
Join Tree Propagation Utilizing Both Arc Reversal and Variable Elimination

C. J. Butz and K. Konkel
Department of Computer Science

University of Regina
Regina, SK, S4S 0A2

{butz,konkel1k}@cs.uregina.ca

P. Lingras
Department of Mathematics and Computing Science

Saint Mary’s University
Halifax, NS, B3H 3C3

pawan.lingras@stmarys.ca

Abstract

In this paper, we put forth the first join tree propaga-
tion algorithm that selectively applies either arc rever-
sal (AR) or variable elimination (VE) to build the prop-
agated messages. Our approach utilizes a recent method
for identifying the propagated join tree messages à pri-
ori. When it is determined that precisely one mes-
sage is to be constructed at a join tree node, VE is uti-
lized to build this distribution; otherwise, AR is applied
as it is better suited to construct multiple distributions
passed between neighboring join tree nodes. Experi-
mental results, involving evidence processing in seven
real-world and one benchmark Bayesian network, em-
pirically demonstrate that selectively applying VE and
AR is faster than applying one of these methods exclu-
sively on the entire network.

Introduction

Bayesian networks (Pearl 1988) provide a rigorous founda-
tion for uncertainty management by combining probability
theory and graph theory, and have been successfully ap-
plied in practice to a wide variety of problem domains. A
Bayesian network consists of a directed acyclic graph (Pearl
1988) and a corresponding set of conditional probability ta-
bles (Shafer 1996). The vertices in the directed acyclic graph
represent the random variables in the real-world problem,
while the edges in the graph represent probabilistic depen-
dencies amongst the variables. More specifically, the prob-
abilistic conditional independencies encoded in the directed
acyclic graph indicate that the product of the conditional
probability tables is a joint probability distribution. There-
fore, Bayesian networks continue to provide a robust frame-
work for designing expert systems (Kjaerulff and Madsen
2008). Although Cooper (1990) has shown that the com-
plexity of exact inference in discrete Bayesian networks is
NP-hard, various approaches have been developed that seem
to work quite well in practice. All of these methods center
around eliminating variables from the networks to produce
posterior probability distributions and can be broadly classi-
fied into two categories.

The first category of Bayesian network inference is di-
rect computation. The two leading direct computation al-

Copyright c© 2009, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

gorithms are variable elimination (VE) (Pearl 1988; Hájek,
Havránek, and Jiroušek 1992; Shafer 1996) and arc rever-
sal (AR) (Olmsted 1983; Shachter 1986). VE removes a
variable by multiplying together all of the distributions in-
volving the variable and then summing the variable out of
the obtained product. AR removes a variable by revers-
ing the edges between the variable and its children giv-
ing a modified directed acyclic graph and then building the
conditional probability tables corresponding to the modified
graph. The second category is join tree propagation, which
Shafer (1996) emphasizes is central to the theory and prac-
tice of probabilistic expert systems. Join tree propagation
first builds a secondary network, called a join tree, from the
directed acyclic graph of the Bayesian network and then per-
forms inference by propagating probabilities in the join tree.

Recently, Madsen (2004) introduced Lazy-AR and empir-
ically demonstrated a computational advantage over its pre-
decessor, Lazy-VE (Madsen and Jensen 1999). The only
difference between Lazy-AR and Lazy-VE is that the for-
mer utilizes AR when eliminating variables during join tree
propagation, whereas the latter uses VE. Both Lazy-AR and
Lazy-VE, however, are too rigid to exploit various kinds of
structures found within real-world Bayesian networks. We
explicitly demonstrate that during propagation in one join
tree, AR can be the best choice for eliminating variables
at one join tree node, yet VE is the most suitable method
for eliminating variables at another join tree node. Neither
Lazy-AR nor Lazy-VE are flexible enough to take advantage
of these situations as they both apply a single technique for
eliminating variables throughout the entire join tree.

In this paper, we suggest selectively applying either AR
or VE to build the messages propagated in a join tree. A
key difference between our system, called DataBayes, and
all other join tree propagation algorithms are two analytical
preprocessing steps. The first step uses the method in (Butz,
Yao, and Hua 2008) to determine à priori those messages
that will be propagated in the join tree. The second step uses
this information as follows. When it is known that a join
tree node will construct a single distribution to be sent to a
neighboring node, VE is applied to build this message. On
the other hand, AR is applied when a node is to pass more
than one distribution to a neighboring node. The efficiency
improvement offered by DataBayes is shown through empir-
ical evaluations involving seven real-world and one bench-

523

Proceedings of the Twenty-Second International FLAIRS Conference (2009)

mark Bayesian network. As is usually done, in each net-
work, inference is performed with varying amounts of evi-
dence, namely, 0%, 9% and 18%. DataBayes finished infer-
ence faster than LAZY-AR in all cases without exception.
Since Lazy-AR tends not to be slower than Lazy-VE (Mad-
sen 2004), our results empirically demonstrate that selec-
tively applying VE and AR is faster than applying one of
these methods exclusively.

This paper is organized as follows. Background informa-
tion is first reviewed. We then propose a more sophisticated
approach to join tree propagation. Experimental results are
subsequently provided. The manuscript ends with our con-
clusions.

Definitions

Let U = {v1, v2, . . . , vn} denote a finite set of discrete ran-
dom variables. Each variable vi is associated with a finite
domain, denoted dom(vi), representing the values vi can
take on. For a subset X ⊆ U , we write dom(X) for the
Cartesian product of the domains of the individual variables
in X . Each element x ∈ dom(X) is called a configuration
of X. A potential (Hájek, Havránek, and Jiroušek 1992) on
dom(X) is a function φ on dom(X) such that φ(x) ≥ 0, for
each configuration x ∈ dom(X), and at least one φ(x) is
positive. For brevity, we refer to a potential as a probability
distribution on X rather than dom(X), and we call X , not
dom(X), its domain (Shafer 1996). A joint probability dis-
tribution (Shafer 1996) on U , denoted p(U), is a potential
on U that sums to one.

Let X and Y be two disjoint subsets of U . A conditional
probability table (Shafer 1996) for Y given X , denoted
p(Y |X), is a nonnegative function on X ∪ Y , satisfying the
following condition: for each configuration x ∈ dom(X),∑

y∈dom(Y) p(Y = y|X = x) = 1.0.
The heading of a probability distribution is the label ap-

pearing above the probability column.
A discrete Bayesian network on U is a pair (D,C). D is a

directed acyclic graph on U . C is a set of conditional prob-
ability tables defined as: for each variable vi ∈ D, there is
a conditional probability table for vi given its set of parents
Pi in D.

Note that the set U of vertices in D represent the ran-
dom variables in the real-world problem domain, and the
edges in D represent probabilistic dependencies amongst the
variables. We shall use vertex and variable interchangeably,
as well as the terms Bayesian network and directed acyclic
graph, if no confusion arises.

The family of a variable vi, denoted as Fi, in a directed
acyclic graph is {vi} ∪Pi. Let An(X ∪ Y) be the ancestral
set of X ∪ Y , where X and Y are subsets of U , i.e., the set
of variables in X∪Y and the ancestors of those variables. A
numbering ≺ of the variables in a directed acyclic graph is
called ancestral (Castillo, Gutierrez, and Hadi 1997), if the
number corresponding to any variable vi is lower than the
number corresponding to each of its children vj , denoted
vi ≺ vj .

Once a Bayesian network has been obtained, the next task
is to answer queries such as p(E = e) or p(X|E = e),

where E and X are disjoint sets of variables in the Bayesian
network, and e are the observed values of E. One com-
mon approach to performing Bayesian network inference is
to build a secondary structure, called a join tree, and then
conduct Bayesian network inference via join tree propaga-
tion.

A join tree is a tree with sets of variables as nodes, with
the property that any variable in two nodes is also in any
node on the path between the two. By definition of join tree,
one node can be a subset of another. The separator between
any two neighboring nodes Ni and Nj is Ni ∩Nj . We refer
the reader to (Kjaerulff and Madsen 2008) for a discussion
on building Bayesian networks and join trees.

For example, one possible join tree for a real-world
Bayesian network, called Water, is depicted in Figure 1.
The join tree nodes are A = {0, 4, 5, 20, 24}, B =
{4, 16, 20, 24, 25}, C = {5, 10, 16, 17, 21, 25, 26, 31},
D = {5, 10, 17, 21, 25, 26, 31}, E = {8, 9, 10, 12, 16, 17,
26, 31}, F = {9, 10, 12, 13, 16, 17, 26}, G = {9, 10, 13,
17, 26}, The CPTs of the Water Bayesian network are as-
signed to the join tree nodes as shown. For instance,
{p(16), p(25|4, 16, 20, 24} are assigned to join tree node B.

A preprocessing step (Butz, Yao, and Hua 2008) is ap-
plied to identify the headings of all messages to be passed in
the join tree à priori. It must be made clear that the step is not
computing the actual probability distributions with rows and
probability values; instead, it is only computing the head-
ings appearing above the probability columns (the schema
of each message).

For example, given the assignment of CPTs to the
Water join tree nodes in Figure 1, it can be de-
termined à priori that node A will pass messages
{p(4), p(5|4, 20, 21, 24), p(20), p(21|20, 24), p(24)} to its
neighboring node B when join tree propagation is per-
formed.

Bayesian Network Inference With DataBayes

In this section, we propose a new join tree propagation al-
gorithm for Bayesian network inference. This algorithm
has been implemented in our probabilistic reasoning system,
called DataBayes.

Following the probabilistic inference competition held at
UAI 2006, our objective is to answer a query p(E = e)
posed to a Bayesian network, where E is a randomly se-
lected set of variables taking value e. As variables irrelevant
to the query are pruned from the Bayesian network as part of
query optimization, the constructed join tree only contains
the variables required to compute p(E = e). Lastly, our
method only involves the inward phase of join tree propaga-
tion.

The key difference between DataBayes and all previous
join tree propagation algorithms is that DataBayes applies a
preprocessing step, as discussed next.

The following algorithm, called PickARorVE, determines
whether DataBayes should apply AR or VE at each node in
the join tree before propagation begins.

524

Figure 1: Given the Water join tree with identified messages, the PickARorVE algorithm labels all nodes as shown.

Algorithm 1 PickARorVE (J)
Input: a join tree J with messages to be propagated identified.
Output: each join tree node marked with one of AR, VE or NA.
begin
for each join tree node N

count the number n of messages to be constructed at N .
if n > 1

Mark N as AR
else if n == 1

Mark N as VE
else

Mark N as NA
end

We now illustrate the PickARorVE algorithm. In the
Water join tree of Figure 1 with identified messages, the
PickARorVE algorithm labels all nodes as shown. Con-
sider node D. Node D does not need to build any distri-
butions. Instead, it is simply forwarding its only distribu-
tion p(26 = 0|5, 17, 21, 25) to node C. Thus, PickARorVE
marks node D as NA. Now consider node A. It is forward-
ing to node B three distributions p(4), p(20) and p(24), but
needs to construct two distributions p(5|4, 20, 21, 24) and
p(21|20, 24). Consequently, PickARorVE marks node A as
AR. Lastly, consider node C. It is forwarding to node E
the distribution p(16), but needs to build the one distribution
p(26 = 0|16, 17). Thereby, PickARorVE marks node C as
VE.

The important point is that the PickARorVE labelling in-
dicates which technique, if any, should be applied to elimi-
nate variables at each join tree node. As shown in Figure 1,

AR will be applied at nodes A and B, while VE will be ap-
plied at nodes C and F . Nodes D and G simply forward
distributions, while node E is the root.

DataBayes Applying VE

DataBayes uses VE to eliminate variables when precisely
one message needs to be constructed at a join tree node. It
must be emphasized that VE is not simply applied when a
single distribution is passed between neighboring nodes. It
is entirely possible that more than one distribution is passed
from a node N to a neighbor, but only one of these distribu-
tions need to be constructed at N . For example, consider the
two distributions p(16) and p(26 = 0|16, 17) to be passed
from node C to node E in Figure 1. Observe that p(16) does
not need to be built at node C, since p(16) was constructed
at node B, passed to node C, and node C will simply for-
ward it to node E. On the other hand, p(26 = 0|16, 17)
needs to be constructed at node C.

Due to lack of space, we refer the reader to the literature
for a formal description of the VE algorithm and use the
following example to illustrate it.

DataBayes applies VE to construct the single distribu-
tion p(26 = 0|16, 17), sent from node C to node E in
Figure 1, as follows. Variables {5, 21, 25} need to be
eliminated from: p(5|21) · p(16) · p(21) · p(25|5, 16, 21) ·
p(26 = 0|5, 17, 21, 25). Note that the elimination order-
ing 21, 5, 25 is computed by the DataBayes system. VE
marginalizes variable 21 out from the product p(5|21) ·
p(21) ·p(25|5, 16, 21) ·p(26 = 0|5, 17, 21, 25). This process

525

yields p(5, 25, 26 = 0|16, 17). Thus, we obtain
∑

25

∑

5

p(5, 25, 26 = 0|16, 17) · p(16). (1)

Variable 5 is then removed by marginalization yielding
∑

25

p(16) · p(25, 26 = 0|16, 17). (2)

The last variable 25 is then marginalizaed away leaving

p(16) · p(26 = 0|16, 17), (3)

which are the messages passed from node C to node E in
Figure 1.

DataBayes Applying AR

Arc reversal (AR) (Olmsted 1983; Shachter 1986) is an algo-
rithm that eliminates a variable by making it barren via a se-
quence of directed edge (arc) reversals in the directed acyclic
graph of a Bayesian network prior to eliminating it. AR uses
an ancestral numbering ≺ of the original Bayesian network
to avoid creating directed cycles, thereby maintaining a di-
rected acyclic graph structure after eliminating a variable by
applying arc reversal (Madsen 2004).

We illustrate the AR algorithm with the following exam-
ple. In the Water join tree of Figure 1, DataBayes applies
AR to construct the distributions sent from node B to node
C as follows. Variables {4, 20, 24} must be eliminated from:
p(4) · p(5|4, 20, 21, 24) · p(16) · p(20) · p(21|20, 24) · p(24) ·
p(25|4, 16, 20, 24). Note the elimination ordering 4, 20, 24
is generated by the DataBayes system. Here variable 4 is
a parent of two children, namely, variables 5 and 25. With
respect to variable 5, AR computes:

p(5|20, 21, 24) =
∑

4

p(4) · p(5|4, 20, 21, 24)

and

p(4|5, 20, 21, 24) =
p(4) · p(5|4, 20, 21, 24)

p(5|20, 21, 24)
.

Next, with respect to the second and final child 25, AR cal-
culates p(25|5, 16, 20, 21, 24) by

∑

4

p(4|5, 20, 21, 24) · p(25|4, 16, 20, 24).

Now that variable 4 has been eliminated, variables 20 and
24 will be eliminated from: p(5|20, 21, 24) · p(16) · p(20) ·
p(21|20, 24)·p(24)·p(25|16, 20, 24). Variable 20 is a parent
of three children: 21, 5 and 25. Similar to the case when
eliminating variable 4, AR eliminates variable 20 as follows.
For the first child 25,

p(21|24) =
∑

20

p(20) · p(21|20, 24)

and

p(20|21, 24) =
p(20) · p(21|20, 24)

p(21|24)
,

while for the second child 5

p(5|21, 24) =
∑

20

p(20|21, 24) · p(5|20, 21, 24)

and

p(20|5, 21, 24) =
p(20|21, 24) · p(5|20, 21, 24)

p(5|21, 24)
.

For the last child 25,

p(25|16, 24) =
∑

20

p(20|5, 21, 24) · p(25|16, 20, 24).

Now that variable 20 is eliminated, variable 24 will be elimi-
nated from: p(5|21, 24)·p(16)·p(21|24)·p(24)·p(25|16, 24).
As variable 24 has three children 21, 5 and 25, AR com-
putes.

p(21) =
∑

24

p(24) · p(21|24),

p(24|21) =
p(24) · p(21|24)

p(21)
,

p(5|21) =
∑

24

p(24|21) · p(5|21, 24),

p(24|5, 21) =
p(24|21) · p(5|21, 24)

p(5|21)
,

p(25|5, 16, 21) =
∑

24

p(24|5, 21) · p(25|16, 24).

After variable 24 has been eliminated, the messages passed
from node B to node C in Figure 1 are

p(5|21) · p(16) · p(21) · p(25|5, 16, 21). (4)

ADVANTAGES

We first explain our choice of whether to apply VE or AR
when building messages. Our preprocessing step (Butz,
Yao, and Hua 2008) identifies the messages to be passed
in a join tree before propagation begins. The messages we
identify are precisely those that will be propagated, provided
that AR is chosen as the algorithm for building messages.
However, (Butz and Hua 2006) pointed out that during its
execution distributions can be built that will not be passed
as messages, nor will they be needed in the construction of
the distributions to be passed as messages. The reason is that
in the elimination of a variable vi, AR constructs 3k−1 dis-
tributions and outputs k of them, where k is the number of
children of vi with respect to the distributions at the sending
join tree node. On the contrary, VE is more streamlined in
that it only outputs a single distribution. Therefore, if our
preprocessing step indicates that a join tree node will pass a
single distribution, then we select VE to build it. Otherwise,
we pick AR to build the multiple distributions to be passed.
The next example demonstrates that it can be wasteful to
apply AR when only one distribution needs to be built.

Recall the distribution p(26 = 0|16, 17) passed from node
C to node E in the Water join tree of Figure 1. Variables
25, 5 and 21 need to be eliminated at node C from p(16) ·

526

p(21)·p(5|21)·p(25|21, 5, 16)·p(26 = 0|21, 5, 17, 25). The
distinction to be made is whether to apply VE, as DataBayes
did earlier, or to apply AR, as Lazy-AR does in the next
example.

Lazy-AR applies AR to eliminate variable 21 by comput-
ing the following equations.

p(5) =
∑

21

p(21) · p(5|21)

p(21|5) =
p(21) · p(5|21)

p(5)

p(25|5, 16) =
∑

21

p(21|5) · p(25|21, 5, 16)

p(21|5, 25, 16) =
p(21|5) · p(25|21, 5, 16)

p(25|5, 16)
,

and

p(26 = 0|5, 16, 17, 25)

=
∑

21

p(21|5, 25, 16) · p(26 = 0|21, 5, 17, 25)

AR eliminates variable 5 via:

p(25|16) =
∑

5

p(5) · p(25|5, 16)

p(5|25, 16) =
p(5) · p(25|5, 16)

p(25|16)
,

and

p(26 = 0|16, 17, 25)

=
∑

5

p(5|25, 16) · p(26 = 0|5, 16, 17, 25).

Finally, AR eliminates variable 25 through the following
computation:

p(26 = 0|16, 17) =
∑

25

p(25|16) · p(26 = 0|16, 17, 25).

The important point in the above example is that Lazy-AR
eliminates variables 21, 5 and 25 using AR, which requires
six multiplication operations, six marginalization operations
and three division operations. On the contrary, DataBayes
eliminates these same variables using VE, which only re-
quires three multiplication operations and three marginaliza-
tion operations.

The above discussion clearly demonstrates how Lazy-AR
is unable to recognize those situations when VE should be
applied for eliminating variables because it does not perform
preprocessing steps like DataBayes to determine which mes-
sages need to be built and which techique for eliminating
variables is most appropriate. Instead, Lazy-AR exclusively
applies AR, which is more suitable for constructing multiple
distributions and less so for building a single distribution. It
is acknowledged, however, that VE and AR will perform ex-
actly the same computation if the variable being eliminated
only appears in two distributions at the time it is removed.

Experimental Results

In this section, we report an empirical comparison of our
DataBayes join tree propagation approach and Lazy-AR.
Both methods were implemented in the C++ program-
ming language. The experiments were conducted on a 24-
processor SGI Onyx2 graphics supercomputer with two pro-
cessors allocated for our sole usage. The evaluation was
carried out on seven real-world Bayesian networks: Alarm,
Barley, CHD, Diabetes, Hailfinder, Mildew, and Water, and
a benchmark Bayesian network Insurance. Table 1 describes
the Bayesian network used, the number of variables in each
Bayesian network, the number of rows in the CPTs of the
BN, the number of nodes in each join tree, and the number
of messages passed in the JT when no evidence is involved.

Bayesian # # CPT # JT # JT
network vars rows nodes msgs

Alarm 37 1192 27 51
Barley 48 473406 36 123

CHD 11 60 5 6
Diabetes 413 1185160 336 1093

Hailfinder 56 9048 43 104
Insurance 27 232 18 61

Mildew 35 1167440 29 99
Water 32 17984 19 81

Table 1: Description of real-world or benchmark Bayesian
networks and the constructed join trees

Table 2 reports on Bayesian inference not involving evi-
dence processing. Running times for the PickARorVE algo-
rithm are in microseconds, and are included in the running
times for DataBayes. Running times for Lazy-AR and for
DataBayes are listed in seconds. The last column shows the
speed-up percentage of DataBayes over Lazy-AR and pos-
sessing an average percentage of 32%.

Bayesian Pick- Data- Lazy- Net
network ARorVE Bayes AR %

Alarm 2μs 143 233 39%
Barley 2μs 3890 7409 47%

CHD 0μs 32 53 40%
Diabetes 101μs 7250 9126 21%

Hailfinder 1μs 338 444 24%
Insurance 0μs 152 210 28%

Mildew 1μs 547 670 18%
Water 1μs 148 247 40%

Table 2: The performance of Lazy-AR and DataBayes not
involving evidence processing in real-world or benchmark
Bayesian networks

Next, we measure the runtime of inference involving ev-
idence. In Tables 3 and 4, approximately nine percent
and eighteen percent of the variables in each Bayesian net-
work are randomly instantiated as evidence variables, re-
spectively. Note that once again, DataBayes is faster than

527

Lazy-AR in all Bayesian networks. In Table 3, the percent-
age of time saved ranged from 8% to 30% with an average
percentage of 23%. In Table 4, the percentage of time saved
ranged from 2% to 58% with an average percentage of 24%.

Bayesian Pick- Data- Lazy- Net
network ARorVE Bayes AR %

Alarm 1μs 163 223 27%
Barley 0μs 93 128 27%

CHD 0μs 54 59 8%
Diabetes 13μs 57656 68144 15%

Hailfinder 0μs 404 564 28%
Insurance 0μs 63 80 22%

Mildew 0μs 31 41 24%
Water 0μs 340 488 30%

Table 3: The performance of Lazy-AR and DataBayes in-
volving 9% evidence in real-world or benchmark Bayesian
networks

Bayesian Pick Data- Lazy- Net
network ARorVE Bayes AR %

Alarm 1μs 199 268 26%
Barley 0μs 1585 3738 58%

CHD 0μs 39 40 2%
Diabetes 19μs 118485 131231 10%

Hailfinder 0μs 280 392 29%
Insurance 0μs 152 186 18%

Mildew 1μs 177 257 31%
Water 0μs 169 213 21%

Table 4: The performance of Lazy-AR and DataBayes in-
volving 18% evidence in real-world or benchmark Bayesian
networks

The results in Tables 2, 3 and 4 empirically demonstrate
that by selectively applying VE and AR, join tree propaga-
tion can be performed faster. For inference in all eight real-
world or benchmark Bayesian networks, we consider three
different cases: zero percent, nine percent and eighteen per-
cent of variables randomly instantiated as evidence. In each
case, DataBayes is faster than Lazy-AR without exception.

Conclusions

Current join tree propagation algorithms, such as Lazy-
AR (Madsen 2004) and Lazy-VE (Madsen and Jensen
1999), utilize a single inference technique for construct-
ing the messages throughout the entire join tree of a given
Bayesian network. In this paper, we have proposed a new
join tree propagation approach to probabilistic inference
in Bayesian networks. In our probabilistic expert system,
called DataBayes, we selectively apply either VE or AR to
build the messages at each node in the JT. As was demon-
strated, the motivation for our approach is that, during in-
ference in real-world Bayesian networks, it is often the case
that one of VE and AR is best suited to construct the mes-
sages at a particular node. In these cases, selecting the most

appropriate algorithm will provide better performance than
exclusively applying a single method. Therefore, DataBayes
is an improvement over Lazy-VE and Lazy-AR. Our empir-
ical comparison of DataBayes and Lazy-AR was conducted
on seven real-world and one benchmark Bayesian networks.
As is usually done, in each network, we performed infer-
ence with varying amounts of evidence, namely, 0%, 9%
and 18%. As reported in Tables 2, 3 and 4, DataBayes fin-
ished inference sooner than Lazy-AR in all cases with no
exceptions.

The novelty of our method lies in the uncoupling of se-
mantic modelling and physical computation. By performing
semantic modelling first, our flexible approach can identify
the most efficient inference algorithm to apply for each sep-
arator. On the contrary, by treating these two independent
tasks as dependent, Lazy-AR cannot recognize those situa-
tions when it is more efficient to employ VE as the inference
algorithm. Future work will examine a more precise mea-
sure for determining whether to use AR or VE than simply
the number of distributions to be constructed at a join tree
node.

References
Butz, C., and Hua, S. 2006. An improved lazy-ar approach to
bayesian network inference. In Proceedings of the Nineteenth
Canadian Conference on Artificial Intelligence, 183–194.
Butz, C.; Yao, H.; and Hua, S. 2008. A join tree probability prop-
agation architecture for semantic modeling. Journal of Intelligent
Information Systems doi: 10.1007/s10844-008-0073-4.
Castillo, E.; Gutierrez, J.; and Hadi, A. 1997. Expert Systems and
Probabilistic Network Models. Springer.
Cooper, G. F. 1990. The Computational Complexity of Proba-
bilistic Inference using Bayesian Belief Networks. Artificial In-
telligence 42:393–405.
Hájek, P.; Havránek, T.; and Jiroušek, R. 1992. Uncertain Infor-
mation Processing in Expert Systems. CRC Press.
Kjaerulff, U., and Madsen, A. 2008. Bayesian networks and
Influence Diagrams. Springer.
Madsen, A., and Jensen, F. 1999. LAZY propagation: A junc-
tion tree inference algorithm based on lazy evaluation. Artificial
Intelligence 113(1-2):203–245.
Madsen, A. 2004. An empirical evaluation of possible variations
of lazy propagation. In Proceedings of the Twentyth Conference
on Uncertainty in Artificial Intelligence, 366–373.
Olmsted, S. 1983. On representing and solving decision prob-
lems. Ph.D. Dissertation, Stanford University, Department of En-
gineering Economic Systems.
Pearl, J. 1988. Probabilistic Reasoning in Intelligent Systems:
Networks of Plausible Inference. Morgan Kaufmann.
Shachter, R. D. 1986. Evaluating influence diagrams. Operations
Research 34(6):871–882.
Shafer, G. 1996. Probabilistic Expert Systems. SIAM.

528

