
Smart Forms

Sudhir Agarwal, Abhijeet Mohapatra, and Michael Genesereth
Computer Science Department, Stanford University, USA

{sudhir,abhijeet,genesereth}@cs.stanford.edu

Abstract

We present Smart Forms, an innovative web forms technol-
ogy for easy creation, maintenance, and evaluation of user-
friendly web forms especially the ones that must implement
complex laws, regulations, or business policies. In order to
provide cognitive assistance to end users during form-filling,
Smart Forms have built-in mechanisms for visual feedback,
restriction of selectable values, and automatic form filling.
Smart Forms can be created and maintained easily by declar-
atively configuring rather than procedurally programming
these mechanisms. We also present the Smart Forms Edi-
tor which assists a Smart Form creator in creating data-driven
form UI, editing, testing and verifying form rules, and testing
and debugging a form.

Introduction
Many important tasks require people to fill forms, e.g., fil-
ing tax returns, applying for business permits, reporting fi-
nancial compliance, and requesting health care data etc. Of-
ten, form data needs to be validated against certain laws and
regulations by an authority. Forms may also contain instruc-
tions to assist people in supplying valid field values.

Often, the form-filling instructions as well as the laws and
regulations against which the form data is validated are com-
plex. For example, the fields 75 and 78 of the IRS Form
1040 for U.S. individual tax return depend directly or indi-
rectly in complex ways on fields 44–74 as well as on external
data, and the submitted form data needs to be validated and
tax amount needs to be computed as per the tax rules. As a
result, it is tedious for people to fill such forms, and it is hard
for the authorities to validate and efficiently use form data.

Since the advent of the World Wide Web, more and more
forms are offered as web forms in order to reduce the man-
ual effort and infrastructure costs by performing validation
automatically on the server-side and maintaining and pro-
cessing the form data digitally. The subsequent introduc-
tion of JavaScript as a client-side scripting language also en-
ables live feedback to the user during form filling (Flanagan
2011), which is typically achieved by automatically check-
ing the form data against the form-filling instructions on the
client-side when a user changes the value of a form field.

Copyright c© 2016, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

However, due to the lack of direct support for logical
reasoning over complex conditions, it is difficult and error
prone to procedurally program and maintain form behav-
ior that is dependent on complex laws, regulations, or busi-
ness policies. Often, field values depend on data external
to a form. For example, an entered address is valid only
if the entered combination of street, zip-code, city, state,
and country actually exist. While more or more structured
data is made available in the web, procedural programming
languages generally also lack direct support for easily in-
corporating and efficiently querying remote structured data
sources. This adds further to the difficulty in creating, main-
taining, evaluating user-friendly web forms.

We present Smart Forms, an innovative web forms tech-
nology for easy creation, maintenance, and evaluation of
user-friendly web forms especially the ones that must imple-
ment complex laws, regulations, or business policies. Smart
Forms are meant to be created and maintained by domain
experts themselves who are mostly not software program-
mers. Therefore, neither the creation and maintenance nor
the evaluation of data of a smart form requires traditional
procedural coding.

Smart Forms are created declaratively rather than proce-
durally by encoding as logical rules a form’s immediate re-
sponse to user’s form-filling actions. The simple, compact
and yet highly expressive syntax of the Smart Forms rule
language also makes it easier to update Smart Forms when
the constraints, laws, or regulations change. Automated pro-
cedures for evaluating form data against the constraints, laws
and regulations enable live feedback to users at the time of
form filling as well as efficient evaluation of form data after
form submission. Smart Forms can use organization internal
or publicly available integrated structured data to further en-
hance the usability of the form and correctness of the entered
data.

We also present the browser-based Smart Forms Editor
which makes it easy to import or connect structured data,
design and generate the user interface in WYSIWYG and
data-driven fashion, and edit form behavior rules.

Smart Forms have been successfully evaluated for many
cases including undergraduate and masters program sheets
within the Stanford Computer Science Department, IRS tax
forms and FERPA compliance drafting of agreements be-
tween a service provider and a school district.

The 2016 AAAI Fall Symposium Series: 
Cognitive Assistance in Government and Public Sector Applications

Technical Report FS-16-02

125



Figure 1: Smart Forms components involved in generating
live feedback during form-filling

Smart Forms Architecture
In this section, we present an overview of the functioning of
Smart Forms. We first describe the functioning of the real-
time feedback mechanism of during form-filling and then
the post-submission processing of a form’s data.

Live Feedback during Form-Filling
Smart Forms can provide powerful and context-sensitive
cognitive assistance to their users during form filling in form
of auto-completion lists, disabled invalid options, instruc-
tions and warnings about constraint violations, and auto-
matic filling fields with sensible values to satisfy complex
constraints. A novelty of the Smart Forms technology is that
it allows creation such user-friendly forms without having to
write a single line of Javascript code.

Smart Forms are Logic Programming based implemen-
tation of the concept of Logical Spreadsheets (Kassoff
2011). Specifically, Smart Forms use extended Datalog with
negation-as-failure, aggregates, built-ins, and update opera-
tions. Figure 1 shows the main components of Smart Forms
that play a role in the real-time feedback to a user during
form-filling. In this section we present the function and in-
terplay of these components as well as the formalisms for
representing their respective inputs and outputs.

Example 1 Suppose the purpose of a Smart Form is to let
a user choose at most three pizza toppings from a set T =
{t1, t2, t3, t4} of pizza toppings. Toppings t1 and t2 have
5g protein content each and toppings t3 and t4 have protein
content 10g each. The pizza vendor wants to make it easy
for the customer to select high protein topping combination
while respecting customer’s choice.

Data Manager The Data Manager is responsible for eval-
uating queries over and managing changes to form data.
Form data defines the state of the form at any time during the
form-filling process and contains values of the form fields

and any other data required for computing form fields val-
ues.

In Example 1, the data about toppings and their protein
content is not large and can be provided to Data Manager as
local data. The database of the Smart Form for Example 1
contains a unary relation topping to represent the set of top-
pings and a binary relation protein to represent the protein
content of toppings (refer to (Genesereth 2015) for more in-
formation on the database syntax).

topping(t1)

topping(t2)

topping(t3)

topping(t4)

protein(t1, 5)

protein(t2, 5)

protein(t3, 10)

protein(t4, 10)

In general, a form may require data that is too large to fit
locally or resides in a large database. In order to support
such cases, the Data Manager can also be provided with the
connection parameters of remote databases. The Data Man-
ager can manage data available to it locally as well as query
remote data sources. In Example 1, instead of providing the
data about set of toppings and their protein content as ex-
plicitly it could also provided by supplying the connection
parameters to a database of nutrition facts.

Of particular interest is Jabberwocky 1, a web-based ser-
vice that allows users to expressively query integrated struc-
tured data in the Web without themselves knowing any-
thing about the location, vocabulary and schemas of the
data sources (Agarwal, Mohapatra, and Genesereth 2016).
Jabberwocky is intended as a general-purpose service that
provides answers to questions (rather than a list of links to
individual web pages) by examining the relevant databases
itself and integrate the data in answering queries. Jabber-
wocky’s schema is a conceptual schema and is thus easy
to use for end-users. Currently, Jabberwocky’s data graph
contains over 3 Million facts, and its schema contains ap-
prox. 75 concepts and 500 attributes from multiple domains
including US public data about territories, government (all
levels and branches), companies, products, universities, and
college sports.

Smart Forms use a special binary base relation value to
represent the values of the fields of a Smart Form. The first
argument of the value relation refers to a form field and the
second argument is a value of the field. Note that form fields
of type multi-select box or checkbox may have multiple val-
ues. Smart Forms use another special binary derived rela-
tion view to represent the computed values of the fields of
a Smart Form. When there are multiple values for a single
valued field, a Smart Form module selects one of the val-
ues. In Example 1, initially the base relation value is empty
reflecting the state that no topping is selected.

1http://jabberwocky.stanford.edu

126



Form UI The Form UI is an HTML form that an end user
interacts with in his or her browser. In Example 1, the UI of
the Smart Form contains a checkbox for each topping. To
keep the mapping simple, we use the object id of a topping
as the id of the corresponding checkbox.

The Form UI intercepts a user’s form-filling actions
and generates a corresponding transaction request to the
form database. In Example 1, if the user selects the top-
ping t1, then the form’s UI generates a transaction request
δ+value(t1, true). Similarly, when a selected topping t1 is
unselected a transaction request δ−value(t1, true) is gen-
erated.

Update Policies Smart Forms use update policies in or-
der to efficiently compute a form’s immediate response to a
user’s action. An update policy is a logic program (Kowal-
ski 1988) with standard negation and four special operators
δ+, δ−, Δ+ and Δ−. An update policy defines a complete
transaction to be performed on a database in response to a re-
quested transaction) (Mohapatra, Agarwal, and Genesereth
2016). The declarative nature, simple syntax and high ex-
pressiveness of logic programs make it easy to express com-
plex logical relationships among database relations. As a re-
sult, considering complex laws, regulations and policies in
defining a form’s response to a user’s action becomes much
easier than with a state of the art procedural programming
language such as Javascript.

As mentioned above, Smart Form can automatically fill or
unfill form fields with sensible values to assist a user during
form-filling in entering values that satisfy possibly complex
constraints. This can be achieved by defining an update pol-
icy rules for computing additions or deletions of correspond-
ing tuples in the value relation. In Example 1, the pizza ven-
dor defines the following update policy 2 for automatically
unselecting the lowest protein topping when the customer
selects fourth topping.

seltop(T ) :- topping(T ), value(T, true)
nseltops(N) :- countofall(T, seltop(T ), N)

notmin(T1) :- seltop(T1), seltop(T2), T1 �= T2,

protein(T1, P1), protein(T2, P2), P1 > P2

Δ−value(F, true) :- δ+value(T, true), nseltops(3),
setof(T1, (seltop(T1), ¬notmin(T1)), cons(F,R))

The first two rules define the views seltop and nseltops to
represent the set and count of selected toppings respectively
at any time during form-filling. In order to compute the se-
lected topping with the least protein content, we first com-
pute the view notmin to represent the set of selected top-
pings that do not have the least protein content. The last rule
is a dynamic rule defining the change in response to the re-
quested change of selecting fourth topping. The last atom
(setof ) of the rule builds a set of toppings that have the least
protein content and returns the set as a pair (F,R) where
F is an element of the set and R is the rest of the set. The
head of the rule states the change that the checkbox with id
F should be unchecked.

2Note that for the sake of better readability we use the infix
notations =, �=, <, and > etc.

Rule Engine The Rule Engine evaluates the update pol-
icy whenever a user changes the value of a form field and
computes changes to be performed in the database which in-
cluded values of the form fields. In Example 1, selecting or
unselecting a topping are the only actions a user can perform
on the form. Therefore, the update policy is evaluated when-
ever a topping is selected or unselected. In Example 1, in the
state with three selected toppings, the Rule Engine computes
Δ−value(T, true) where T is the unselected topping for the
above presented example update policy. Then the Data Man-
ager applies the computed changes to the form database.

Data to UI Mappings Form fields can be enabled or dis-
abled by defining a rule with head disabled. In Example 1,
suppose, instead of unselecting the checkbox corresponding
to the topping with the lowest price when a user selects the
fourth topping, the pizza vendor prefers to disable the fourth
checkbox as soon as a user has selected three checkboxes.
This can be achieved with the following rule (where defini-
tions of seltop and nseltop are the same as above):

disabled(T, true) :- nseltops(3), topping(T ), ¬seltop(T )
Similarly, instructions and warnings can be dynamically

generated by defining a rule with head innerhtml. Suppose,
in Example 1, the pizza vendor prefers to also tell the user
the reason for disabling the fourth checkbox. This can be
achieved by the following rule where msg is the id of an
HTML paragraph element:

innerhtml(msg, ”max. 3 toppings allowed”) :- nseltops(3)

In addition to disabled and innerhtml, Smart Forms also
support the relations display (for showing or hiding ele-
ments), options (for setting the options of select elements),
color and bgcolor (for setting the color and background
color of elements), and onclick and cursor (for setting the
onclick function and cursor for elements).

The Rule Engine then computes on the new database
state the views corresponding to HTML attributes
defined with the Data-to-UI-Mappings rules. The
new computed HTML attributes are then applied to
form UI. In Example 1, the Rule Engine computes
disabled(T, true) where T is the unselected topping and
innerhtml(msg, ”max. 3 toppings allowed”). Applying
these computed attributes to the form UI disables the fourth
unselected checkbox and display the text ”already selected
3 toppings” respectively.

Processing form data after Form Submission
In this section, we describe how form data is processed on
the server once a Smart From has been submitted. There
are mainly two tasks involved in the server-side processing
of form data. First task involves re-validating the submit-
ted form data and the second tasks involves storing the data,
computing any results and performing steps to proceed fur-
ther with the workflow.

Feedback generation and automatic filling of fields during
form-filling can be done at the client-side or at the server-
side. In either case, it is a good practice to re-check the
validity of the submitted form data at server-side. The main

127



reasons for this are that the live feedback generation and the
update policy for automatically filling of fields may be in-
complete wrt. the constraints of the server-side database and
that the client-side code can be potentially manipulated by
the user.

The constraints of the server-side database can be mod-
eled as views. In Example 1, the form data is the relation
seltop. The constraint that at most three toppings may be
selected can be modeled as

illegal :- countofall(T, seltop(T ), N), N > 3

If the server can compute illegal, then the server can reject
the form data and send back to the client {illegal}. The
client can then display an error message to the user. In gen-
eral, there may be multiple constraints. In order to be able
to show more meaningful error messages, the client needs to
able to determine the violating constraints. This can be done
either by using a different view for each constraint or using
one view e.g. illegal with an argument to contain the error
message as shown in the following rule.

illegal(”At most 3 toppings may be selected”) :-
countofall(T, seltop(T ), N), N > 3

If the submitted form data is valid, then the server can
store the form data in the servers-side database and redi-
rect client’s browser to another page, possibly depending on
the submitted form data. In Example 1, suppose the client’s
browser should be redirected to url1 if the user has not se-
lected any toppings and to url2 otherwise. This behavior can
be easily modeled with the following rules:

redirect(url1) :- countofall(T, seltop(T ), 0)
redirect(url2) :- countofall(T, seltop(T ), N), N > 0

The above rules demonstrate how a single user workflow
can be declaratively defined and executed by the server. In
general, a Smart Form may be part of a multi-user work-
flow and the server may need to consider data from multi-
ple databases for form data. As a result, form data valida-
tion as well as determining which users should be shown
which forms at what time often requires evaluation of com-
plex queries of multiple databases. Since the databases may
heterogeneous at the conceptual level, data integration tech-
niques are required.

Our rule-based approach for defining the server func-
tionality can seamlessly incorporate flexible data integration
techniques such as LAV rules (Genesereth 2010) because of
their common language semantics.

Creating Smart Forms
A smart form can be created as follows. The first step
consists of creating a Web document e.g. HTML page.
Then, the Smart Form library http://forms.stanford.edu/lib/
smartform.js is added to the Web document. In order to
model the constraints of the smart form, identifers are as-
signed to the relevant DOM elements. In addition, two new
DOM elements, which are referenced using the identifiers
lambda and library, are added to the Web document.

The contents of lambda and library characterize the un-
derlying logic program. The DOM element lambda consists
of the form data that is managed by the Data Manager. The
DOM element library consists of view definitions and up-
date policies that are evaluated by the Rule Engine. A sub-
set of these views are used to update the smart form’s UI.
For example, the foreground color of the DOM elements is
updated by evaluating rules of the form color(X,Y ). A de-
tailed description of the views that are used to updated a
smart form’s UI can be found in (Blundell and Mohapatra
2016).

Alternatively, a smart form can also be created using the
Smart Form Editor. The Smart Form Editor consists of two
components: a rule editor, and a UI designer.

Rule Editor. The rule editor serves as an efficient interface
for authoring the smart form’s rules and update policies. The
rule editor supports the following features.
• Ability to plug-in or import, and export rules from local

files or URLs.
• Ability to connect to, and query external structured data

sources using the technique proposed in our previous
work (Agarwal et al. 2015).

• Syntax highlighting, safety, and stratification checks to
assist in the authoring of admissible rules.

• Smart auto-completion to make it convenient for a rule au-
thor to compose rules. When auto-completing a relation,
the author is supplied with a list of options which include
the reserved relations e.g. value, view, color, the update
operators e.g. pos, minus, and other relations that have
been defined by the author. A relation, say r, with arity k
is auto-competed as the atom r(X1, X2, . . . , Xk). When
auto-completing a term, the author is supplied with a list
of options which includes the identifiers of the DOM ele-
ments, and other terms that have been previously defined
by the author.

• Rule macros to automate the authoring of common, repet-
itive rules or rule patterns.

• Assisted authoring of update policies to ensure that the
authored update policies do not violate the constraints
that the form creators intend to enforce. To ensure that
the authored policies are sound, our resolution-based al-
gorithm Verify-Policy (Mohapatra, Agarwal, and Gene-
sereth 2016) may be used. A complementary approach
to the a-posteriori verification is to allow form creators to
interactively author update policies from the constraints.
Such an update policy authoring process can be facilitated
by automatically generating all necessary and sufficient
update policies (Orman 2001), and letting the smart form
creator choose one policy, or combine multiple policies.

• Profiling tools to help optimize the rule base. These tools
provide the support for defining breakpoints at different
literals in a rule, fine-grained statistics about rule eval-
uation e.g. number of inferences, number of inferences
or time taken to derive a supplied atom etc., the ability
to trace the derivation of supplied atoms and to profile a
subset of rules over a supplied workload (of facts).

128



• Rule organization (by predicates) and formatting to im-
prove the readability of the authored rules.

UI Designer. The UI designer supports the creation of the
smart form’s UI in a WYSIWYG fashion using customiz-
able widgets. The UI designer also allows the smart form’s
DOM to be declaratively specified through Data to UI map-
pings, allows new elements to be added or existing elements
to be deleted from the DOM.

We have currently implemented an initial version of the
Smart Form Editor. This implementation supports creation
of smart forms with static DOMs, and is accessible at http:
//forms.stanford.edu/editor/. The rule editor in our imple-
mented version does not currently support profiling tools, or
macros.

Case Studies
Smart Forms have been tested and evaluated for many use
cases. For some use case, Smart Forms have been deployed
as part of the production system and used by hundreds of
people regularly. In this section, we present two case stud-
ies that demonstrate the utility of Smart Forms for enforc-
ing regulations within a University (in this case Stanford
University) and enforcing a law at a district level respec-
tively. The corresponding Smart Forms can be found at
http://forms.stanford.edu.

Smart Forms in Stanford Engineering School
At Stanford University, students enrolled in the Master of
Science in Computer Science (MSCS) Program are required
to submit a MSCS program sheet by the end of their first
quarter, and have it approved by their advisor and the MSCS
program administrator. A MSCS program sheet is a plan that
details the courses that the student is to take before gradua-
tion. Currently, there are 100 programsheets in the Stanford
Computer Science Department 10 single depth and 90 dual-
depth depth, all of which are implemented as smart forms.

Prior to the introduction of smart forms, all program
sheets were paper forms, and the submitted forms were man-
ually validated to check whether or not a student’s plan sat-
isfied the program requirements. Due to a large number of
program requirements, the validation process was tedious,
and error prone. This was remedied by capturing the pro-
gram requirements formally, and implementing the program
sheets as smart forms. We present an overview of a pro-
gram sheet’s UI, and the logical rules that capture the re-
quirements for MSCS programs.

User Interface: In a program sheet’s UI, courses are rep-
resented as checkboxes as shown in Figure 2. The course
number is used as as identifier of the corresponding check-
box. Program requirements are represented as span ele-
ments. Violation of program requirements are indicated by
coloring the corresponding span element red. In Figure 2,
if no checkboxes are selected, then the text “Probability” is
colored red to indicate a violation.

Figure 2: Program sheet User Interface

Program Requirements: In order to capture the program
requirements, the following facts are included in the pro-
gram sheet.

• Facts of the form req(X) to indicate that X is a require-
ment e.g. req(foundation req), req(breadth req) etc.

• Facts of the form foundation(X), breadth(X), and
depth(X) to indicate whether X is a foundation course,
breadth course, or a depth course respectively, e.g.
foundation(cs103), breadth(cs140), breadth(cs265).

In the following, we present examples of requirements
that are formalized in the program sheet.

• The breadth requirement is satisfied by taking at least
3 breadth courses. The program sheet contains facts of
the form breadth(X), where X is the course number of
breadth course e.g. cs140, cs144, cs265 etc. The satis-
fiability of the breadth requirement is encoded using the
following rules.

satisfied(breadth req) :- countofall(X, breadth(X), N),

min(C, 3, 3)
breadthsel(X) :- breadth(X), value(X, true)

In the above rules, breadth req is the identifier of the
span element that corresponds to the breadth requirement
“Take at least three Breadth courses”.

• Violation of a program requirement is indicated by color-
ing the corresponding span element red. Otherwise, the
program requirement is colored black. This behavior is
encoded using the following rules.

color(X, red) :- req(X), ¬satisfied(X)

color(X, black) :- req(X), satisfied(X)

• Exactly one of cs109, stats116, cme106, or mse220 must
be selected to satisfy the probability requirement. This

129



behavior is encoded as follows.

prob(cs109)
prob(stats116)
textitprob(cme106)
prob(mse220)
neg(value(Y, true)) :- prob(X), prob(Y ),

pluss(value(X, true)), value(Y, true), X �= Y

satisfied(prob req) :- prob(X), value(X, true)

The above update rule ensures that the selection of the
checkboxes corresponding to the probability course is mu-
tually exclusive. Therefore, at most one probability course
may be selected at any time.
In addition to the MSCS program sheets, the Undergrad-

uate program sheets http://logic.stanford.edu/ugps, room
reservations https://gin.stanford.edu/showschedule.php in
the Computer Science Department, and interactive LTI ex-
ercises in the Introduction to Logic MOOC https://www.
coursera.org/learn/logic-introduction/ are also implemented
as smart forms.

FERPA-compliant Agreement Drafting
This Smart Form assists school districts and parties inter-
ested in acquiring data about school children in drafting a
FERPA 3-compliant agreement on the types and usage of
shared data.

The Smart Form does so by enabling interactive formation
of an agreement between an information service provider
and a district as well as analysis of multiple agreements. In
the Smart Form, a contacting party can fill in the details such
as which student’s data is to be shared, the potential use of
the data by the provider, age/grades level of the students etc.
The Smart Form then checks the validity of the agreement as
per FERPA, COPPA and SOPIPA and displays the violations
and obligations if any.

Below we present an excerpt of the database and the rules
that we have modeled for this case study. The complete set
of rules is visible in the ‘Law’ tab of the prototype.

Data and Views The following view definition defines
that student’s name is a personally identifiable informa-
tion (PII). Other PIIs such as student’s date and place of
birth, student’s SSN, student’s mother’s maiden name etc.,
are modeled similarly. Categories district data non pii,
additional data pii and additional data non pii are defined
analogous to the definition of the category district data pii.

district data pii(D, district student name) :-
district data(D, district student name)

The following view definition states a provider is under
direct control of district if the provider can amend terms with
consent. Other views can be modeled analogously.

provider under direct control of district(D) :-
provider can amend terms with consent(D)

3Family Educational Rights and Privacy Act, Children’s Online
Privacy Protection Act

Figure 3: Smart Form for FERPA compliant agreement for-
mation showing that the agreement draft is invalid as well as
the reason that a FERPA exemption must be selected

Constraints The following rule states the provider must
select a FERPA provision.
illegal(”Must select FERPA exemption.”) :-
district data pii(D,A), ¬ferpa provision(D, dir exempt),

¬ferpa provision(D, actual par consent),

¬ferpa provision(D, school off exempt)

The following rule states that commercial use of data is
prohibited under school official exemption.
illegal(”Under School Official Exemption,

commercial use of data is prohibited.”) :-
ferpa provision(D, school off exempt),

district potential use by provider(D, district 4aiii)

Based on the validity rules, the Smart Form can automati-
cally check whether a given agreement draft is valid accord-
ing to FERPA by evaluating the relation illegal (see also Fig-
ure 3).

Rights and Obligations Below the modeling of the con-
sequence that if FERPA provision is directory exemption,
then the district must allow opportunity for parent to opt-out
of the disclosure of student’s data.
consequence(D, ”District must allow opportunity for

parents to opt-out of the disclosure of student data.”) :-
district data pii(D,A),

ferpa provision(D, directory exemption)

In addition to computing whether a contract is valid or
not, the Smart Form can also automatically output the rea-
son for the invalidity, any rights, limitations and obligations
that parties have if the contract is valid. For example, if
the chosen exemption is ”Actual Parental Consent”, then our
Smart Form can automatically compute that the district may
disclose the data only according to the terms of the parental
consent.

130



Hypothetical Analysis Our Smart Form also supports hy-
pothetical reasoning over a set of (valid) contracts. Typi-
cally, an information service provider enters into multiple
contracts, one for each district, to be able to achieve broader
coverage for his/her service. Given a set of such contracts,
an information provider is often faced with the problem of
deciding whether he/she may use certain data artifact for a
particular use. In order to obtain the answer to such a ques-
tion with our prototype, the information service provider
would formulate his question as a query in the ‘Contract
Analysis’ tab. Our prototype then analyses all the exist-
ing contracts of the information service provider and pro-
duces the answer to the question. For example, if an infor-
mation service provider wishes to know which data he/she
may share with a third party, he/she would pose the query
provider may share(District,Data,3rd party,Use). The an-
swer to this query will contain all (district, data artifact, us-
age) tuples that the provider may share with a 3rd party.

Related Work

The following limitations of Google Forms (Google Inc.
2016) restrict their use in many professional scenarios. (1)
Google Forms’ data validation constraints neither support
logical connectors nor field inter-relationships. To the best
of our knowledge, Google Forms do not allow form creators
to extend the data validation support. (2) Google Forms
API requires programming knowledge in JavaScript which
is not a viable option for most professionals who are not
software programmers, e.g., officials of a city administra-
tion. Furthermore, a programmatically created Google Form
is not synchronized with the data that was used to generate
it. Furthermore, form elements cannot be added or removed
dynamically based on a user’s interactions with a Google
Form.

SurveyMonkey (SurveyMonkey 2016) as the name sug-
gests specializes in creating survey forms. SurveyMonkey
forms typically consist of a list of multiple choice ques-
tions. SurveyMonkey forms can be created only manually
and do not support further constraints on field values. Type-
form (Typeform 2016) is similar to Surver Monkey except
that Typeform focuses more on attractive design by pro-
viding form templates and ease of use by allowing only
one question per form. Typeform, Gravity Forms (Grav-
ity Forms 2016b), NinjaForms (Ninja Forms 2016), Form-
stack (Formstack 2016) and a few more use Conditional
Logic for showing/hiding a field or an entire section based
on user’s input in another field. Conditional Logic allows
you configuration of forms to show or hide fields, sec-
tions, forms or even the submit button based on user se-
lections (Gravity Forms 2016a). Conditional Logic allows
showing or hiding form fields, form sections, and complete
form as well as enable or disable a form’s submit button
based on a previous user selection. Conditional Logic can
support only simple conditions involving only field values
since it does not support variables and data other than field
values.

Conclusion and Outlook
Forms remain essential to the delivery of a wide range of
government services. To gather information and implement
government policy, government departments and agencies
issue and receive back millions of paper forms per year. Ef-
ficient issuing and processing forms can have significant im-
plications in shaping both the cost efficiency of departments
and agencies, and how citizens perceive the public services.

We have presented Smart Forms, an innovative web
forms technology for easy creation, maintenance and eval-
uation of user-friendly web forms especially the ones that
must implement complex laws, regulations or business poli-
cies. Smart Forms have built-in mechanisms for providing
context-sensitive feedback and automatically filling fields to
assist end users in form-filling. These mechanisms can be
configured by Smart Form creators without writing a single
line of traditional procedural programming code.

Smart Forms is a core technology toward realizing the vi-
sion of a Citizens’ Dashboard, a one stop service where cit-
izens and organizations can easily find, fill and submit rele-
vant government forms as well as manage, analyze and effi-
ciently use their data.

References
Agarwal, S.; Mohapatra, A.; Genesereth, M. R.; and Bo-
ley, H. 2015. Rule-based exploration of structured data in
the browser. In Proceedings of 9th International Symposium
(RuleML 2015), 161–175. Springer.
Agarwal, S.; Mohapatra, A.; and Genesereth, M. 2016. Jab-
berwocky. http://logic.stanford.edu/∼sudhir/jabberwocky.
pdf. Tool Demonstration at 3rd Symposium on Computa-
tion + Journalism, Stanford University, Stanford, USA.
Blundell, H., and Mohapatra, A. 2016. Smart Form User
Manual. http://forms.stanford.edu/editor/help.html. Ac-
cessed: 02-09-2016.
Flanagan, D. 2011. JavaScript: The Definitive Guide.
O’Reilly & Associates, 6th edition.
Formstack. 2016. Formstack. http://www.formstack.com.
Accessed: 18-08-2016.
Genesereth, M. R. 2010. Data Integration: The Relational
Logic Approach. Synthesis Lectures on Artificial Intelli-
gence and Machine Learning. Morgan & Claypool Publish-
ers.
Genesereth, M. R. 2015. A brief introduction to de-
ductive databases. http://logic.stanford.edu/jarvis/complaw/
ddb.html. Accessed: 03-09-2016.
Google Inc. 2016. Google Forms. http://www.google.com/
forms/. Accessed: 18-08-2016.
Gravity Forms. 2016a. Conditional Logic. http://www.
gravityforms.com/features/conditional-logic/. Accessed:
18-08-2016.
Gravity Forms. 2016b. Gravity Forms. http://www.
gravityforms.com. Accessed: 18-08-2016.
Kassoff, M. 2011. Logical Spreadsheets. Ph.D. Dissertation,
Computer Science Dept., Stanford University.

131



Kowalski, R. A. 1988. The early years of logic program-
ming. Commun. ACM 31(1):38–43.
Mohapatra, A.; Agarwal, S.; and Genesereth, M. 2016.
Update policies. Technical report. Submitted to 29th
Australasian Joint Conference on Artificial Intelligence (AI
2016), Hobart, Australia. http://logic.stanford.edu/∼sudhir/
update-policies.pdf.
Ninja Forms. 2016. Ninja Forms. http://www.ninjaforms.
com. Accessed: 18-08-2016.
Orman, L. V. 2001. Transaction repair for integrity enforce-
ment. IEEE Trans. Knowl. Data Eng. 13(6):996–1009.
SurveyMonkey. 2016. SurveyMonkey. https://www.
surveymonkey.com. Accessed: 18-08-2016.
Typeform. 2016. Typeform. http://www.typeform.com/.
Accessed: 18-08-2016.

132


