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Abstract

We present Bot to Bot, a system for developers to write voice
controlled applications in a high-level language while retain-
ing portability over a variety of different robot hardware plat-
forms. In this paper we describe how Bot to Bot leverages ad-
vances in natural language processing and robotic control to
take a user’s voice command and translate it into a structured
intent for the robot through the following intermediate rep-
resentations: verbal bites, robot assembly, and robot control
primitives. Our long-term goal is to find a verbal instruction
set for human-robot interaction. We provide our software as
open source to encourage future research.

Introduction

An outstanding problem in human-robot interaction is en-
abling articulated robots with many degrees-of-freedom to
accept abstract human commands and react fluidly in real-
time (Goodrich and Schultz 2007; Siciliano and Khatib
2008). A variety of input devices have been developed
to simplify how humans communicate with such robots.
Most, however, require direct human attention to continu-
ously parse sensor feedback for robotic control (Massie and
Salisbury 1994; Conti and Khatib 2005; Bark et al. 2008;
Jiang et al. 2009; Maheu et al. 2011). Few systems (House,
Malkin, and Bilmes 2009) have leveraged a primary hu-
man communication modality: natural language. Advances
in voice recognition and parsing have led to commercial chat
bots (Lyons et al. 2016), which provide an unprecedented
opportunity to enable natural language based human-robot
interactions at scale and in real-time. Natural language com-
municated through voice, presents a use case to control the
robot without needing to find a remote control device, en-
abling the off-loading of tasks to the robot (Nielsen 1994;
Miller 1968).

Demonstrating that it is feasible to use chat bots—
programs that accept natural language commands as input—
for fluid real-time human-robot interaction requires over-
coming three challenges while guaranteeing human safety:
(i) creating a software system for bidirectional real-time
chat bot to robot communication, (ii) selecting a robot con-
trol system that can execute a variety of motor tasks while
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Figure 1: Voice-Activated Robot Motion Synthesis: An Ama-
zon Alexa device translates vocal natural language com-
mands to a structured text representation, which is transmit-
ted over the internet to a Redis database. A Standard Control
Library (SCL) controller maps text into analog trajectories
in task space, and then computes appropriate control torques
to actuate a Kinova Jaco? robot.

keeping humans safe, and (ii) determining a vocabulary for
human-robot communication.

In this paper we present a software system that supports
real-time human to chat bot to robot communication with
intuitive verbal commands that abstract the complexity of
robot control from the developer. The goal of the system is
to allow researchers to study voice controlled human-robot
interactions at scale by abstracting away the complexity of
programming the robots and providing scaffolds to over-
come the ambiguity in understanding natural language.

Related Work

Human-robot interaction is a diverse field, from which we
review a subset of work that is relevant to our contribution,
which is the development of a real-time software system to
enable human-robot natural language interaction.

Robot Control Advances in control theory led to the for-
mulation of the multi-task operational space control sys-
tem, which offers the ability to program human-like mo-
tions for arbitrary robots (Khatib 1987; Khatib et al. 2004;
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Figure 2: Compiling Natural Language to Robot Motion: Information flow in the Bot to Bot system starts with human natural
language (bottom left), which is parsed by Amazon’s Alexa Service and an Alexa Skill application into a verbal program. A Bot
to Bot verbal compiler transforms the program to lower level verbal bites, which are further transformed to yet lower level robot
assembly commands by the SCL verbal bite interpreter. Finally, a closed-loop multi-task controller runs a control primitive—a
set of prioritized tasks with specific goal conditions—that executes the robot assembly code.

Sentis and Khatib 2005; Demircan et al. 2010; Menon et al.
2014). Moreover, a wide variety of control primitives allow
autonomous task control for many day-to-day motor tasks in
dynamic environments (Ude et al. 2010; Kazemi et al. 2014;
Khansari, Klingbeil, and Khatib 2016). In doing so, it elim-
inates the requirement of humans to explicitly specify robot
actuator commands joint-by-joint and thus makes it feasible
to engineer robot-agnostic human-robot verbal commands.
While operational space control requires torque controlled
robots, such robots are now commercially available (for in-
stance, the Kuka LBR iiwa and Kinova Jaco?) and are poised
to become affordable in the near future.

Voice Controlled Articulated Robots An existing sys-
tem, the VoiceBot (House, Malkin, and Bilmes 2009), uses
human non-verbal audio cues including varying pitch, vowel
quality, and amplitude, to control an articulated robot. While
the VoiceBot’s continuous commands are useful for short-
range maneuvering, they require constant human attention.
In addition, the robot’s inverse kinematic control system
leads to stiff robot configurations, which are not human-safe
in the event of a collision. A different system worked to-
wards basic voice driven motion commands for articulated
robots (Chatterjee et al. 2005), and did not demonstrate hu-
man safety either. Other systems focused on mobile robots
(Liu et al. 2005), avoiding the complexity of articulated
robots. These systems, however, did not demonstrate an abil-
ity to scale to complex natural language communication. In
addition, they did not leverage recent advances in control
that promise to dramatically improve robot autonomy and
skill.

Natural Language Processing in Robotics Efforts to re-
alize natural language human-robot interaction have focused
on mitigating the effect of ambiguity in human speech. Hu-
mans, for instance, might interact differently with robots
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when compared to humans (Strait, Canning, and Scheutz
2014), which could necessitate structured communication
that relies on multiple interaction cues (Schermerhorn et al.
2006). Other research attempted to sidestep such problems
by parsing formal as well as indirect human requests (Briggs
and Scheutz 2013), for which chat bot programs (Fischer
and Lam 2016) could be beneficial. Yet other research iden-
tified when robots can not execute human commands, and
studied responses beyond a robot stall (Scheutz et al. 2007).

Brain-Computer Interfaces for Robot Control Brain-
controlled interfaces have been explored as a means of
robot control for people with disabilities and degenerative
diseases (see (Mak and Wolpaw 2009) for an overview).
Non-invasive control methods use electrodes positioned
on the scalp to measure electrical activity in the brain
(EEG) (Shenoy et al. 2006; Li et al. 2008). Invasive meth-
ods, in contrast, use surgical implants to record electri-
cal activity from within the brain (Santhanam et al. 2006;
Hochberg 2012; Collinger et al. 2013; Wodlinger et al. 2015;
Aflalo et al. 2015). While non-invasive methods are prefer-
able, they often produce low signal-to-noise measurements.
Both non-invasive and invasive methods, however, presume
that users have limited mobility, robots have limited auton-
omy, and bulky equipment is acceptable. Both approaches
stand to benefit from general advances in natural language
driven robot control, which could improve the efficacy of
human-robot interaction by augmenting the former’s granu-
lar control with high-level intentions.

System for Bot to Bot Communication

The Bot to Bot system aims to simplify human-robot natural
language interaction by following a principled approach to
software engineering (Fig. 2). The set of abstraction layers
(Fig. 3) it creates rely on principles that we will now define.



Instantiation Stage

“Alexa tell the robot to wake only
me up at 7:00 am.”

{
“intent”: “wake”,
“slots™: {
“time”: “07:00”
1
“code”: ...setTimeout()...
}
{
“intent™: “wake”,
“action”: [“poke”, “poke™]
}
{
“action™: “poke”,
“axis”: “x”,
“motion™: “sin(t)”
}
{

“Pri0”: “Hand Position Task”,
“Pri1”: “Null Space Compliance”

}

Robot Arm Movement

Figure 3: Instance of Robot Motion Synthesis: An example
demonstrates a possible sequence of transformations starting
with a natural language sentence and ending in an articu-
lated robot arm’s movement. Intermediate objects are spec-
ified using JavaScript Object Notation (JSON). The figure
uses pseudocode in places to simplify the JSON.

Robot Motion Synthesis Pipeline

With the Bot to Bot software system, we abstracted compu-
tations into distinct layers with explicitly defined intermedi-
ate interfaces. Building upon a specific instance that exem-
plifies how the software operates (Fig. 3), we now discuss
the computations in detail.

Natural Language to Verbal Program We translated nat-
ural language to verbal programs using Amazon’s Echo de-
vice. Echo’s far-field voice recognition allows it to clearly
detect voices and parse natural language. Programming
interfaces provided by Amazon allow developers to use
Alexa, the standard voice recognition interface, and engi-
neer programs—Alexa skills—that realize real-time natural
language interaction. Using Amazon’s toolchain, we spec-
ified an interface to map one or more users’ spoken input
into an intent that could be translated into robot actions.
Since natural language provides users many ways to con-
vey identical intent, we programmatically mapped each in-
tent to a set of sample “utterances” (for exemplars, see Ta-
ble. 1) that capture different ways to convey the same intent
(for exemplars, see Table. 2). The mapping was then used to
train a representational linguistic model. The utterances thus
provide a structured method for accepting numerous natural
language sentences that relate to a given intent. As such, in-
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WAKE wake me up at {Time}
WAKE push me out of bed at {Time}
WAKE make sure I'm awake at { Time}

Table 1: Utterance Exemplars Utterances are provided by
the developer to train the linguistic model. When the user
speaks they don’t have to exactly match a sample utterance.
However, the more utterances provided the more accurately
the system is able to determine the user’s intent. Utterances
have slots, {Time}, in the case above. A slot is a placehold-
ers where Alexa can find a parameter needed to run the ver-
bal program.

{

“intent”: “WakeHuman”,
“slots”™: [{
“name”: “Time”,
“type”: “AMAZON.TIME”
}
}

Table 2: Intent Schema Exemplars Utterances are provided
by the developer to train the linguistic model. When the user
speaks they do not have to exactly match a sample utterance.
However, the more utterances that are provided the more ac-
curately the system is able to determine the user’s intent.
Utterances have slots, {Time}, in the case above. A slot is
a placeholders within the utterance where Alexa can find a
parameter needed to run the verbal program.

creasing the set of utterances improves the linguistic model.

To simplify generalization, Alexa delineates intent from
the parameters that instantiate a specific action. For instance,
from our example (see Fig. 3), the intent “wake” also re-
quires a parameter “07:00” to instantiate an executable
verbal program. We associated utterances with “slots”, or
placeholders where Alexa can expect to find parameters for
utterances. Each slot has a type and is specified with a list
of possible “slot entities” that can fill the slot, allowing
rich natural language communication. Furthermore, the de-
veloper does not have to list all the possible values that a
slot can accept; Alexa can decipher synonyms and associate
them with slot entities. Inputs to a slot are, however, bi-
ased towards being the values that the developer provides.
A number of slot types such as date, duration, number, time,
US city, and US state come predefined, and this set is poised
to grow with Alexa’s growing popularity.

Having defined utterances and slots, and built a linguis-
tic model, we could receive spoken instructions and con-
vert them to JSON to be passed to the next layer. Future
efforts will build upon on our preliminary implementation
for robots and expand our repertoire of human-robot natural
language skills.

Verbal Program to Verbal Bites Bot to Bot applications
allow software developers to write robot-independent soft-
ware by abstracting away calls to hardware. Translating ab-
stract verbal programs into verbal bites, however, does re-
quire ensuring that the programs can be feasibly realized



“Alexa tell the robot to wave to visitors at the door.”

“Alexa tell the robot to poke me when I get a friend request.”
“Alexa tell the robot to wave when the car is here.”

“Alexa tell the robot to wake me at 7:00 am.”

“Alexa tell the robot to scratch my back now!”

Table 3: Verbal Programs Exemplars Possible programs that
a developer could build and run without needing detailed
knowledge of motor control or the robot specific hardware
of the robot.

on the lower level robotic hardware. Since different robots
possess different capabilities, we require verbal bites to be
drawn from a set that is feasible to realize. As such, the ver-
bal bites must always directly map to robot capabilities. To
keep the process robot-agnostic, a suitable compiler would
issue errors on a mismatch.

Verbal Bites to SCL Robot Assembly While verbal bites
can be translated into lower level robot capabilities, the ex-
istence of classes of robots with similar abilities—six degree-
of-freedom manipulators, for instance—led us to create an in-
termediate layer to specify robot abilities in a robot-agnostic
manner. These abilities, specified as “robot assembly” com-
mands, can be used to categorize robots into capability cat-
egories instead of analytical kinematic and dynamic ability
based categories. We believe this distinction will be valuable
for software systems that program robots. Formalizing robot
assembly for commercially available robots will constitute
valuable future research that promises to allow high-level
language programs that retain portability over a variety of
different robots.

SCL Robot Assembly to Control Primitives Translating
robot assembly commands into controllers that can actu-
ate a robot requires selecting control tasks that can correct
errors associated with the assembly commands. The prob-
lem of identifying one or more suitable motion and force
tasks, however, remains an open challenge for robotics. Re-
cent developments in identifying control primitives (see re-
lated work for a detailed discussion), however, afford a fi-
nite but steadily growing set of capabilities. While many
existing control primitives are not robot-agnostic, it is fea-
sible to reduce them to robot-agnostic tasks using the oper-
ational space control formulation. However, since this is an
active research area, we do not require control primitives to
be completely robot-agnostic and instead allow them to be
engineered for specific robot capability categories.

Control Primitives to Multi-task Controller The final
stage in our robot motion synthesis pipeline is to construct a
multi-task operational space controller that controls a given
robot to perform the desired action. Having defined the ac-
tion with one or more control primitives, we may yet decide
to add robot-specific tasks and filters to the final controller.
These are expected to be designed by control engineers who
are familiar with specific robots and should not need inter-
vention from higher level programmers.
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Pat
Move
Wave
Poke
Scratch

Table 4: Verbal Bite Exemplars Verbal bites serve as basis
functions that simplify software development and encour-
age code reuse. By allowing software developers to interact
with hardware in a safe and scalable manner, they provide a
suitable level of abstraction for many applications.

poke()

rotate(98)
grasp(true)
applyForce(10.2)
insert(usb, port3)
moveHand(9, 2, 7)

Table 5: Robot Assembly Exemplars Robot assembly com-
mands are robot-agnostic motion and force control specifi-
cations that realize control primitives when combined with a
task-space controller. For example, if there was a robot pro-
duced by Company A and another by Company B, they’d
both run the same robot assembly code.

Control Formulation
Task Control Overview

SCL implementes the operational space formulation for
robot control, which realizes dynamically consistent torque
control for one or more control tasks. The dynamics of an
articulated robot may be described using the equations of
motion derived from the Euler-Lagrange equations:

A(q)G+0b(q,4) +9g(q) =T, ¢))

where I is the generalized external force, ¢ are the gener-
alized accelerations, A is the generalized inertia matrix, b
is the vector of centrifugal and coriolis forces, and g is the
gravitational force in generalized coordinates. These dynam-
ics may be projected into task space using the dynamically
consistent generalized inverse of the task Jacobian:

LT [A(g) G +0b(g,4) +9(g) = T 2)
Aaq) F7 +plg,q) +pla) = Fi, 3)
where the Jacobian inverse is given by J,T =

(JoA(q)*JI)"1J, A(q)~! for a specific task space
(Whitney 1972; Khatib 1995). This ensures that any applied
control forces will do work only in task coordinates.

Implementation Details

We controlled the Kinova Jaco? robot with two prioritized
tasks in SCL. At the highest priority, we used a Euclidean-
space operational point control task that accepted motion
trajectories along the x-, y-, and z-axis:

“4)

* .
Fx = kp(xdes - Icurr) - kvxcurra



where k,, and k, are the proportional and derivative gains
of a PD controller, x.y,» and Z.,,, are the present end-
effector position and velocity, and x4, is the desired goal
position. The desired goal position was set through voice
commands. Since the robot was programmed to avoid high
speed motions, we ignored the centrifugal and coriolis forces
(1(q, ¢)). We used Kinova’s estimates for the gravity vector
(p(q)). The task’s final contribution to the generalized forces
was given by:

Lo = J; (Aq) F).

x

®

In the null space of the operational point task, the second
priority level, we also specified a null-space damping task.
This task simulates viscous friction along axes of motion
that are irrelevant to the task at hand:

1—‘tl - (I - ijxT)(_kv(jcurr)7 (6)

where I';, the task’s contribution to the generalized forces,
is projected into the null space of the first task.
The composite robot torque command was:

(N

The two tasks allowed real-time control of the end-effector
in Euclidean-space while maintaining compliance along the
null space, which improves the robot’s robustness to external
perturbation and decreases impact forces in the event of a
human collision.

1—‘commandeul = 1—‘tO + Ft1~

Conclusion

Recent advances in natural language processing and robotic
control created an opportunity to engineer a system that
translates abstract natural language commands into tangi-
ble robot motions in real-time. We capitalized upon this op-
portunity to develop such a system and demonstrate that it
works. Future research will generalize this idea to develop a
framework for natural language based human-robot interac-
tion.

As computers become ubiquitous, we see a world where
human-computer interactions go beyond the touchscreen,
where we interface with the devices around us in more hu-
man ways. With Bot to Bot, we start the conversation. Bot to
Bot gives the next generation of application designers, with-
out needing to expand their skill set, the ability to tackle the
complex design problems of tomorrow, today.

Appendix

Robot Hardware and Control System We used a Ki-
nova JACO? arm with six degrees-of-freedom (DOF) and
a KG-3 gripper using the operational space formulation im-
plemented in the Standard Control Library (SCL) (Menon
2011). The SCL multi-task controller received reference
trajectory updates from the verbal bite interpreter asyn-
chronously, and, in turn, computed and sent control torques
to the low-level driver asynchronously. A low-level robot
driver monitored joint angles and velocities and relayed
torque control commands at a rate of 500Hz over USB.
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Amazon Echo The Echo hardware includes a Texas In-
struments DM3725 ARM Cortex-A8 processor, 256MB of
LPDDR1 RAM and 4GB of storage space. Echo has seven
microphones and beam forming technology to allow it to
have directional listening. We used an Amazon Echo device
running firmware version 3389.

Amazon Lambda The Alexa Skills (Developer Apps) is
run in the cloud without having having to provision or man-
age servers using a service called Amazon Lambda. The
code for the skills is entered into a web browser and an envi-
ronment is chosen (Python, Node, or Java). Logs are piped
back through the browser for testing and debugging.
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