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Abstract 
The command and control of unmanned vehicles is a cogni-
tively intensive task for human operators. Efficient and suc-
cessful operator performance often depends on a multitude 
of parameters, such as training, human abilities/factors, tim-
ing and situational awareness. Humans are required to mul-
titask in an uncertain environment, process situational data 
and be able to efficiently utilize autonomous agents in mul-
tiple regions of interest. These requirements quite often re-
sult in information overload which has consequences on the 
success of the mission. This is currently an unsolved prob-
lem and calls for greater optimization and automation of the 
command and control of unmanned vehicles. 
 
The cooperative control of unmanned agents in uncertain 
environments has been a challenge (S. J. Rasmussen, et al). 
Many models rely on continuous-time, state-space searches 
in decision trees that are used for planning and execution of 
the mission. The methods have a number of benefits, how-
ever, this approach requires optimization of coordination of 
play states, by learning from environment’s temporal and 
spatial patterns. In addition, the rate of events in the uncer-
tain environment is always changing, making play models 
inefficient under a high load of events. This paper attempts 
to define a space of possible models used in uncertain envi-
ronments under different levels of complexity, through op-
timization of assignment coordination. 

Introduction   
The Intelligent Multi-UxV Planner with Adaptive Collabo-
rative Control Technologies (IMPACT) system is a collec-
tion of technologies with the purpose of aiding users in the 
command and control of multiple Unmanned Vehicles to 
achieve various tasks (Rowe et al., 2015). The IMPACT 
system models Unmanned Vehicles, their sensors, and the 
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environment in which they operate in. The unmanned ve-
hicles can be tasked via “plays” to perform certain actions 
such as scanning and tracking other objects in the simula-
tion. Given the potentially large number of unmanned ve-
hicles in the simulation, human operators can become 
overwhelmed attempting to maintain situational awareness 
and control over the vehicles. To address this problem, a 
Task Manager module has been developed for IMPACT 
with the aim of assisting human operators (Lange et al., 
2014, Gutzwiller et al., 2015). However at times even with 
the assistance of the task manager, human operators can be 
overloaded in managing and creating tasks in the system. 
Additionally, the IMPACT task manager can only assist 
the operator if it has a representation relating the opera-
tional context with the task space being maintained.  
     The task space is a discrete space that we know how to 
manage. Complications arise when trying to relate the con-
tinuous multivariable space of UxV operations and the 
continuous space of operator attention with the discrete 
task space. In this paper, we will outline the task manager 
module of IMPACT, we describe approaches to discretize 
the operational context relative to the selection of task 
types to instantiate for the task manager to manage on be-
half of the operator. We will also outline initial efforts to 
apply machine learning techniques to automatically gener-
ate tasks for the task manager, and discuss a model to op-
timize the scheduling and queuing of tasks under different 
complexity levels in IMPACT in order to reduce the cogni-
tive load on human operators. The final section concludes 
the paper and outlines the future effort planned for this 
work. 
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Task Manager 
Task manager assistance ranges from attention manage-
ment services to automated control. The core of the task 
manager is a task model which represents information 
about the human as well as an intelligent assistant’s ability 
to perform tasks. The tasks may include assigning missions 
to Unmanned Vehicles, evaluating the performance of a 
mission against some criteria, making decisions at check-
points in the mission, or changing the resources available 
to a team (Lange et al., 2014). If the system detects that the 
human is overloaded and the computer has the ability to 
perform a task, the computer can assume responsibility of 
that task in order to assist the human operator (Lange et al., 
2014). Figure 1 represents an example task model which 
illustrates that there can be multiple methods of achieving 
a task and one must be selected. Tasks represent elements 
that must be performed in order to execute the method, and 
they can be performed either by a human operator or by the 
computer depending on the actor’s capabilities and availa-
bility. Methods are alternative approaches to completing a 
task. While tasks assist human operators in managing their 
workload in the simulation, they are required to create their 
own tasks. This can become onerous, especially when the 
human operator is overloaded.  
 
 
 
 

 

 

 

 

 

Figure 1. Example Task Model. The recursive task model struc-
ture creates alternating levels of tasks and methods. 

Machine Learning Task Generation 
In this section we will discuss initial ideas and efforts to 
automatically generate tasks for users of the Task Manager 
based on machine learning techniques. 

All data in the IMPACT simulation is stored in states. 
The most relevant states in IMPACT include the air, 
ground, and sea vehicle states which store the live data for 
all of the vehicles in the simulation. Other data comes from 
the sensors of the UxVs. This data is stored in camera, vid-
eo stream, and radio state variables. Each vehicle state is 
comprised of many variables such as its: current location, 
velocity, acceleration, current heading, available energy, 
energy usage rate, list of payloads, and its current tasks. 

All of this data can be used by machine learning techniques 
to determine whether a task should be generated. 

In using the task manager for IMPACT, a user can create 
their own task for a job at any point in time. The task could 
be of any type, and the user can create new types of tasks 
previously unknown to the system. The trigger for the crea-
tion of the tasks can therefore be based on any available 
information in the simulation. We have no prior knowledge 
about which data in the simulation was used to make the 
task. It could be based on any or all information in the sys-
tem. Therefore the initial machine learning approach taken 
is the K-Nearest Neighbor algorithm (kNN) (Fix et al., 
1951) based on its simplicity and applicability to many 
problems. 

Our high level approach comprises of three steps: 
1. Record the states of the IMPACT simulation when a 
task is created. 
2. Continuously monitor the IMPACT simulation states. 
3. If the current simulation state matches a state previously 
recorded when a task was made, then generate this task for 
the user of the Task Manager. 

The core of kNN requires us to determine the distance 
metrics between the states of the simulation in order to 
match them and ultimately generate a task. This is not a 
trivial task as the states of the vehicles in the simulation 
rarely ever match exactly. The feature standardization 
technique (Peterson, 2009) is used to remove any bias 
caused by the state variables having different units and 
thus different measurement scales.  

Initial implementations of the approach have highlighted 
a number of important design questions: Should the varia-
bles in each state in the distance measurement be weighted 
evenly? Are vehicles considered to be homogenous and 
thus their states can be compared to another vehicles’ 
state? Should the distance measurements for all individual 
states be combined or can subsets of states be compared? 
Finally, what is the threshold for similarity between states 
for a task to be generated?  

Additionally, it is possible to record the simulation state 
for task creation data for prior simulations and use this data 
for training and classification. However, what if different 
numbers and types of vehicles were used in these simula-
tions? Is this data still relevant? 

Future work will entail experimenting with different op-
tions in attempt to resolve the questions stated above. Giv-
en the difficulties in determining the distance metrics be-
tween the states for this problem, other more abstract ma-
chine learning techniques such as artificial neural networks 
(ANN) may be more suited to this problem and will be 
explored. However an ANN is likely to require significant 
training data of cases in order to train them effectively giv-
en the number of variables in each state. Future work will 
also explore utilizing a time-windowed history of the IM-
PACT simulation states for task generation. 
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Task Optimization 

In this section we will discuss the complexities of the IM-
PACT system which can result in the human operator suf-
fering information overload and outline a model to opti-
mize the scheduling and queuing of tasks in IMPACT with 
the aim of reducing their cognitive load. 

Data Collection 
All raw data collection from the IMPACT system yields 
two basic types of data: user generated chat messages and 
sensor data. Messages from the user come in the form of 
natural language and can be broken down into four ele-
ments: time of message, location, duration and asset.  The-
se representations of data are summarized in Table 1.  
 
Time Point (ROI) Duration 

(time) 
Asset (Sensor, 
UxV)  

45:00 NAI - 4 4 min Listening Post / 
Observation Post 
(LPOP) 

)0:00:00 Ammo Dump 40 min Imagery 

00:17:00 Chow Hall infinity 360 degrees 
(imagery) 

20:00  Gate 2 10 min Force (vehicle) 

30:00 Gate 2 5 min Force (vehicle) 

message 
arrival 

Point Quebec 15 min Force (vehicle) 

53:00 Barracks infinity 360 degrees 
(imagery) 

message 
arrival 

Current col-
lation 

3 min Flight line 

message 
arrival 

Current loca-
tion 

infinity UGV, 53 % 
fuel left 

Table 1: Example of the key information obtained from chat mes-
sages 

The Time column in Table 1 represents the time stamp 
when the message was issued or when the action is planned 
to take place. The Point column represents the region of 
interest (ROI) where asses is planned to appear. Duration 
is the time of job completion when the trigger is lifted. 
Asset is the name of the sensor or vehicle that is the capa-
bility which is used to complete a task.  

The idea behind structured chat message retrieval from a 
database is to quickly distinguish important semantics from 
the natural language into computer readable form. This 

stage requires further development and will not be covered 
in this paper. 

Complexity in IMPACT 
For the user who simultaneously controls a number of au-
tonomous agents, complexity means higher rates of multi-
tasking. In this case, complexity reduction happens when 
many simpler tasking states are grouped together in the 
relevant sequence. 

Timing also plays an important role, as events occur at a 
random rate. For example, the tasking system can be doing 
a routine task, such as ground monitoring, but if we intro-
duce additional information or events, the user’s attention 
will be diminished. What complexity means for each indi-
vidual user remains a topic of separate investigation; how-
ever, for demonstration of our approach, tasks can be lin-
guistically categorized qualitatively as low, medium and 
high. Because accumulation of simple tasks at a high rate 
is overwhelming, timing and rate of task occurrence in the 
user task queue is a key factor. 

Environmental events 
Environmental events take place outside of the user’s con-
trol. These events trigger a user’s reaction which will re-
quire actions in the IMPACT system to respond to the en-
vironmental events. Example environmental events in-
clude: Gate runner, Mortar fire, and a user’s observation of 
a chat message. These events have pre-programmed sce-
nario plays and quick reaction responses that are evoked 
and monitored by user in the IMPACT system. 

Sensor Data 
Some of the variables in the IMPACT system include data 
that is supplied by a sensor from the unmanned vehicles 
(UxV). UxV’s operate in a time and space domain and 
carry variable sensor performance characteristics, for ex-
ample: Airspeed, Energy Rate, Altitude, and Lati-
tude/Longitude coordinates, etc. The user is constantly 
updated with sensor information as he or she performs data 
retrieval when a chat message query is issued. The data 
representation is summarized in Table 2 below, but it is 
also composed of the time and ROI information, as well as 
the duration for the task completion, UxV status, sensor 
status, and vehicle status. 
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Time Point  

(lat/long/alt) 
 

Duration 
(time ) 

Sensor  
Characteristics 

00:00 30.471585; 
87.181458;  
650 

0 Airspeed:     300  
Energy rate: 100  
Pitch Angle: 0.5  
Sensor Type: IR 
camera 

50:00 30.446; 
87.150706; 
0 

50/100 
complete 

Airspeed:       23  
Energy rate:   98  
Pitch Angle:  0.5 
Sensor Types: 
IR camera 

Table 2: Example of UxV sensor data in the IMPACT system. 

Play 
Play is a method that the user performs to control un-
manned vehicles in the IMPACT system. It usually con-
sists of a pre-programmed number of simpler actions that 
run their course, and monitored by the user. User tasks are 
either triggered by a chat message or selected among a list 
of suggestions. 

Common attributes of the data presented in the summary 
above are space and time. Both the sensors and the IM-
PACT operators see information in the space and time do-
main. All events and tasks occur at a specific ROI and a 
point in time. Suppose, the basic problem we are consider-
ing is the state space S of time and location of all variables:  
sensor, chat (user) and environmental events. The control 
space is composed of the sequence of decisions in the task-
ing domain C. The data-task optimization problem of the 
IMPACT system can thus be states as follows: What is the 
least complex sequence of tasks that needs to take place to 
satisfy success of the outcome within a specified comple-
tion time?  

We can represent state space for the chat message varia-
ble as X = {x1, x2, x3, x4}, where x1 is time, x2 is point, x3 
is duration, and x4 is asset. Similarly, Y = {y1, y2, y3, y4} 
is the sensor data with similar arguments. Given that cur-
rently, one can control a number of UxVs, the representa-
tion of these can be written down as X1 and Y1 for UxV1. 
The events that take place during a scenario can be repre-
sented as E = {e1, e2, e3, e4} that describes time, location, 
duration and type of event. These events trigger a sequence 
of suggested tasks C that the user can do to reach a favora-
ble outcome under different levels of complexity. For the 
purpose of illustration for the variable complexity tasking, 
we propose to use three main variations of complexity set-
tings, as high, medium and low. For example: High com-
plexity is when there are 5 or more events in the tasking 
queue that require user attention, medium is when there are 

3 events that requires user attention, and low is when there 
are less than 3 events that requires user attention. 
For example, sequence of tasking decisions C by operator 
after a single event E is the following: 
 
1. Send 2 vehicles with cameras to investigate damage - 
States: X1, Y1, Y2. 
2. Send emergency vehicles to point Alpha - States: X1, 
Y2. 
3. Inspect closed roads for blockages or obstacles - States: 
X1, Y2. 
4. Continue until next message - States X2. 
 
In the occurrence of a single event, the set of rules is 
straightforward but in the occurrence of simultaneous 
events the situation becomes rather complex. Imagine the 
user’s reaction to multiple emergencies. That is why it is 
essential to be able to distinguish and prioritize a sequence 
of decisions or tasks in light of different complexity levels. 
The control problem can be formulated as follows: Opti-
mize the use of the information available in space and time 
to find such a sequence of decisions C that gives the max-
imum result (successfully completed tasks) under varying 
complexity levels (CL) low medium and high. Thus, the 
main problem of how to properly control and evaluate 
states under different complexities becomes a minimiza-
tion-maximization problem.    

Figure 2: Proposed model for decision making process 
 
The proposed IMPACT planning problem can be general-
ized to the optimal selection of tasks max C, given a mes-
sage state space X, and sensor data Y and event E, for a 
complexity level CL. The optimal scheduling and queuing 
of tasks is meant to reduce (minimize) complexity in the 
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time and space domain. Mathematically it can be described 
as:  
 

min CL (t, s)  [ C (t, s) ( X , …, X )  ( Y1,…, Yn) 
(E1, .., En)] 

 
Thus, decision trees have been realized for the IMPACT 
system by creating subcategories. The repetitive decision 
for variable complexity can be described structured in the 
decision table. For example, are there any chat messages 
and/or sensor data in the 10 minute window period that 
overlaps in the time and space domain? How does this in-
formation influence the tasking state? Can an UxV’s task-
ing be restructured to reduce the number of parallel tasks 
and updates? Thus, we need to construct the decision table 
for each case, an example is shown in Table 3. 
 
Time 
  
 
 

UxV1 UxV2 Ground 
Patrol 1 

Ground 
Patrol 2 

X1 Y1 X2 Y2 X  Y 
 

X Y 

00:10 X      X X 

00:14  X X      

00:21     X X   

Table 3: Example decision table. X and Y represent chat and 
sensors which provide data at certain time intervals in the simu-

lation. 

 
After constructing an optimized tasking table we can ob-
serve behavior of the separate UxVs and their task load in 
the time and space domain. Upon closer examination, we 
observe that two chat messages sent at time 00:10 involve 
UxV1 and one Ground Patrol 2. At time 00:14 (or 4 se-
conds later) sensor data from UxV1 and message at UxV2 
is sent during Task1. Now we can group chat messages 
data and sensor data that happens at the same time or are 
close in space. Next, we repeat the same procedure for 
consecutive Task 2. Clustering sensor and chat message 
status is the first step that can be taken towards reducing 
the operational complexity for the user and to investigate if 
such data can be used to model the control system under 
different complexity levels. Such an approach, we believe, 
will help to optimize tasking decisions and reduce com-
plexity for the human operator. During this step we can use 
existing data feeds and group tasks in the time and space 
domain.  

Some of the clustering techniques, such as k-nearest 
neighbor classifier will help us understand dynamics task 
creation. In the case of the increased complexity described 
above, when there are four vehicles involved in performing 
a task for two types of events decreases number of tasks in 
the queue. 

Conclusion 
The command and control of unmanned vehicles in the 
IMPACT system is a cognitively intensive task. Human 
operators of the system are required to multitask in an un-
certain environment, process situational data and be able to 
efficiently utilize autonomous agents under different levels 
of complexity and in multiple regions of interest. These 
requirements can often result in information overload 
which has consequences on the success of their missions.  

In this paper we have outlined initial efforts to apply ma-
chine learning techniques to automatically generate tasks 
for operators of IMPACT and have outlined a model to 
optimize the scheduling and queuing of tasks in IMPACT 
with the aim of reducing the cognitive load on human op-
erators. Future work will include restructuring existing data 
feeds in the time and space domain that can then be effec-
tively used for optimization, and machine learning purpos-
es, continue the research of applying machine learning 
techniques to automatically generate tasks in the system, 
and explore the utility of optimizing the scheduling of 
tasks in order to further reduce the cognitive load on hu-
man operators.  
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