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Abstract

A fundamental trait of human intelligence is represented by
social intelligence, which enables natural and fruitful interac-
tion since very early during infancy. The ability to collaborate
is also a key challenge for today’s robotics, which could ben-
efit from the design of computational models supporting the
understanding of social intelligence for the future of human-
robot interaction. Our research focuses on these topics from
the perspective of computational vision. In particular we aim
at understanding how social intelligence develops in presence
of the very limited sensory-motor skills and prior knowledge
common to babies. As a starting point we consider the nat-
ural predisposition of newborns to notice potential interact-
ing partners in their surroundings, which is manifested by
a preference for biological motion over other types of mo-
tion. To model this skill, we propose a video-based compu-
tational method for biological motion detection inspired by
the Two-Thirds Power Law, a well-known invariant of human
movements. In particular, we address the problem by recruit-
ing machine learning framework, leveraging a binary classifi-
cation to discriminate biological from non-biological stimuli
from rather coarse motion models extracted from video mea-
surements. After evaluating the performance of the method
and its generalization power to complex scenarios in an of-
fline test, the method is engineered to work online on a robot,
the humanoid iCub. The integration with the attentional mod-
ule of the robot enables it to direct its gaze toward human ac-
tivity in the scene. We posit that the possibility for a robotic
system to orient the attention toward potential interacting
agents, as a human infant would, represents one of the first
stages of social intelligence, on top of which more complex
skills, as action and intention understanding, could emerge.

Introduction
A key challenge in current robotics has become to provide
robots with social intelligence, to enable them to adapt to the
complexity of real-world human interactions. In this context,
human infants represent an important source of inspiration.
Indeed, even if endowed with limited sensory-motor capa-
bilities and no explicit knowledge of social norms, young
children proficiently coordinate with their peers and care-
givers, even in absence of language. Moreover, from the con-
strained social abilities exhibited in the very first months of
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life, humans are able to develop a full fledged social compe-
tence in adulthood. The essential social skills exhibited by
newborns can therefore represent the minimum set of skills
necessary to bootstrap more complex interactive abilities.
In our line of research, we focus in particular on the natu-
ral predisposition of newborns to notice potential interact-
ing partners in their surroundings, which is manifested by a
preference for biological motion over other types of motion
(Simion, Regolin, and Bulf 2008).

We propose a video-based computational method for bi-
ological motion detection by recruiting machine learning
framework, leveraging a binary classification to discriminate
biological from non-biological stimuli from rather coarse
motion models extracted from video measurements. Al-
though the question is clearly defined in machine learning
terms, the heterogeneity of the data and the wide intra-class
variability exacerbate the complexity of the task. In fact, the
examples of biological motion we face in everyday life are
characterized by very heterogeneous dynamics and trajec-
tories, while the class of non-biological events is even less
constrained, because it includes all motions not produced by
a living being, such as vehicles, toys, or even natural ele-
ments affected by non-biological forces (e.g., the motion of
the leaves caused by the wind).

To design a system sensitive to the regularities typical of
biological movements we draw inspiration from the Two-
Thirds Power Law, a well-known invariant of human move-
ments describing the relationship between the instantaneous
tangential velocity and the radius of curvature of human
end-point movements (Lacquaniti and Terzuolo 1983). We
choose this law according to the evidence that humans are
sensitive to it since their first days after birth (Méary et al.
2007).

After evaluating the performance of our proposed method
in correctly classifying biological and non biological dy-
namics from videos in an offline fashion, the possibility to
exploit it for the online perception in intelligent systems is
demonstrated by its implementation on the humanoid robot
iCub (Metta et al. 2010), to guide robot attention toward po-
tential interacting partners in the scene. The novel module
extracts relevant features of biological motion with a compu-
tationally efficient algorithm and enriches the feature maps
of a visual attentive system. The advantage of the solution
is that robot attention is immediately biased towards human
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activity in the scene even when the human agent is not di-
rectly visible.

Overall this process can be seen as a first step of a more
complex behavioral architecture, that provides intelligent
systems with deeper understanding of the observed action
and effective planning of an interaction strategy towards hu-
man partners.

Methods
Offline Analysis
Our approach to discriminate between biological and non-
biological dynamic events consists of three steps aiming at
the detection, representation and classification of the bio-
logical motion in an observed scene.

Motion segmentation We start with a low-level analy-
sis of the video stream (originated from one camera of the
robot) to detect the moving regions in the scene. To this pur-
pose, at each time instant, we first compute the dense optical
flow map of an image (Farnebäck 2003). The optical flow
map is thresholded to highlight only locations with a signifi-
cant motion. To discard sporadic, noisy pixels responses, we
apply a perceptual grouping operator, in which only loca-
tions whose neighboring pixels are also marked as moving
are kept in the analysis. We obtain a saliency map, where
we finally detect the connected components – the candidate
regions for motion recognition.
Motion description At time t, let (ui(t), vi(t)) be the op-
tical flow components associated with a point pi(t) lying
in a region R(t), and N the size of the region, i.e. the
number of pixels within it. We compute a set of motion
features which empirically estimate the analytical quanti-
ties related by the Two-Thirds Power Law (e.g., Tangen-
tial velocity: V̂i(t) = (ui(t), vi(t),Δt), being Δt the tem-
poral displacement between observations of two adjacent
time instants. For a full list of the spatio-temporal dy-
namic features extracted see (Vignolo et al. 2016a)). The
region R(t) is globally described with a feature vector
xt ∈ R4 by averaging the region contributions: xt =
1
N

[∑
i V̂i(t),

∑
i Ĉi(t),

∑
i R̂i(t),

∑
i Âi(t)

]
. By correlat-

ing the regions over time, we may set up a temporal se-
quence of M observations St ∈ R4M , St = [xt−M , . . . ,xt],
and apply a filtering (with a Gaussian mask in our case) to
partially correct instantaneous noisy information that might
affect the overall analysis. As a results we have at time t a
filtered feature vector computed as x̃t = St ∗G(M), where
∗ denotes the convolution, applied to each feature separately,
with a Gaussian mask G of width equal to M . A more de-
tailed description of the method and of its multi-resolution
instantiation, which efficiently combines measurements that
may span different temporal portions of an image sequence,
can be found in (Vignolo et al. 2016a).
Motion classification We formulate the problem of rec-
ognizing biological motion from video sequences as a bi-
nary classification problem, which we address with a classi-
cal Regularized Least Squares algorithm (henceforth RLS).
More in detail, we are given a training set Z = {(x̃i, yi) ∈
X × Y }ni=1, where x̃i ∈ X = R4, while yi ∈ Y = {−1, 1}

(label 1 refers to biological samples, label -1 indicates in-
stead the non-biological samples). RLS amounts to mini-
mize the following functional

fZ = min
f∈H

1

n

n∑
i=1

(yi − f(x̃i))
2 + λ||f ||H (1)

where H is a Reproducing Kernel Hilbert Space for which
the representer theorem holds: fλ

Z(x) =
∑n

i=1 αiK(x, x̃i),
where α = (K+ nλI)−1y, with K a Mercer kernel and K
the kernel matrix computed on the training set. In this work
we consider a Radial Basis Function (RBF) kernel.

Figure 1: The iCub architectural framework implementing
the proposed solution. From (Vignolo et al. 2016b)

Implementation in the iCub framework
The software framework adopted in the proposed solution
is shown in figure 1. The OpfFeatExtractor resembles the
early stage of visual pathways associated with the extraction
of motion, processing the images acquired with the iCub’s
camera. It analyzes the most salient and persistent blobs on
two half portions of the image plane and provides maps of
the horizontal (Ut) and vertical (Vt) components of the opti-
cal flow 1. The Classifier module is a wrapper around the
Machine Learning library GURLS (Tacchetti et al. 2013)
supporting the training of the model, and the online recog-
nition to classify new observations. Classification is instan-
taneously based on the RLS score, responding with a vote
either of biological class if the score is positive or of non-
biological class when negative.
To partially correct instability of the final classification due
to temporary failures, votes are collected into a temporal
buffer of 15 frames and labels are attributed when at least
the 60% of the votes is for one of the two classes, otherwise
the system notifies the temporary uncertainty of the feed-
back. The BioMerger module synchronizes the feedbacks
from the two classifiers and prepares a topographic feature

1Our solution accounts for a generic number N of moving enti-
ties in the scene, however, without loosing in generality, we focus
on the case N = 2 to evaluate it in a controlled scenario.
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map designed to compete with other feature maps in the vi-
sual attention system PROVISION (PROactive VISion at-
tentiON) (Rea, Sandini, and Metta 2014), which generates
a saccade command in correspondence to an attentive rede-
ployment. Once the execution of the oculomotor action is
completed the center of the camera (fovea of the robot eye)
is relocated on the winning stimulus in the competition be-
tween perceptual features. For a more detailed description
of the implemented modules see (Vignolo et al. 2016b).

Results
Data set
We acquired indoor videos of three subjects observed by
the robot eyes while performing repetitions of given ac-
tions from a repertoire of dynamic movements typical of
an interaction setting. More in details, we consider Rolling
dough (9 movements, ∼300 frames), Pointing a finger to-
wards a certain 3D location (7 movements, ∼330 frames),
Mixing in a bowl (29 movements, ∼190 frames), Transport-
ing an object from and to different positions on a table (6
movements, ∼300 frames), and Writing on a paper sheet (3
movements, ∼300 frames). As for the non-biological coun-
terpart, we consider videos of a Wheel with a random pat-
tern (∼300 frames) and of a Wheel with a zig-zag pattern
(∼300 frames), a Baloon (300 frames), a Toy Top turning
on a table (∼300 frames), and a Toy Train (∼398 frames).
We acquired two videos for each non-biological and biolog-
ical dynamic event. Henceforth, we will adopt the notation
{VSi1} and {VSi2}, i = 1, 2, 3, to denote, respectively, the
sets of first and second video instance of subject Si. Simi-
larly, {VN1} and {VN2} are the two sets of videos depicting
non-biological events. The images have size 320× 240 and
have been acquired at an approximate rate of 15 fps.

Offline Validation
To measure the capability of our model to generalize to
new scenarios with respect to the training set, we trained
the model using as training set a subset of the collection
of videos from three subjects and of the non-biological dy-
namic events, i.e. {VS11} ∪ {VS21} ∪ {VS31} ∪ {VN1} ∪
{VN2}. As a multi-resolution schema for the model, we
adopted the combination that concatenates the raw fea-
tures vector with the filtered measures on temporal windows
wT = 15 and wT = 30, with a final feature vector of length
12 (see (Vignolo et al. 2016a) for the validation of the selec-
tion).

For testing, we analyzed system performance in scenarios
of increasing complexity. In particular, we tested its robust-
ness in classifying actions not belonging to the training set,
actions performed by different subjects and hence character-
ized by different kinematics properties and non-biological
motions characterized by different trajectories and veloc-
ities. Moreover, we also included particularly challenging
scenarios, as the observation of shadows of trained and novel
actions and actions performed in presence of occlusions (see
caption of Figure 2 for a detailed description).

Figure 2 gives an impression of the overall classifica-
tion results. Cases I and II, referring to biological scenarios,

are very appropriately handled, with accuracies well above
90%. In Case III the method shows robustness with respect
to new human actions, speaking in favor of its capabilities
in capturing the regularities of human motion; in Case IV
the presence of new subjects seems to influence the results.
Cases V and VI show how our method is tolerant to the
presence of severe occlusions and, to some extent, is able to
deal with indirect information, such as the one produced by
the shadow of a moving object. As expected, both situations
produce good results, with a relatively small decay in the
performances. The two final cases consider non-biological
dynamic events. As for Case VII, we may observe that the
change in velocity profile of a known event is nicely ac-
commodated by our model; in Case VIII (that we may con-
sider in fact as instance of unknown non-biological dynam-
ics, since both velocity profiles and spatial trajectories are
subject to variations) the performances remain very satisfy-
ing.

Online Validation on the Robot
We first train the intelligent system with a set of biologi-
cal categories (Rolling dough, Pointing, Mixing, Transport-
ing, Writing, Waving hand) and a set of non-biological
events (wheel with random and zig-zag patterns, balloon,
toy top and toy train). On average, each video lasts about
20

′′
. Training is performed from completely blank a-priori

knowledge meaning that, before training, the intelligent sys-
tem lacks of the abilities of discriminating between biologi-
cal and non-biological motion. The training is performed on-
line replicating the situation where the operator interactively
supervise the training. Model selection is also performed on-
line.

We test the classification system by proposing a biological
and a non-biological movement (distractor) in different por-
tions of the iCub field. Our module, interfacing with PRO-
VISION and Gaze Control System (Pattacini et al. 2010),
should guide the proactive vision system to fixate the bi-
ological movement, bringing it to the center of the image
plane. We measure the distance between the location of the
biological stimulus on the image plane, provided by a color
segmentation module as ground truth, and the center of the
image, after the saccade. Table1 reports the results of the on-
line validation. All the responses converge to a mean error
in the range [20-40] pixels, corresponding to a metric range
[4-8] cm, given the distance of the camera from the stimuli
(64cm). This distance is reasonable, as an error of 40 pixels
is correctly interpreted as a correct saccade from a human
observer. More details on the results can be found in (Vig-
nolo et al. 2016b).

Conclusions
In the proposed research, we investigate computational mod-
els of the visual primitives that are at the basis of social in-
teraction in humans. Our inspiration roots on the very first
stage of development, where the limited amount of visual
information suggests that human beings have the capability
to accomplish simple pro-social tasks on the basis of rather
coarse motion models. We took inspiration from the Two-
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Figure 2: Overall classification accuracy of the model when
evaluated on new test scenarios. In detail:
Case I: same conditions of the biological movements of the
training set, using the second videos of each subject, i.e.
{VS12} ∪ {VS22} ∪ {VS32}.
Case II: the three training subjects performing faster train-
ing actions (Rolling dough and Transporting).
Case III: one of the training subjects performing different
actions classes (Lifting an object, Gesticulating while talk-
ing, and Waving) in different rooms and times.
Case IV: as Case III, considering different actions classes
(Lifting an object, Gesticulating while talking), but observ-
ing a subject not considered in the training set.
Case V: a training subject performing actions included in
the training set in and a new one (Waving) with occlusions.
Case VI: observing the shadow of an action included in
the training set (Pointing) and a new one characterised by a
whole-body motion (Walking) as opposed to the upper-body
motions considered in the training set.
Case VII: the wheel with same patterns of the training set
and a new one, with slower or faster rotation.
Case VIII: the Toy train covering a circular trajectory as op-
posed to the ellipsoidal path considered in the training set,
with slower and faster velocity profiles (at approximately,
respectively, half and twice the velocity of the training set).
(see text for details on the different cases). From (Vignolo et
al. 2016a)

.

Thirds Power Law, validating its applicability to video anal-
ysis problems. We demonstrated the possibility to exploit
our method to perform human activity detection also in com-
plex scenarios, where traditional shape-based approaches
(e.g., skin or face detection) would fail. Our approach is ro-
bust to severe occlusions or to indirectly representation of
the agent motion in the scene (as during the observation of
agents’ shadows). Moreover, we demonstrated the feasibil-
ity to engineer an online version of the method on a robotic
intelligent system, which leverage the human detection skill
and appropriately orient the focus of attention in order to
establish an interaction with the human counterpart. These
results represent the first step in the design of a hierarchi-
cal framework replicating the developmental stages of hu-
man visual perception and supporting social intelligence. By
building on this capability of recognizing biological motion
as proxy for the localization of interactive partners, we are

Table 1: Online Validation Results

Stimuli (L-R) Perception acc. corr/tot
gesturing-wheel random 27.30 ± 7.91 11/11 sac.
leaves-writing subject1 19.27 ± 7.83 10/11 sac.

cars-gesturing 22.98 ± 8.88 15/15 sac.
bouncing ball-mixing 20.95 ± 7.78 11/12 sac.

mixing,no person-wheel zigzag 25.02 ± 17.70 11/11 sac.
wheel random-writing subject2 25.53 ± 5.85 13/13 sac.

now focusing on the capability of understanding classes of
actions in order to prepare the interaction.
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