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Abstract 
Incorporating contextual cues and contextual understanding 
into the development of an autonomous robot can advance 
the robot’s decision-making capabilities, but may also help 
improve the human’s understanding of those decisions to 
improve team effectiveness. While a number of these bene-
fits are discussed below, there are just as many, if not more, 
challenges associated with developing context-driven au-
tonomy. These benefits and challenges are discussed below 
to support ongoing and future human-robot teaming efforts.  

Overview: Human-Robot Teams   
As the future of human-robot interaction moves towards 
interdependent teaming initiatives, the integration of the 
appropriate decision-making processes is an essential part 
of the design and development of an autonomous robot. 
The complexity of these decisions has moved beyond that 
of the simple decision trees of preprogrammed systems to 
inference and planning algorithms using models acquired 
from real-world data. But it is not enough to only focus on 
the development of a world model or the underlying algo-
rithms to allow the robot to make highly-complex deci-
sions using these models. Within the structure of interde-
pendent teams, it is important to recognize there is a hu-
man team member that interprets the actions and behaviors 
of the robot. The human situation awareness, separate from 
the actual system design capabilities, is often what drives 
expectations for the interaction. If the expectations do not 
match the robot’s actions, there can be a degradation of 
trust that can directly impact the effectiveness of the team 
(Schaefer et al., in press). Therefore, the problem in devel-
oping the next generation of human-robot teams is two-
fold: 1) advancement of basic inference and planning algo-
rithms require the capability to support complex decision 
processes within a human-robot team, and 2) advancement 
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of algorithms for shared situation awareness may need to 
incorporate agent-based transparency to engender trust in 
the team.  
 It is reasonable to assume that for the near-future, hu-
mans and robots faced with the same circumstances will 
not make the same decisions, even under the same set of 
apparent constraints, nor will they necessarily even have 
the same consequences resulting from those decisions. 
Therefore, it is imperative to develop the underlying proto-
cols for addressing this divergence. The U.S. Defense Sci-
ence Board’s recent report (2016), Summer Study on Au-
tonomy, identified six barriers to human trust in autono-
mous systems, with ‘low observability, predictability, di-
rectability, and auditability’ as well as ‘low mutual under-
standing of common goals’ being among the key issues (p. 
15). We propose that integrating aspects of context into 
inference and planning may help improve not only the un-
derlying decision-making processes, but also assist in 
communicating intent reasoning so that actions better 
match human expectations (i.e., increased transparency; 
Chen et al., in press). Here, we briefly review prior re-
search into the integration of context into robot autonomy 
in order to identify potential benefits and challenges in 
developing context-driven robot teaming, and suggest di-
rections for future research based on these observations. 

Potential Benefits of Context for Teaming 
As with human team members, it is crucial that a robot has 
the ability to infer, represent, and reason about the world in 
order to develop shared situation awareness and effectively 
communicate intent. Even for a single robot carrying out a 
higher-level task (e.g., moving through an indoor environ-
ment), spatial and temporal contextual cues have been 
identified as significantly improving the performance of 
many components of a robot system, including perception, 
inference, and planning. By incorporating these contextual 
elements, the robot’s reasoning process is more easily un-
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derstood by and communicated to the human team mem-
bers.  

For example, robot perception algorithms can be used to 
develop a shared, common understanding of the world by 
processing sensor inputs to form representations of the 
static and dynamic environment (Mitchell & Bornstein, 
2012). Semantic labeling of that environment can provide 
higher level reasoning allowing the robot more fine-
grained classification of the world to improve decision-
making. But every environment is unique, and dynamic 
environments are always changing. Therefore, contextual 
information, such as the type of room being examined, 
could be used to aid in the spatial-semantic recognition to 
predict objects that are likely to be present (Meger et al., 
2008). Thus, incorporating context into a semantic map-
ping and labeling can significantly improve the speed and 
scale of the task, allowing a robot to label scenes over tens 
of kilometers in real time (Posner, Cummins, & Newman, 
2009).  

Similarly, contextual cues in a planning task can help 
prioritize the search direction and prune parts of the state 
space. For example, environmental features, such as terrain 
or weather, can inform path planning and replanning deci-
sions related to potential hazards, levels of risk, and vehi-
cle capabilities (Evers et al., 2014; Lin & Goodrich; 2009). 
But understanding how the models that support inference 
and planning should account for these elements is only one 
part of teaming effort. The robot’s spatial reasoning behav-
iors are an emergent feature of the interaction between the 
robot and the environment which informs the mental model 
of the human team member (Rauh et al., 2005). Identifica-
tion and integration of appropriate contextual cues in the 
robot’s intelligence architecture is important, because any 
incongruity between the human’s mental model of the ro-
bot’s spatial solution and the actual behavior can impact 
shared understanding and trust (Perelman, Mueller, & 
Schaefer, 2017).  

As operational needs for human-robot teams increase in 
complexity, uncertainty, and dynamic mission replanning, 
appropriate bi-directional communication becomes an es-
sential part of the teaming effort. One area of research is 
looking at natural language communication, of which tem-
poral context could provide some benefits (Kübler et al., 
2010). With the correct temporal-causal context, even a 
simple action or utterance can communicate intent (Krui-
jeff & Brenner, 2007). This temporal context ties directly 
into the task or mission specific goals and the human com-
ponent of the human-robot team. Considerable effort has 
been put into inferring and using human activity recogni-
tion as contextual cues that a robot can use to help make 
decisions. For example, the architecture described by Fong 
et al. (2006) specifically included a context manager to 
maintain a history of task status and execution, agent activ-
ities, agent dialogue, and others that could be summarized 
and used within a human-robot interaction task.  

There are a number of benefits to integrating multiple 
contextual elements into the models used by an autono-
mous robot. Some of these include environmental, spatial, 
and temporal contexts which are influenced by mission-
specific tasks and team interaction goals. Overall, the main 
benefit of integrating contextual elements into autonomy 
design is the advanced communication of the robot’s rea-
soning process for making a set of decisions.    

Challenges with Incorporating Context in  
Inference and Planning Models 

But along with the multiple potential benefits comes a 
number of challenges with the process of incorporating 
context into the inferences and planning models. First, it is 
important to recognize that context is fundamentally an 
abstraction of physical properties of space, time, the mis-
sion, and history of the robot behaviors. As a result, con-
text can have different scale or meaning depending on the 
activity and mission, and it may also be a result of other 
abstract notions such as a human teammate’s intentional or 
emotional state (Scheutz et al., 2005). For example, the 
context of being outdoors may be sufficient for improving 
the performance of the robot and sharing information with 
human teammates for some tasks and missions, but other 
tasks and missions may require finer-grained context than 
merely being outdoors (e.g., urban outdoors, forested, or a 
specific location). Therefore, it is not sufficient to infer a 
single context variable, but a truly robust robot should in-
stead be able to reason across different spatial, temporal 
and mission scales, and reason about context as a compo-
nent of a bigger world model.  

Most of the existing work in incorporating context into 
robotic systems has assumed either a fixed or known on-
tology of semantic context. With a few exceptions, the 
research has focused on how to incorporate context into the 
perception, inference, or planning process. But, there does 
not exist a widely agreed upon representation of what con-
stitutes context. The literature indicates that there is a gen-
eral sense that context is a state variable that can be used to 
select relevant parts of the state space, or select relevant 
perceptual feature functions for object recognition. This 
implies that context represents a discrete selector variable, 
possibly with a distribution attached to it. For example, the 
context of an outdoor environment may lead the robot to 
reason about a different state space and object classes than 
the context of an indoor environment. In this sense, the 
context is an ontological model (Suh et al., 2007). On the 
other hand, the context may be a priori over concepts in 
the environment, rather than a selector variable; in this 
sense, context requires a probabilistic model (Zender et al., 
2008). Developing the appropriate models is further com-
plicated by determining which contextual elements are 
important to represent, and which elements have a higher 
weight in the decision-making process. 
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Implications for Future Research 
The difference in semantics for context has implications 
for how it is both represented and used by the relevant per-
ception, inference, and planning algorithms. For example, 
the notion of context in a human-robot dialogue is more 
about the state of the world and the history, rather than a 
selection of parts of the model. In this sense, context is not 
a model, but an instantiation or possibly a history (or 
summary or statistic) of the world. Reconciling these very 
different views of context and developing a coherent repre-
sentation that can be used in different ways is an open re-
search question.  

An additional open question is how to infer context from 
sensor data, and in particular, learn new forms of context 
over time. Given a finite set of possible contexts (e.g., spa-
tial areas, indoor vs outdoor, etc.), it is possible to learn 
classification schemes to determine the current context. 
However, pre-specified context variables are unlikely to be 
sufficient for long-duration robots operating in populated 
environments. People naturally grow their sense of context 
over time, and a robot must be able to do the same. Even 
for a single spatial context variable that behaves as a selec-
tor for state or perception features, new contexts may be 
encountered and must be added to the representation. As 
new missions are encountered or as human teammates 
demonstrate new activities, the representation of context 
must expand in concert. 

Current Research 
Three current research efforts address the question of con-
text from both sides of this challenge: developing context-
driven decision-making of the robot and the associated 
human interaction and perception of the resulting deci-
sions. The first is a basic research approach to identify ap-
propriate environmental and team-specific contextual sup-
port cues that occur during a joint human-robot team room 
reorganization task (e.g., moving boxes out of the way for 
efficient navigation). The results of this research will sup-
port techniques for developing the underlying context de-
pendent variables that impact decision-making processes 
and associated team communication protocols. The second 
is the Autonomous Squad Member simulation research 
(Boyce et al., 2015). The current iteration of this project is 
expected to show how robot errors in identifying context 
impact human evaluation of the robot. Finally, the Applied 
Robotics for Installations and Base Operations (ARIBO), 
Ft Bragg driverless vehicle (Brooks, 2016) will assess the 
impact of context in a real-world environment. This as-
sessment will be used to inform the design of the decision-
making architecture of the vehicle, as well as the user dis-
play design. Conclusions from these three projects will be 
used to support peer-to-peer tactical teaming (i.e., two-way 
dialogue with explanations) and proactive, fine-grained 

contextual understanding of the environment and recogni-
tion of humans and social cues.  
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