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Abstract 
A primary advantage of learning by observation is that it 
allows non-technical experts to transfer their skills to an 
agent. However, this requires a general-purpose learning 
agent that is not biased to any specific expert, domain, or 
behavior. Existing domain-independent learning by 
observation agents generalize a significant portion of 
learning but still require some human intervention, namely, 
modeling the agent’s inputs and outputs. We describe a 
preliminary evaluation of using convolutional neural 
networks to train a learning by observation agent without 
explicitly defining the input features. Our approach uses the 
agent’s raw visual inputs at two levels of granularity to 
automatically learn input features using limited training 
data. We describe an initial evaluation with scenarios drawn 
from a simulated soccer domain.  

1. Introduction  
Learning by observation (LbO) agents are trained to 
perform specific behaviors by observing an expert 
demonstrate the behaviors. Whereas traditional methods 
for training an agent may involve computer programming 
or knowledge modeling competency, LbO only requires 
the expert to be able to perform the behavior. By shifting 
the knowledge-acquisition task from the expert to the agent 
itself, the agent is provided with the opportunity to learn 
from a variety of non-technical experts (e.g., healthcare 
professionals, military commanders). However, for an 
agent to learn an unknown behavior without any prior 
knowledge of the expert or domain, it should learn in a 
general, non-biased manner. 
 We describe our preliminary approach to overcome the 
limitations of existing general-purpose learning by 
observation agents. Specifically, we remove the need for 
input features to be manually modeled for each domain. 
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Instead, we use deep learning (DL) techniques (LeCun, 
Bengio, and Hinton 2015) to learn a feature representation 
from the agent’s raw visual inputs. Our approach trains two 
DL models: one uses the agent’s complete visual inputs 
(i.e., everything it can currently observe) while the other 
uses close-range visuals. The output of the two models are 
used to select actions to perform in response to novel 
visual input (i.e., what the agent can see as it attempts to 
replicate the expert’s behavior). 
 Our preliminary evaluation examines the feasibility of 
our approach under common learning by observation 
conditions. More specifically, these conditions include 
limited observations (i.e., due to limited expert 
availability), noisy or erroneous observations (e.g., errors 
by the expert or incorrect observations by the agent), and 
partial observability in the environment. We discuss related 
research in Section 2, followed by a description of our 
approach in Section 3. We evaluate our approach using 
scenarios defined in a simulated soccer domain in Section 
4, and conclude with a discussion of future work in Section 
5. 

2. Related Work 
Learning by observation has been used in a variety of 
domains, including poker (Rubin and Watson 2010), Tetris 
(Romdhane and Lamontagne 2008), first-person shooter 
games (Thurau, Bauckhage, and Sagerer 2003), helicopter 
control (Coates, Abbeel, and Ng 2008), robotic soccer 
(Grollman and Jenkins 2007), simulated soccer (Floyd, 
Esfandiari, and Lam 2008; Young and Hawes 2015), and 
real-time strategy games (Ontañón et al. 2007). However, 
most of these approaches were designed to learn in a single 
domain, so the agents cannot be directly transferred to new 
environments. Two domain-independent approaches for 
LbO have been proposed (Gómez-Martín et al. 2010; 
Floyd and Esfandiari 2011), both of which separate the 
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agent’s learning and reasoning from how it interacts with 
the environment. This is advantageous because the 
observation, learning, and reasoning components are 
general-purpose and are not biased to any specific expert, 
behavior, or domain. However, they both require the inputs 
(i.e., what objects the agent can observe) and outputs (i.e., 
the actions the agent can perform) to be modeled. Although 
the modeling only needs to be performed once (i.e., before 
the agent is deployed in a new environment), it still 
requires some human intervention. Floyd, Bicakci, and 
Esfandiari (2012) use a robot architecture that allows 
sensors to be dynamically added or removed, with each 
change modifying how the LbO agent represents inputs. 
While this does not require human intervention before 
deployment in a new domain, it does require human 
intervention for each new type of sensor. Our approach 
differs in that it does not require any human intervention to 
model the environment; the only requirement is that the 
domain provides a visual representation of the 
environment. 

Deep learning by observation is used for initial training 
of AlphaGo (Silver et al. 2016). However, their learning 
methodology has several limitations that may make it 
unsuitable for some LbO tasks. First, they trained their 
system with over 30 million observations. Large datasets 
may be available for established games like Go, but less 
popular games or novel behaviors may not have any 
existing observation logs. Second, such a large dataset 
requires months of training using datacenters composed of 
state-of-the-art hardware. If models need to be trained 
rapidly with limited computational resources, alternative 
learning approaches are necessary. Finally, LbO is 
performed using images of a turn-based board game. This 
minimizes the influence of object occlusion (i.e., each Go 
piece is on its own square), observation error (e.g., due to 
erroneous or delayed responses by the expert), and 
provides the learning agent with full observability.  We 
instead examine the feasibility of using DL for LbO tasks 
with limited observations and limited training time in 
complex, real-time domains. 

Our feature learning method is inspired by the deep 
reinforcement learning work of Mnih et al. (2015). They 
use raw visual inputs to learn to play a variety of Atari 
2600 games. A primary difference from our work, in 
addition to the amount of training time required to train 
their agents, is they use reinforcement learning rather than 
LbO. Reinforcement learning requires a reward function to 
be defined for each domain (e.g., based on the game score), 
thereby adding additional knowledge engineering before an 
agent can be deployed in a new environment. Deep 
reinforcement learning has also been used in simulated 
soccer (Hausknecht and Stone 2016), with the reward 
functions partially encoding the desired behavior (e.g., 
move to ball reward and kick to goal reward). Although 

reinforcement learning approaches are beneficial in that 
they do not require labeled training data, they require 
explicitly encoding reward functions which may bias the 
agents to learning specific behaviors. 

3. System Design
In real-time computer games, agents typically receive 
sensory inputs in the form of periodic messages from the 
game. These messages can include information about the 
state of the game (e.g., elapsed time, score), the agent’s 
properties (e.g., player number, team name, resource 
levels), and observable objects. The observable objects are 
particularly important for an agent’s decision making 
because they provide information about the physical state 
of the environment. For example, in a soccer game the 
observable objects would include the location of the ball, 
other players, goal nets, and boundary markers.  While 
most games explicitly define the set of observable objects 
in the game (e.g., in a user manual), deploying an agent in 
a new game still requires some level of knowledge 
engineering to model these objects (i.e., converting the 
object definition into a format that is understandable by the 
agent). 
 To remove the need for modeling the observable objects, 
our approach uses the raw visual representation of the 
environment. For example, Figure 1 shows a player’s view 
of the field in a soccer game. The left side of Figure 1 
shows the player’s entire field of vision, which we will 
refer to as the full visual representation, whereas the right 
side shows an enlarged view of the objects close to the 
player (i.e., a fixed-sized region surrounding the player), 
which we refer to as the zoomed visual representation. 
Both representations contain only a partial view of the 
environment (i.e., what is currently within the player’s 
field of vision, not the entire field), with the full 
representation giving a larger view of the field than the 
zoomed representation. The agent is not explicitly given 
information about what is contained in the images (e.g., it 
does not know that the white circle is the soccer ball). Each 
of the visual representations is stored as a RGB 
image. 

Figure 1: The full visual representation (left) and zoomed visual 
representation (right) in a simulated soccer game 
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 During observation, the learning agent records the 
expert’s current visual inputs, both the full version  
and zoomed version , as well as the action  
performed by the expert. Each input-action pair is stored in 
the corresponding observation set,  or  
(  and 

).  
 Learning is performed using two convolutional neural 
networks (CNN) (Krizhevsky, Sutskever, and Hinton 
2012), with one trained on the full observations (i.e., ) 
and a second trained on the zoomed observations (i.e., 

). These models represent the environment at two 
levels of granularity and are used in combination to 
overcome limited training data. For example, a nearby ball 
would be easier to detect in the zoomed image because 
objects appear larger, whereas the full image would be 
necessary to detect a goal net on the other side of the field. 
 We use a modification of the CaffeNet architecture (Jia 
et al. 2014): an input layer, five convolution layers, five 
pooling layers, two fully connected layers, and one 
softmax loss layer. The network takes as input the pixel 
values using all three color channels (i.e., red, green, and 
blue), resulting in  inputs. The outputs of the 
network represent the confidence in each of the possible 
actions (i.e., the confidence that each action should be 
selected in response to the input image). In the soccer 
example, three actions1 are used: kick, dash (i.e., move), 
and turn.  

Rather than training the entire network, our approach 
uses several layers that are pretrained on other data 
sources. The convolution and pooling layers are extracted 
from an existing network trained on ImageNet data (Jia et 
al. 2014), whereas the fully connected layers and softmax 
loss layer are trained using observation data. This approach 
has two primary advantages. First, the pretrained ImageNet 
layers can identify many visual features already (e.g., lines, 
curves, shapes, objects). This removes the need to relearn 
these common features. Second, the limited number of 
observations makes it impractical to train the entire 
network. Instead, the network learns how to use existing 
features to classify the observation data. Although some 
layers are pretrained, they do not bias the learning to any 
particular domain or task since the ImageNet dataset 
contains millions of images across a variety of topics (i.e., 
they are not soccer-specific images). During learning, both 
the full and zoomed models use an identical architecture 
but are trained independently. 
 During deployment, the learning agent attempts to 
replicate the expert’s behavior and uses its own visual 
input as input to the CNNs. For each input the agent 
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classification. 

receives, the CNNs output six confidence outputs (i.e., 
both networks output confidence values for all three 
actions). The maximum of the six confidence values is 
selected and its associated action is used by the agent (i.e., 
the agent performs the action in the environment). By 
using this combined approach, the agent leverages the 
strengths of each individual model during action selection. 
For example, we would expect the zoomed model to 
perform better when important objects are near the agent, 
whereas the full model should perform better when 
information from the entire field of vision is necessary. 
The primary goal of deployment is for the agent to select 
similar actions to the expert when presented with similar 
sensory inputs.  

4. Evaluation 
To evaluate the performance of our DL LbO system we 
collected data from the RoboCup Simulation League 
(RoboCup 2016). The matches were 5 vs 5 soccer games 
with each player controlled by a scripted AI agent. The 
specific agent used, Krislet, performs simple soccer 
behaviors that involve locating the ball, running towards 
the ball, and kicking the ball towards the opponent’s goal. 
In each match, a single player was used as the expert (i.e., 
its inputs and actions were recorded). The learning agent 
observed 10 full soccer matches, with each game being 10 
minutes in length. In total, this resulted in approximately 
40,000 observations for both the full and zoomed 
observation sets. However, the dataset is highly 
imbalanced (73% dash, 26% turn, 1% kick), so a balanced 
training set was created such that each action was equally 
represented (1617 total observations in each observation 
set). A balanced test set of 1029 observations was created 
by observing additional soccer matches.  
 The CNNs were trained using a base learning rate of 
0.01, polynomial rate decay with a power of 3, and 13,000 
training iterations. Table 1 shows the F1 score (i.e., 
harmonic mean of precision and recall, with 1.0 being the 
maximum possible performance) when the test set was 
used to evaluate the trained models. In addition to our 
combined approach, we also evaluated performance when 
only the full or zoomed model was used for action 
prediction.  

Table 1: Results of trained CNNs on RoboCup test data 

Model F1 Kick F1 Dash F1 Turn F1 Overall 
Full 0.84 0.56 0.59 0.67 

Zoomed 0.93 0.57 0.57 0.69 

Combined 0.92 0.61 0.61 0.71 
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 These results, while preliminary, show that the agent can 
learn a suitable model for action selection. While both the 
full and zoomed models perform reasonably well, the best 
performance was achieved when the Combined model was 
used. This demonstrates that using multiple representations 
of the visual data is preferable since these models have 
varying strengths and weaknesses. 

5. Conclusions and Future Work 
We described a preliminary study of how well a learning 
by observation agent can learn without explicitly modeling 
the objects it observes. Our approach uses an expert’s raw 
visual inputs at two levels of granularity to train a pair of 
CNNs. In our study, the agent reproduced the expert’s 
action selection decisions reasonably well in tasks drawn 
from a simulated soccer domain. This indicates that even 
with limited training observations, noisy observations, and 
partial observability, it is possible to create an agent that 
can learn an expert’s behavior without being provided an 
explicit object model. 
 Although our approach removes the need to model 
observable objects, it still requires modeling the possible 
actions. An area of future work will be to identify methods 
for learning the actions an expert performs based on 
observations. Additionally, we have only examined a 
single two-model architecture (i.e., selecting the most 
confident prediction from two CNNs). In future work we 
will examine if added benefit can be achieved by training 
additional models (e.g., other levels of granularity) or by 
modifying how the model outputs are combined (e.g., 
inducing a decision tree from their output). Our 
preliminary evaluation has only measured the performance 
from a single experiment from a single expert in a single 
domain. We plan to perform a more thorough evaluation of 
the learning performance involving numerous experimental 
trails. This will not only allow us to show the benefit of our 
approach, but it will also allow for a thorough comparison 
with other LbO agents that learn in RoboCup (Floyd, 
Esfandiari, and Lam 2008; Young and Hawes 2015). To 
determine whether our approach is truly domain-
independent, we plan to conduct additional studies with 
different experts in different environments. Finally, we 
plan to examine how this approach can be extended to 
learn from state-based experts since the RoboCup expert 
we examined is purely reactive (i.e., the expert’s action is 
based entirely on its current visual inputs). 
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