

Using Deep Learning to Automate Feature Modeling
in Learning by Observation: A Preliminary Study

Michael W. Floyd,1 JT Turner,1 David W. Aha2
1Knexus Research Corporation; Springfield, Virginia; USA

2Navy Center for Applied Research in AI; Naval Research Laboratory (Code 5514); Washington, DC; USA
{michael.floyd, jt.turner}@knexusresearch.com | david.aha@nrl.navy.mil

Abstract
A primary advantage of learning by observation is that it
allows non-technical experts to transfer their skills to an
agent. However, this requires a general-purpose learning
agent that is not biased to any specific expert, domain, or
behavior. Existing domain-independent learning by
observation agents generalize a significant portion of
learning but still require some human intervention, namely,
modeling the agent’s inputs and outputs. We describe a
preliminary evaluation of using convolutional neural
networks to train a learning by observation agent without
explicitly defining the input features. Our approach uses the
agent’s raw visual inputs at two levels of granularity to
automatically learn input features using limited training
data. We describe an initial evaluation with scenarios drawn
from a simulated soccer domain.

1. Introduction
Learning by observation (LbO) agents are trained to
perform specific behaviors by observing an expert
demonstrate the behaviors. Whereas traditional methods
for training an agent may involve computer programming
or knowledge modeling competency, LbO only requires
the expert to be able to perform the behavior. By shifting
the knowledge-acquisition task from the expert to the agent
itself, the agent is provided with the opportunity to learn
from a variety of non-technical experts (e.g., healthcare
professionals, military commanders). However, for an
agent to learn an unknown behavior without any prior
knowledge of the expert or domain, it should learn in a
general, non-biased manner.
 We describe our preliminary approach to overcome the
limitations of existing general-purpose learning by
observation agents. Specifically, we remove the need for
input features to be manually modeled for each domain.

Copyright © 2017, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Instead, we use deep learning (DL) techniques (LeCun,
Bengio, and Hinton 2015) to learn a feature representation
from the agent’s raw visual inputs. Our approach trains two
DL models: one uses the agent’s complete visual inputs
(i.e., everything it can currently observe) while the other
uses close-range visuals. The output of the two models are
used to select actions to perform in response to novel
visual input (i.e., what the agent can see as it attempts to
replicate the expert’s behavior).
 Our preliminary evaluation examines the feasibility of
our approach under common learning by observation
conditions. More specifically, these conditions include
limited observations (i.e., due to limited expert
availability), noisy or erroneous observations (e.g., errors
by the expert or incorrect observations by the agent), and
partial observability in the environment. We discuss related
research in Section 2, followed by a description of our
approach in Section 3. We evaluate our approach using
scenarios defined in a simulated soccer domain in Section
4, and conclude with a discussion of future work in Section
5.

2. Related Work
Learning by observation has been used in a variety of
domains, including poker (Rubin and Watson 2010), Tetris
(Romdhane and Lamontagne 2008), first-person shooter
games (Thurau, Bauckhage, and Sagerer 2003), helicopter
control (Coates, Abbeel, and Ng 2008), robotic soccer
(Grollman and Jenkins 2007), simulated soccer (Floyd,
Esfandiari, and Lam 2008; Young and Hawes 2015), and
real-time strategy games (Ontañón et al. 2007). However,
most of these approaches were designed to learn in a single
domain, so the agents cannot be directly transferred to new
environments. Two domain-independent approaches for
LbO have been proposed (Gómez-Martín et al. 2010;
Floyd and Esfandiari 2011), both of which separate the

The AAAI 2017 Spring Symposium on
Learning from Observation of Humans

Technical Report SS-17-06

494

agent’s learning and reasoning from how it interacts with
the environment. This is advantageous because the
observation, learning, and reasoning components are
general-purpose and are not biased to any specific expert,
behavior, or domain. However, they both require the inputs
(i.e., what objects the agent can observe) and outputs (i.e.,
the actions the agent can perform) to be modeled. Although
the modeling only needs to be performed once (i.e., before
the agent is deployed in a new environment), it still
requires some human intervention. Floyd, Bicakci, and
Esfandiari (2012) use a robot architecture that allows
sensors to be dynamically added or removed, with each
change modifying how the LbO agent represents inputs.
While this does not require human intervention before
deployment in a new domain, it does require human
intervention for each new type of sensor. Our approach
differs in that it does not require any human intervention to
model the environment; the only requirement is that the
domain provides a visual representation of the
environment.

Deep learning by observation is used for initial training
of AlphaGo (Silver et al. 2016). However, their learning
methodology has several limitations that may make it
unsuitable for some LbO tasks. First, they trained their
system with over 30 million observations. Large datasets
may be available for established games like Go, but less
popular games or novel behaviors may not have any
existing observation logs. Second, such a large dataset
requires months of training using datacenters composed of
state-of-the-art hardware. If models need to be trained
rapidly with limited computational resources, alternative
learning approaches are necessary. Finally, LbO is
performed using images of a turn-based board game. This
minimizes the influence of object occlusion (i.e., each Go
piece is on its own square), observation error (e.g., due to
erroneous or delayed responses by the expert), and
provides the learning agent with full observability. We
instead examine the feasibility of using DL for LbO tasks
with limited observations and limited training time in
complex, real-time domains.

Our feature learning method is inspired by the deep
reinforcement learning work of Mnih et al. (2015). They
use raw visual inputs to learn to play a variety of Atari
2600 games. A primary difference from our work, in
addition to the amount of training time required to train
their agents, is they use reinforcement learning rather than
LbO. Reinforcement learning requires a reward function to
be defined for each domain (e.g., based on the game score),
thereby adding additional knowledge engineering before an
agent can be deployed in a new environment. Deep
reinforcement learning has also been used in simulated
soccer (Hausknecht and Stone 2016), with the reward
functions partially encoding the desired behavior (e.g.,
move to ball reward and kick to goal reward). Although

reinforcement learning approaches are beneficial in that
they do not require labeled training data, they require
explicitly encoding reward functions which may bias the
agents to learning specific behaviors.

3. System Design
In real-time computer games, agents typically receive
sensory inputs in the form of periodic messages from the
game. These messages can include information about the
state of the game (e.g., elapsed time, score), the agent’s
properties (e.g., player number, team name, resource
levels), and observable objects. The observable objects are
particularly important for an agent’s decision making
because they provide information about the physical state
of the environment. For example, in a soccer game the
observable objects would include the location of the ball,
other players, goal nets, and boundary markers. While
most games explicitly define the set of observable objects
in the game (e.g., in a user manual), deploying an agent in
a new game still requires some level of knowledge
engineering to model these objects (i.e., converting the
object definition into a format that is understandable by the
agent).
 To remove the need for modeling the observable objects,
our approach uses the raw visual representation of the
environment. For example, Figure 1 shows a player’s view
of the field in a soccer game. The left side of Figure 1
shows the player’s entire field of vision, which we will
refer to as the full visual representation, whereas the right
side shows an enlarged view of the objects close to the
player (i.e., a fixed-sized region surrounding the player),
which we refer to as the zoomed visual representation.
Both representations contain only a partial view of the
environment (i.e., what is currently within the player’s
field of vision, not the entire field), with the full
representation giving a larger view of the field than the
zoomed representation. The agent is not explicitly given
information about what is contained in the images (e.g., it
does not know that the white circle is the soccer ball). Each
of the visual representations is stored as a RGB
image.

Figure 1: The full visual representation (left) and zoomed visual
representation (right) in a simulated soccer game

495

 During observation, the learning agent records the
expert’s current visual inputs, both the full version
and zoomed version , as well as the action
performed by the expert. Each input-action pair is stored in
the corresponding observation set, or
(and

).
 Learning is performed using two convolutional neural
networks (CNN) (Krizhevsky, Sutskever, and Hinton
2012), with one trained on the full observations (i.e.,)
and a second trained on the zoomed observations (i.e.,

). These models represent the environment at two
levels of granularity and are used in combination to
overcome limited training data. For example, a nearby ball
would be easier to detect in the zoomed image because
objects appear larger, whereas the full image would be
necessary to detect a goal net on the other side of the field.
 We use a modification of the CaffeNet architecture (Jia
et al. 2014): an input layer, five convolution layers, five
pooling layers, two fully connected layers, and one
softmax loss layer. The network takes as input the pixel
values using all three color channels (i.e., red, green, and
blue), resulting in inputs. The outputs of the
network represent the confidence in each of the possible
actions (i.e., the confidence that each action should be
selected in response to the input image). In the soccer
example, three actions1 are used: kick, dash (i.e., move),
and turn.

Rather than training the entire network, our approach
uses several layers that are pretrained on other data
sources. The convolution and pooling layers are extracted
from an existing network trained on ImageNet data (Jia et
al. 2014), whereas the fully connected layers and softmax
loss layer are trained using observation data. This approach
has two primary advantages. First, the pretrained ImageNet
layers can identify many visual features already (e.g., lines,
curves, shapes, objects). This removes the need to relearn
these common features. Second, the limited number of
observations makes it impractical to train the entire
network. Instead, the network learns how to use existing
features to classify the observation data. Although some
layers are pretrained, they do not bias the learning to any
particular domain or task since the ImageNet dataset
contains millions of images across a variety of topics (i.e.,
they are not soccer-specific images). During learning, both
the full and zoomed models use an identical architecture
but are trained independently.
 During deployment, the learning agent attempts to
replicate the expert’s behavior and uses its own visual
input as input to the CNNs. For each input the agent

1 Soccer actions can also be parameterized (e.g., how hard to kick, turn
direction) but for simplicity our initial evaluation only examines action
classification.

receives, the CNNs output six confidence outputs (i.e.,
both networks output confidence values for all three
actions). The maximum of the six confidence values is
selected and its associated action is used by the agent (i.e.,
the agent performs the action in the environment). By
using this combined approach, the agent leverages the
strengths of each individual model during action selection.
For example, we would expect the zoomed model to
perform better when important objects are near the agent,
whereas the full model should perform better when
information from the entire field of vision is necessary.
The primary goal of deployment is for the agent to select
similar actions to the expert when presented with similar
sensory inputs.

4. Evaluation
To evaluate the performance of our DL LbO system we
collected data from the RoboCup Simulation League
(RoboCup 2016). The matches were 5 vs 5 soccer games
with each player controlled by a scripted AI agent. The
specific agent used, Krislet, performs simple soccer
behaviors that involve locating the ball, running towards
the ball, and kicking the ball towards the opponent’s goal.
In each match, a single player was used as the expert (i.e.,
its inputs and actions were recorded). The learning agent
observed 10 full soccer matches, with each game being 10
minutes in length. In total, this resulted in approximately
40,000 observations for both the full and zoomed
observation sets. However, the dataset is highly
imbalanced (73% dash, 26% turn, 1% kick), so a balanced
training set was created such that each action was equally
represented (1617 total observations in each observation
set). A balanced test set of 1029 observations was created
by observing additional soccer matches.
 The CNNs were trained using a base learning rate of
0.01, polynomial rate decay with a power of 3, and 13,000
training iterations. Table 1 shows the F1 score (i.e.,
harmonic mean of precision and recall, with 1.0 being the
maximum possible performance) when the test set was
used to evaluate the trained models. In addition to our
combined approach, we also evaluated performance when
only the full or zoomed model was used for action
prediction.

Table 1: Results of trained CNNs on RoboCup test data

Model F1 Kick F1 Dash F1 Turn F1 Overall
Full 0.84 0.56 0.59 0.67

Zoomed 0.93 0.57 0.57 0.69

Combined 0.92 0.61 0.61 0.71

496

 These results, while preliminary, show that the agent can
learn a suitable model for action selection. While both the
full and zoomed models perform reasonably well, the best
performance was achieved when the Combined model was
used. This demonstrates that using multiple representations
of the visual data is preferable since these models have
varying strengths and weaknesses.

5. Conclusions and Future Work
We described a preliminary study of how well a learning
by observation agent can learn without explicitly modeling
the objects it observes. Our approach uses an expert’s raw
visual inputs at two levels of granularity to train a pair of
CNNs. In our study, the agent reproduced the expert’s
action selection decisions reasonably well in tasks drawn
from a simulated soccer domain. This indicates that even
with limited training observations, noisy observations, and
partial observability, it is possible to create an agent that
can learn an expert’s behavior without being provided an
explicit object model.
 Although our approach removes the need to model
observable objects, it still requires modeling the possible
actions. An area of future work will be to identify methods
for learning the actions an expert performs based on
observations. Additionally, we have only examined a
single two-model architecture (i.e., selecting the most
confident prediction from two CNNs). In future work we
will examine if added benefit can be achieved by training
additional models (e.g., other levels of granularity) or by
modifying how the model outputs are combined (e.g.,
inducing a decision tree from their output). Our
preliminary evaluation has only measured the performance
from a single experiment from a single expert in a single
domain. We plan to perform a more thorough evaluation of
the learning performance involving numerous experimental
trails. This will not only allow us to show the benefit of our
approach, but it will also allow for a thorough comparison
with other LbO agents that learn in RoboCup (Floyd,
Esfandiari, and Lam 2008; Young and Hawes 2015). To
determine whether our approach is truly domain-
independent, we plan to conduct additional studies with
different experts in different environments. Finally, we
plan to examine how this approach can be extended to
learn from state-based experts since the RoboCup expert
we examined is purely reactive (i.e., the expert’s action is
based entirely on its current visual inputs).

References
Coates, A., Abbeel, P., and Ng, A. Y. 2008. Learning for control
from multiple demonstrations. In Proceedings of the 25th
International Conference on Machine Learning, 144-151.
Helsinki, Finland: ACM.

Floyd, M. W., Bicakci, M. V. and Esfandiari, B. 2012. Case-
based learning by observation in robotics using a dynamic case
representation. In Proceedings of the 25th International Florida
Artificial Intelligence Research Society Conference, 323-328.
Marco Island, USA: AAAI Press.
Floyd, M. W., and Esfandiari, B. 2011. A case-based reasoning
framework for developing agents using learning by observation.
In Proceedings of the 23rd IEEE International Conference on
Tools with Artificial Intelligence, 531-538. Boca Raton, USA:
IEEE Computer Society Press.
Floyd, M. W., Esfandiari, B., and Lam, K. 2008. A case-based
reasoning approach to imitating RoboCup players. In Proceedings
of the 21st International Florida Artificial Intelligence Research
Society Conference, 251-256. Coconut Grove, USA: AAAI Press.
Gómez-Martín, P. P., Llansó, D., Gómez-Martín, M. A., Ontañón,
S., and Ram, A. 2010. MMPM: A generic platform for case-
based planning research. In Proceedings of the International
Conference on Case-Based Reasoning Workshops, 45-54.
Alessandria, Italy.
Grollman, D. H., and Jenkins, O. C. 2007. Learning robot soccer
skills from demonstration. In Proceedings of the IEEE
International Conference on Development and Learning, 276-
281. London, UK: IEEE Press.
Hausknecht, M., and Stone, P. (2016) Deep reinforcement
learning in parameterized action space. In Proceedings of the
International Conference on Learning Representations. San Juan,
Puerto Rico.
Jia, Y., Shelhamer, E., Donahue, J., Karayev, S., Long, J.,
Girshick, R. B., Guadarrama, S., and Darrell, T. 2014. Caffe:
Convolutional architecture for fast feature embedding. In
Proceedings of the ACM International Conference on
Multimedia, 675-678. Orlando, USA: ACM.
LeCun, Y., Bengio, Y. and Hinton, G. E. 2015. Deep learning.
Nature, 521, 436-444.
Krizhevsky, A., Sutskever, I., and Hinton, G. E. 2012.
Classification with deep convolutional neural networks. In
Proceedings of the 26th Annual Conference on Neural
Information Processing Systems, 1106-1114. Lake Tahoe, USA.
Mnih, V., Kavukcuoglu, K., Silver, D., Rusu, A. A., Veness, J.,
Bellemare, M. G., Graves, A., Riedmiller, M., Fidjeland, A. K.,
Ostrovski, G., Petersen, S., Beattie, C., Sadik, A., Antonoglou, I.,
King, H., Kumaran, D., Wierstra, D., Legg, S., and Hassabis, D.
2015. Human-level control through deep reinforcement learning.
Nature, 518, 529-533.
Ontañón, S., Mishra, K., Sugandh, N., and Ram, A. 2007. Case-
based planning and execution for real-time strategy games. In
Proceedings of the 7th International Conference on Case-Based
Reasoning, 164-178. Belfast, UK: Springer.
RoboCup. 2016. RoboCup Official Site. Retrieved from
[http://www.robocup.org]
Romdhane, H., and Lamontagne, L. 2008. Forgetting reinforced
cases. In Proceedings of the 9th European Conference on Case-
Based Reasoning, 474-486. Trier, Germany: Springer.
Rubin, J., and Watson, I. 2010. Similarity-based retrieval and
solution re-use policies in the game of Texas Hold’em. In
Proceedings of the 18th International Conference on Case-Based
Reasoning, 465-479. Alessandria, Italy: Springer.
Silver, D., Huang, A., Maddison, C. J., Guez, A., Sifre, L., van
den Driessche, G., Schrittwieser, J., Antonoglou, I.,
Panneershelvam, V., Lanctot, M., Dieleman, S., Grewe, D.,

497

Nham, J., Kalchbrenner, N., Sutskever, I., Lillicrap, T., Leach,
M., Kavukcuoglu, K., Graepel, T., and Hassabis, D. 2016.
Mastering the game of Go with deep neural networks and tree
search. Nature, 529, 484-503.
Thurau, C., Bauckhage, C., and Sagerer, G. 2003. Combining self
organizing maps and multilayer perceptrons to learn bot-
behaviour for a commercial game. In Proceedings of the 4th
International Conference on Intelligent Games and Simulation,
119-123. London, UK: EUROSIS.
Young, J., and Hawes, N. 2015. Learning by observation using
qualitative spatial relations. In Proceedings of the International
Conference on Autonomous Agents and Multiagent Systems, 745-
751. Istanbul, Turkey: ACM.

498

