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Abstract
Many computational models of visual attention use image
features and machine learning techniques to predict eye fixa-
tion locations as saliency maps. Recently, the success of Deep
Convolutional Neural Networks (DCNNs) for object recog-
nition has opened a new avenue for computational models
of visual attention due to the tight link between visual atten-
tion and object recognition. In this paper, we show that using
features from DCNNs for object recognition we can make
predictions that enrich the information provided by saliency
models. Namely, the consistency of the eye fixations among
subjects, i.e. the agreement between the eye fixation locations
of different subjects, can be predicted.

Introduction
This paper is a shortened version of our earlier work (Volok-
itin, Gygli, and Boix 2016).

Gaze shifting allocates computational resources by select-
ing a subset of the visual input to be processed, c.f. (Unger-
leider 2000). Computational models of visual attention pro-
vide a reductionist view on the principles guiding attention.
These models are used both to articulate new hypotheses and
to challenge the existing ones. Machine learning techniques
that can make predictions directly from the image have facil-
itated the study of visual attention in natural images. Also,
these models have found numerous applications in visual de-
sign, image compression, and some computer vision tasks
such as object tracking.

Many computational models of attention predict the im-
age location of eye fixations, which is represented with the
so called saliency map. The seminal paper by Koch and Ull-
man introduced the first computational model for saliency
prediction (Koch and Ullman 1985). This model is rooted
in the feature integration theory, that pioneered the charac-
terisation of many of the behavioural and physiological ob-
served phenomena of visual attention (Treisman and Gelade
1980). Since then, a rich variety of models have been intro-
duced to extract the saliency map, e.g. (Harel, Koch, and
Perona 2007; Itti, Koch, and Niebur 1998; Judd et al. 2009;
Kienzle et al. 2006; Walther and Koch 2006).

Some authors stressed the need to predict properties of
the eye fixations beyond the saliency map to study different
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phenomena of visual attention and to allow for new applica-
tions, e.g. (Jiang et al. 2015; Le Meur, Baccino, and Roumy
2011; Mathe and Sminchisescu 2013). Since visual attention
is strongly linked to object recognition, the advent of near-
human performing object recognition techniques based on
DCNNs opens a new set of possibilities for models of visual
attention. In this paper, we analyze two ways to augment
the eye fixation location information delivered by saliency
models by using features extracted from DCNNs trained for
object recognition.

We show that the consistency of eye fixation locations
among subjects can be predicted from features based on ob-
ject recognition. In Fig. 1 we show images with different de-
grees of consistency among subjects, that illustrate that eye
fixation consistency varies depending on the image. There
is a plethora of results in the literature showing that consis-
tency varies depending on the group the subjects belong to.
There are marked differences between subjects with autism
spectrum disorders and those without (Dalton et al. 2005;
Klin et al. 2002), between subjects from different cul-
tures (Chua, Boland, and Nisbett 2005), and between fast
and slow readers (Kliegl, Nuthmann, and Engbert 2006).
Yet, the causes of eye fixation inconsistencies among in-
dividual subjects rather than for groups may be difficult to
explain in natural images, especially because natural images
are not designed to isolate a specific effect.

The model we introduce to predict the eye fixation consis-
tency substantially improves the performance of a previous
attempt (Le Meur, Baccino, and Roumy 2011), and it shows
that the eye fixation consistency depends on the object cate-
gories present in the image.

Finally, our results reveal that, like memorability (Isola et
al. 2011) and interestingness (Gygli et al. 2013), eye fixa-
tion consistency is an attribute of natural images that can be
predicted.

Predicting the Eye Fixations Consistency

Datasets We use the MIT (Judd et al. 2009) dataset, which
includes 1003 images with everyday indoor and outdoor
scenes. All images are presented to 15 subjects for 3 sec-
onds. This dataset is a standard benchmark to evaluate the
prediction of eye fixation locations in natural images.
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Figure 1: Fixations from individual subjects. (a) the raw image, (b) averaged fixation map, (c) - (e) individual fixations from
subjects. The top row shows an image where fixations are highly consistent, and the bottom shows one where the fixations are
inconsistent.

Eye Fixation Maps An eye fixation map is constructed for
each subject by taking the set of locations where the eyes are
fixated for a certain period of time (conventionally taken to
be 50ms). The fixation map is a probability distribution over
salient locations in an image, and ideally would be computed
by taking an average over infinite subjects. In practice, the
eye fixation map is computed by summing eye fixation maps
of the individual subjects (which are binary images, with
ones at fixation locations and zeroes elsewhere). The result
is smoothed with a Gaussian of width dependent on the eye
tracking set up (1 degree of visual angle in the MIT dataset).
Finally, the map is normalised to sum to one.

To study viewing patterns in an image, we estimate the
eye fixation consistency among subjects, i.e. the amount of
inter-subject variability in viewing the image. To do this, we
first measure the true eye fixation consistency given the eye
fixations of individual subjects, adapting a procedure used
in (Torralba et al. 2006), which we introduce next.

Metric of the Eye Fixation Consistency The eye fixation
consistency metric tests whether the fixation map computed
from a subset of subjects can predict the fixation map com-
puted from the rest of the subjects. Let O be the set of all
subjects (e.g. 15 in MIT dataset), and H be the subset of K
subjects held out for testing. We compute two eye fixation
maps: MH from H, and MO\H from O \ H (the remaining
15−K subjects). We define the consistency score to be the
score of MH in predicting MO\H using any of the standard
metrics for evaluating saliency prediction algorithms (intro-
duced in the section below). To be consistent in our evalua-
tion of consistency, MH is treated as the saliency map, and
MO\H as the eye fixation map, as it is computed from more
subjects than MH. We set K = 7.

Metric of the Saliency Map Accuracy Since there is no
consensus among researchers about which metric best cap-
tures the accuracy of the saliency map (c.f. (Riche et al.
2013)), we follow the lead of (Judd, Durand, and Torralba
2012) and report 3 metrics. Now we briefly define the met-

rics used in this paper, and refer the reader to (Riche et al.
2013) for a more complete treatment. Under all of these met-
rics a higher score indicates better performance. Below, MF

is the map of eye fixation map (ground truth) and MS is the
(predicted) saliency map:
- Similarity (Sim). The similarity metric is also known as
the histogram intersection metric, and it is defined as S =∑

x min(MF (x),MS(x)).
- Cross Correlation (CC). This metric quantifies to what ex-
tent there is a linear relationship between the two maps. It
is defined: CC = cov(MF ,MS)/(σMF

σMS
), where σM is

the standard deviation of the map M .
-Shuffled Area under the Curve (sAUC). The saliency map is
treated as a binary classifier to separate positive from nega-
tive samples at various intensity thresholds. It is called shuf-
fled because the points of the saliency map are sampled from
fixations on other images to discount the effect of center
bias. This metric can take values between 0.5 and 1. Al-
though the previous two metrics are symmetric, meaning the
two maps are interchangeable, this one is not.

Computational Model
To predict consistency we train a regressor between the fea-
tures extracted from the image and the response variable.
The features and learner are the same same for both appli-
cations. We use a Support Vector Regressor (Vapnik 1995)
with the χ2 kernel. We introduce several image features to
test the hypothesis that consistency can be predicted from
the spatial distribution and the categories of the objects in
the image. The splits are done taking randomly 60% of im-
ages for training and the rest for testing. The learning param-
eters are set with a 10 fold cross-validation using LIBSVM
to determine the cost C (range 2−4 to 26) and ε (2−8 to 2−1)
of the ε-SVR.

Deep Convolutional Neural Networks To capture the
spatial distribution and category of the objects in the im-
age, we use features taken from the layers of a DCNN. A
DCNN is a feedforward neural network with constrained
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Figure 2: Evaluation of the Prediction of the Eye Fixations Consistency. The correlation between the predicted consistency of
the eye fixation and the true consistency is evaluated using different input features (including each of the 7 layers of the DCNN).
The metric used to evaluate the consistency uses K = 7 subjects and is averaged over S = 15 random splits and is based on:
(a) sAUC, (b) CC, and (c) Sim. The results show a similar trend with different values of K

connections between layers, that take the form of con-
volutions or spatial pooling, besides other possible non-
linearities, e.g. (LeCun et al. 1990; Krizhevsky, Sutskever,
and Hinton 2012; Pinto et al. 2009). We use the DCNN
called AlexNet (Krizhevsky, Sutskever, and Hinton 2012)
with trained parameters in ImageNet, which achieved strik-
ing results in the task of object recognition. It consists of
eight layers, the last three of which are fully connected.

Let yl be a two-dimensional matrix that contains the re-
sponses of the neurons of the DCNN at the layer l. yl has
size sl × dl, that varies depending on the layer. The first di-
mension of the table indexes the spatial location of the cen-
ter of the neuron’s receptive field, and the second dimension
indexes the patterns to which the neuron is tuned. The re-
sponse of a neuron, yl[i][j], has a high response when pattern
j is present at location i. Neural responses at higher layers
in the network encode more meaningful semantic represen-
tations than at lower layers (Zeiler and Fergus 2014), but the
spatial resolution at the last layers is lower than at the first
layers.

The neural responses from the top of each layer yl are
used as features.

Spatial Distribution of Objects We introduce two differ-
ent features to capture the spatial distribution of the objects
without describing their object categories. The first feature
is based on the DCNNs previously introduced. We take the
neural responses in a layer, yl, and convert them into a fea-
ture that has one response for each location that corresponds
to the presence of a pattern or object detected by the CNN
(it has dimensions sl × 1). To do so, we discard information
about which pattern is present at a certain location and sim-
ply take the highest response among the patterns. Thus, the
image feature is fl[i] = maxj yl[i][j]. This corresponds to
max pooling over the pattern responses.

A second feature we introduce is based on the objectness,
or the likelihood that a region of an image contains an ob-
ject of any class (Alexe, Deselaers, and Ferrari 2012). Ob-
jectness is based on detecting properties that are general for

any object, such as the closedness of boundaries. We use the
code provided by (Cheng et al. 2014) to generate bounding
boxes ranked by the probability that they contain an object.
We take the top 500 boxes to create a heatmap. The intensity
of each pixel in this heatmap is proportional to the number
of times it has been included in an objectness proposal We
divide the heatmap into sub-regions at four different levels
of resolution and evaluate the L2 energy in each sub-region,
creating a spatial pyramid (Lazebnik, Schmid, and Ponce
2006). This feature gives an indication of how objects are
located in the image. We call this feature PyrObj.

Object Categories For each not fully connected layer of
the DCNN, we construct a feature with only semantic in-
formation analogously to the feature with only spatial in-
formation. This image feature is fl[j] = maxi yl[i][j], and
is of dimension 1 × dl. This corresponds to max pooling
over space. The last layers of the DCNN already capture ob-
ject categories, as they transform the neural responses to ob-
ject classification scores that contain little to no information
about the location of the objects in the image.

Gist of the scene This descriptor of length 512, introduced
by (Oliva and Torralba 2001), gives a representation of the
structure of real world scenes where local object information
is discarded. Scenes belonging to the same semantic cate-
gories (such as streets, highways and coasts) have similar
GIST descriptors.

Predicting the Eye Fixations Consistency
We now evaluate the performance of the prediction of the
eye fixation consistency. We report the Spearman correlation
between the true and predicted values in Fig. 2.

The results show that the PyrObj objectness feature can
partially describe the object distribution and performs sim-
ilarly to the spatial features of the DCNN. In general, Gist
performs better than PyrObj, on par with the best spatial fea-
ture. Interestingly, we see that the semantic feature is much
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more informative for predicting consistency than the spa-
tial feature, which suggests that semantic information has a
greater contribution to predicting consistency than informa-
tion about the distribution of the objects. Subsequent layers
outperform the preceding ones, except of the last prob layer,
which performs slightly worse. This could happen because
the prob layer has lost all spatial information. Finally, note
that the best performing feature is the whole layer of the
DCNN, achieving a ρ of around 0.5.

The previous work that also used machine learning to pre-
dict the eye fixation consistency (Le Meur, Baccino, and
Roumy 2011), reports a Pearson correlation of 0.27 on a
set of 27 images they have selected at hand, which shows
the challenge of this task. Our results substantially improve
over previous work, mainly because we use features based
on object recognition. Our results reveal that the eye fixation
consistency among subjects is an attribute of natural images
that can be predicted.

Conclusions
We used machine learning techniques and automatic feature
extraction to predict the eye fixation consistency among sub-
jects in natural images. This was possible due to the good
performance of DCNNs for object recognition, since eye fix-
ations locations are strongly related to the object categories.
Our results showed that the eye fixation consistency among
subjects is an attribute of natural images that can be pre-
dicted from object categories. We expect that all these results
allow for numerous applications in computer vision and vi-
sual design.
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