tively communicate feature information indirectly (through
the selection of representative instances) than directly (enu-
meration of features). Our next step is to conduct a user
study where people are allowed to select representative in-

(a) Emptying Dishwasher Task

(b) Unpacking Groceries Task

Figure 3: Learning Performance of Tasks

stances of a particular object class used in a task; in this
case, the computational feature selection algorithm will use
the instances selected to infer what the human was trying to
communicate through selecting them. We also plan to ex-
pand to more tasks in order to understand if there is a de-
tectable trend or pattern that allows us to understand/predict
which tasks people are inherently better at characterizing.

Conclusion

Enabling robots to request the most useful features for char-
acterizing a task is an important step toward autonomous
task model construction. In this work, we conducted a user
study to explore whether naive users are able to characterize
the most salient features of a classification task, such that
the robot can better learn the task interactively than it would
be able to autonomously. Our findings indicate that users are
not reliably able to directly select a set of useful features for
classifying objects in a task and that the ability of users to do
this in a way comparable to the baseline is task-dependent.
However, this is ongoing work and in our next user study,
we will explore whether allowing user to indirectly commu-
nicate the salient features will prove to be a more successful
way of extracting this information from a human teacher.
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