
Construction Detection in a Conventional NLP Pipeline

Jesse Dunietz
Computer Science Department

Carnegie Mellon University
Pittsburgh, PA 15213, USA

jdunietz@cs.cmu.edu

Lori Levin
Language Technologies Institute

Carnegie Mellon University
Pittsburgh, PA 15213, USA

lsl@cs.cmu.edu

Miriam R. L. Petruck
International Computer Science Institute

University of California Berkeley
Berkeley, CA 94704, USA
miriamp@icsi.berkeley.edu

Abstract

This paper presents an approach to detecting constructions
based on a conventional NLP pipeline: the “constructions
on top” approach to integrating constructions into NLP, as
opposed to “constructions all the way down.” The approach is
illustrated with the BECauSE corpus of causal language, the
BECauSE constructicon, and the Causeway causal language
detector, described elsewhere. We argue here that although
BECauSE is not a full construction grammar, its lightweight
design and compatibility with conventional NLP tools have
facilitated progress on and insights into issues related to con-
struction detection in news corpora. The issues we discuss
are (1) individuating families of constructions, and (2) deal-
ing with co-present, non-prototypical meanings that may be
present alongside the prototypical meaning of a construction.
Particularly significant is the observation that the BECauSE
constructicon highlights the importance of integrating frame-
evoking constructions into frame semantic resources such as
FrameNet.

Introduction

Natural language processing (NLP) systems, following the
linguistic tradition, conventionally treat linguistic structures
as a stack of more or less modular units, from phonemes
up through morphemes, words, syntax, and discourse. The
problems arising from this approach are well-known: errors
at one level propagate to the next, and linguistic patterns in
the wild frequently break these abstraction barriers.

Construction grammar (CxG; Fillmore, Kay, and
O’Connor, 1988; Fillmore, 1985, 1988) offers enormous po-
tential for resolving these problems. It posits that linguistic
patterns at any scale are paired with meanings, and those
pairings combine to create utterances and their semantic rep-
resentations. This obviates the need to define hard lines be-
tween morphemes, words, and syntax, allowing multi-word
expressions (MWEs), idiosyncratic syntactic constructions,
and productive morphology to flourish alongside the usual
NLP categories. A construction-based system could handle
all of these phenomena in a uniform manner.

Several projects have worked to realize this vision, build-
ing full NLP frameworks that are constructional through and

Copyright c© 2017, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

(1) This ruling opens the way for broader legal protections.
(2) For the markets to work, banks can’t expect bailouts.
(3) Judy’s comments were so offensive that I left.

(4) We headed out in spite of the bad weather.
(5) We value any contribution, no matter its size.
(6) Strange as it seems, there’s been a run of crazy dreams!

(7) You’re as bad as my mom!
(8) More boys wanted to play than girls.
(9) Andrew is as annoying as he is useless.

(10) I’m poorer than I’d like.

Table 1: Examples of causal, concessive, and comparative lan-
guage, with the tokens participating in the relevant construction
bolded.

through. The three best-known implementations are Embod-
ied Construction Grammar (ECG; Bergen and Chang, 2005),
Fluid Construction Grammar (FCG; Steels, 2012), and Sign-
Based Construction Grammar (Boas and Sag, 2012), which
uses the Head-driven Phrase Structure Grammar (HPSG)
framework. Ideas from construction grammar have also
been integrated into broad-coverage precision grammars like
the English Resource Grammar (Copestake and Flickinger,
2000). All of these systems feature powerful parsing capa-
bilities, and some feature generation, as well.

Despite the promise of CxG, so far these formalisms have
seen relatively little uptake in the NLP community. There
are many reasons for this state of affairs, including that CxG-
based systems have not yet reached the level of maturity
and robustness exhibited by conventional linguistic analy-
sis systems. Another factor, though, seems to be the per-
ceived barrier of rebuilding the entire NLP ecosystem based
on “constructions all the way down.” The NLP community
already has mature, well-studied tools that identify words,
parse them into syntactic structures, and assign semantic
roles to pieces of those structures. Until fully constructional
systems offer competitive robustness, researchers who need
automated linguistic analysis are unwilling to leave the con-
ventional tools aside. And in the short term, developing con-
structional tools for well-studied tasks seems like stepping
backwards and retreading ground, even if doing so holds the
potential for long-term advances.

However, a middle ground exists that leverages the key in-

The AAAI 2017 Spring Symposium on
Computational Construction Grammar and Natural Language Understanding

Technical Report SS-17-02

178

sights of CxG to improve NLP in both the short and the long
term. In several crucial semantic domains, the constructions
that carry meaning are difficult to represent and automati-
cally tag using conventional notions of words and grammar.
In such cases, simple lexical analysis fails to capture the bulk
of the semantics of even unremarkable sentences (Fillmore,
Lee-Goldman, and Rhomieux, 2012). These constructions
represent low-hanging fruit for incorporating CxG into NLP
tools, while also laying the groundwork for further uptake.

For instance, consider the examples in Table 1 of
causatives, concessives, and comparatives, all fundamental
types of relations. Some are expressed via idiomatic mul-
tiword expressions (1, 4), which require treating multiple
words as a unit. Others include sublexical elements (10)
or consist of gappy patterns (7, 8, 9). And many depend
on particular configurations of syntactic relations and slot-
fillers (2, 3, 5, 6, 9), placing them closer to the grammati-
cal end of the continuum of lexicon and grammar. Using a
non-constructional NLP approach, recovering the semantic
relationships that these constructions express is difficult, if
not impossible.

Importantly, it is not necessary to rewrite the standard
NLP pipeline to apply the key insights of CxG to these do-
mains. We take those central insights to be:

1. Morphemes, words, MWEs, and grammar are all on
the same spectrum of linguistic forms.

2. Any aspect or combination of those forms is equally
capable of being mapped to meanings.

To accommodate these insights, all that needs to change
in NLP is the representation for how meanings are attached
to text. The gold-standard scheme for rich, domain-general
semantic parsing is FrameNet (Ruppenhofer et al., 2016),
which represents semantic frames as indicated by lexical
unit (LU) “targets.” But this is purely a matter of operational
design decisions. As long as at least one relevant lexical
or morphological span exists, the targets can be expanded
without much trouble to allow richer, more flexible spans
that capture constructions like those in Table 1. Such ex-
tensions, a longtime goal of FrameNet, have started to come
to fruition in the FrameNet Constructicon (Fillmore, Lee-
Goldman, and Rhomieux, 2012), a companion repository of
grammatical information that characterizes constructions for
cases when lexical analysis does not suffice.

With constructions linked directly to semantic frames, au-
tomatic taggers can rely on the usual robust part-of-speech
taggers, dependency parsers, and so on to determine the
presence of a given construction as well as its slot-fillers.
This “constructions on top” approach to NLP gains much
of the representational flexibility of constructions, while still
retaining the ability to use existing NLP infrastructure.

In the long term, the “constructions on top” approach will
serve as means of moving from current NLP systems to fully
constructional tools. Tools built on this approach will en-
able researchers to more easily explore large corpora to un-
derstand what phenomena a full construction grammar will
need to explain. Eventually, systems will be able to relax the
constraint of requiring a specific lexical or morphological
span as a semantics-bearing target, bringing non-lexicalized

grammatical constructions within reach. And once construc-
tions are firmly embedded as a lynchpin of semantic analy-
sis, CxG techniques can more easily propagate back through
the rest of the NLP pipeline.

This paper argues for the “constructions on top” approach
as a short-term methodology for incorporating CxG into
NLP, focusing on how it enhances frame-semantic parsing.
After briefly reviewing FrameNet’s lexicographic annotation
practice, the paper discuss a recently created corpus and as-
sociated tagger ((alias?)) that demonstrate the usefulness
of the approach for causal language, where constructiconal
phenomena abound. The paper demonstrates the prevalence
in the corpus of super-lexical causal constructions, and show
that a pipeline based on conventional NLP tools recovers
these constructions reasonably well. Finally, this paper dis-
cusses two major lessons learned for “constructions on top”
systems, and perhaps for other CxG-based systems, as well.

FrameNet’s Lexicographic Annotation

Practice
Since the approach presented here derives from the
FrameNet Constructicon project, an overview of FrameNet’s
lexicographic annotation practice (which informed construc-
tion annotation in the FN Constructicon) is in order.

FrameNet provides a catalog of semantic frames for En-
glish, where each frame describes some real-world concept
or scenario (e.g., CAUSATION). Each frame specifies a num-
ber of related Frame Elements, or frame-specific roles that
participate in the scenario (e.g., CAUSE, EFFECT). Each
frame also includes a list of lexical units – i.e., words or
word-like phrases – which the frame characterizes. Other
“non-thematic roles” may exist in any frame, such as PUR-
POSE, which labels the intended purpose of the action pro-
filed in a frame). Figure 1 shows an example annotation
from the CAUSATION frame.

He made me bow to show his dominance.

CAUSER

CAUSATION

EFFECT EFFECT PURPOSE

Figure 1: An example sentence annotated with FrameNet seman-
tic annotations for the target made.

FrameNet characterizes LUs that are more than just indi-
vidual lemmas; phrases that behave like words, such as due
to and bring about, also constitute targets. Occasionally, tar-
gets are even discontinuous, as in verb/particle constructions
like give X up. (This does not include prepositions that in-
troduce arguments or adjuncts – e.g., prevent me from going
– which FrameNet would not consider discontinuous target
words, but rather part of the arguments that they introduce.)
Typically, however, FrameNet does not consider a pattern of
multiple content words to be a single target. It also excludes
many function words (e.g., some prepositions, or words like
for and to in for market discipline to work).

With the many overlapping frames that a sentence instan-
tiates, FrameNet offers a rich, structured representation of

179

the sentence’s semantic content. Indeed, its inclusion of
multiword expressions (“words with spaces”) as LUs even
allows capturing (1) and (4) from Table 1. However, con-
structions that rely on discontinuous target words, function
words, sublexical elements, or unlexicalized elements still
present challenges. In fact, every other construction in Ta-
ble 1 would either be impossible to capture in FrameNet’s
lexical unit framework or would require abusing the repre-
sentation.

In the domain of causality, such constructions are com-
mon enough to constitute a serious gap in coverage. A newly
developed corpus of causal constructions demonstrates this
phenomenon.

Work on Constructions of Causal Language

The BECauSE Causal Language Corpus

Dunietz, Levin, and Carbonell (2015) developed a corpus
of causal language, to be released as BECauSE (Bank of
Effects and Causes Stated Explicitly; (alias?)). Using that
corpus, we gathered statistics about the frequency of various
types of constructions, focusing on those that FN does not
consider LUs.

First, a brief overview of the corpus (see the papers for full
details): The scheme specifically concerns language that ap-
peals to psychological notions of cause and effect – i.e., what
causal relationships the text asserts, not what causal rela-
tionships hold in the real world. For example, cancer causes
smoking states a false causation, but it would nonetheless
be annotated. In contrast, bacon pizza is delicious would
not be annotated, even though bacon may in fact cause de-
liciousness, because the causal relationship is not stated as
such.

The annotations are similar in spirit to FrameNet. Each
instance of causal language is associated with a connec-
tive (much like FrameNet’s lexical units), consisting of the
lexical items in the construction that signal the causal rela-
tionship (e.g., because of). The connective annotation in-
cludes all words whose lemmas appear in every instance of
the construction. This excludes elements that can be absent
or whose lemmas can vary, such as copulas or determiners
(e.g., the connective for as a result is the words as and result,
because the determiner can vary). In addition, each annota-
tion includes a cause and effect span unless one of the two
has been syntactically eliminated, as in passives or infini-
tives. These spans are generally events or states of affairs,
expressed as complete clauses or phrases.

The connective may be discontinuous and arbitrarily com-
plex (e.g., necessary condition of or if is to). BE-
CauSE considers words that introduce arguments of a con-
struction (e.g., to in cause to) to be part of the causal con-
struction, rather than part of the arguments.

Annotators together established an informal constructicon
to guide their decisions on what patterns are considered con-
nectives. This constructicon contains about 150 construc-
tions (the exact number is debatable, as discussed below).
Note that a connective is not synonymous with a construc-
tion; rather, it is a lexical indicator of the presence of the
construction, an anchor for the annotations. A full descrip-

tion of the construction would include the relevant parts of
speech, syntactic relations, semantic constraints, etc.

The corpus itself consists of three sets of exhaustively an-
notated documents:

• 59 randomly selected articles from the year 2007 in the
Washington section of the New York Times corpus (Sand-
haus, 2008)

• 47 documents randomly selected from sections 2-23 of
the Penn Treebank (Marcus et al., 1994)

• 679 sentences1 transcribed from Congress’ Dodd-Frank
hearings, taken from the NLP Unshared Task in PoliIn-
formatics 2014 (Smith et al., 2014)

The corpus contains a total of 4161 sentences, among which
are 1099 labeled instances of causal language. 1004 of these,
or 91%, include both cause and effect arguments.

An expanded version of the BECauSE corpus is currently
under development (discussed further in the conclusion).

Constructional Phenomena are Frequent
in the Corpus

To determine the prevalence and practical impact of con-
structional phenomena, it is instructive to examine how
much of the BECauSE corpus is covered by FrameNet.
Statistics on FrameNet’s coverage of various types of con-
structions in BECauSE are shown in Table 2. A few notes
on how these statistics were computed:

• The number/contiguity of words in a construction are de-
termined by FrameNet standards: for prepositional argu-
ments of the construction, the initial prepositions (e.g.,
prevent from) do not count, even though BECauSE anno-
tates them as part of the connective.

• In some cases, FrameNet includes a single-word lexi-
cal target that participates in the construction, but the
FrameNet Constructicon would nonetheless record a con-
struction with multiple “construction-evoking elements.”
One such example is enough X for Z to Y: FrameNet al-
ready has an LU for this use of enough. These are counted
as multi-word constructions.

• The statistics were computed automatically, using se-
quence of connective tokens as an indicator of the causal
construction. However, this method occasionally con-
flates gappy and non-gappy versions of a construction,
such as X is sufficient to Y and sufficient X to Y. Thus,
the numbers should not be taken as extremely precise.

• Constructions included in frames that are often but not
always causal were counted as fully represented.

• A construction was counted as partially represented if sig-
nificant portions of the construction were missing (other
than argument-initial prepositions).

• A construction was counted as “represented isomorphi-
cally” if the causal relationship could be derived from
FrameNet, but a causal frame would not be identified

1The remainder of the document was not annotated due to con-
straints on available annotation effort.

180

Construction complexity

FrameNet status Single word Contiguous words Non-contiguous words Total by FN status

Represented 618 63 16 697
Partially represented 0 17 21 38

Represented isomorphically 182 0 0 182
Missing LU 153 24 0 177

Not representable 0 0 5 5

Total by complexity 953 104 42 1099

Table 2: Instance counts for various types of constructions in BECauSE. See the text for details of how these were computed.

withou extra information linking specific roles to frames.
For example, a purpose phrase like I left to get food would
be labeled with a PURPOSE role, but this role is not explic-
itly connected to the PURPOSE frame.

Not surprisingly, FrameNet’s coverage is good for the
single-word connectives, representing 65% of them. Many
of the remainder are simply LUs that have not yet been docu-
mented in FrameNet. (The bulk of the 182 single-word “rep-
resented isomorphically” instances are the word to, used in
its purpose sense.) No single-word connectives are unrepre-
sented or unrepresentable in FrameNet.

With multi-word connectives, however, constructional ef-
fects become apparent. At 61%, coverage of contiguous
multi-word constructions is almost as good as that of sin-
gle words. However, 16% of contiguous connectives can-
not be represented as LUs without missing significant pieces
of the construction. Non-contiguous constructions are rel-
atively uncommon, but fully 62% of them cannot be rep-
resented as FrameNet LUs. In total, the instances that are
partially or fully unrepresentable without a richer construc-
tion representation constitute nearly 4% of all annotations –
an underestimate, considering that a significant number of
the connectives not (yet) in FrameNet would be represented
only partially.

That causation is not neatly or completely characterized
with lexical units is no surprise. Indeed, other fundamental
relation types exhibit similar behavior: concepts and com-
ponents of meaning that are central to human thinking are
squeezed into language ubiquitously and at all levels of lin-
guistic structure. As noted in the discussion of Table 1, con-
cessives and comparatives are two other areas where com-
plex constructions abound, and doubtless there are many
more.

The prevalence of constructional phenomena speaks to
the need for enriching FrameNet’s representations with a
constructicon, as the FrameNet Constructicon has begun to
do. The BECauSE lexicographic work could contribute to
this, serving as a basis for causality-related entries in the
FrameNet Construction. It might first be necessary to re-
organize the causality-related frames as suggested by Vieu
et al. (2016). Next, lexicographers would need to examine
each construction and define its “construct elements.” Au-
tomating this task would be difficult, since construct ele-
ments are defined by prose descriptions of constraints that
would not be obvious to a machine, such as “an AP headed
by long.” However, with some human intuition, mapping

the BECauSE representation into FrameNet Constructicon
entries ought to be fairly straightforward, since both repre-
sent an instance of a construction as a sequence of fixed or
semi-fixed elements and slot-fillers.

Causeway: A Constructicon-Based System for
Tagging Causal Constructions

If a constructicon-based semantic representation could not
be integrated with conventional NLP tools, it would be of
little help for injecting CxG into NLP. Fortunately, construc-
tions can indeed be tagged using input from conventional
tools, as demonstrated by the Causeway system ((alias?)).
Causeway tags causal language using the BECauSE annota-
tion scheme.

Causeway is implemented as a four-stage pipeline, which
is designed to overgenerate and then prune (see the paper for
full implementation details):

1. Pattern-based tentative connective discovery. At
training time, lexico-syntactic patterns2 for connec-
tives are extracted from the training data. At test time,
these patterns are matched against each sentence to
find tokens that may be participating in a causal con-
struction. Each extracted pattern specifies the connec-
tive lemmas and parts of speech. The pattern also spec-
ifies the minimal dependency parse subtree that links
the connective words and argument heads.

2. Argument identification marks the cause and effect
spans by expanding argument heads to include most
dependents.

3. A statistical filter to remove false matches. The fil-
ter performs a weighted vote between three probabilis-
tic classifiers: a connective-specific logistic regression
classifier, a global logistic regression classifier, and a
connective-specific majority-class classifier.

4. A constraint-based filter to remove redundant con-
nectives. For example, if to (which is causal in sen-
tences like I left to get lunch) and cause X to Y both
matched, the smaller of the two should be ignored.

Causeway Results Dunietz, Levin, and Carbonell (In
press) report results from running Causeway with 20-fold

2The original Causeway paper reports on two different variants
of this pipeline, one that uses lexical patterns for the first stage
and one that uses syntactic patterns. The syntactic version achieves
better end-to-end results, so we present that version here.

181

Connectives Causes Effects
Pipeline P R F1 SC HC JC SE HE JE

Pattern matching without classifier 7.3 71.9 13.2 65.0 84.3 39.3 30.4 63.0 30.7
Pattern matching + MFS 40.1 37.9 38.6 71.0 87.6 42.0 34.3 64.4 31.9

Pattern matching + MFS + SC filter 60.9 36.2 45.1 75.1 92.3 42.9 40.7 75.2 35.8
Pattern matching + voting classifier 51.9 47.6 49.4 68.7 86.9 39.9 38.0 72.5 34.1

Pattern matching + voting classifier + SC filter 57.7 47.4 51.8 67.1 84.4 39.0 37.7 70.7 33.4
Baseline 88.4 21.4 33.8 74.1 94.7 43.7 48.4 83.3 38.4

Baseline + full pipeline 59.6 51.9 55.2 67.7 85.8 39.5 39.5 73.1 34.2

Table 3: Experimental results for Causeway. SC and SE indicate exact span match for causes and effects, respectively; HC and HE

indicate percentage accuracy for cause and effect heads; and JC and JE indicate cause and effect Jaccard indices, a measure of span overlap.
“MFS” indicates a per-connective most-frequent-sense classifier. “SC filter” indicates the filter for smaller overlapping connectives. Note
that argument scores between pipelines are not directly comparable, as they are only computed for connectives that were correct.

cross-validation on the BECauSE corpus. Their findings ap-
pear in Table 3. The baseline is a simple most-frequent-
sense system; see the Causeway paper for details.

The most important implication of these results is that it is
possible to tag constructions with a reasonable degree of ac-
curacy based on conventional NLP tools. Although the met-
rics are not entirely comparable to those of regular semantic
parsing tools, Causeway’s scores are not terribly far behind.
A secondary takeaway is that even fairly simple machine
learning methods, based on pattern-matching and common
classifiers, can learn much of what is needed to recognize
constructions.

Of course, this work is only the first attempt at building
a system for this task; future automated construction recog-
nizers will no doubt be more sophisticated and more accu-
rate. To that end, it is worth examining what kinds of errors
Causeway makes. The original Causeway paper gives an ex-
tensive error analysis; here, we review a few notable points.

The biggest issue facing the system is low end-to-end re-
call. The initial pattern matching has high recall, but its
precision is low (as expected). When the filters eliminate
false matches, they do improve the F1, but the filters are
overly aggressive, dragging down recall too far. Examin-
ing the classifier scores reveals that the filter is correctly
assigning low probability to negative instances. For posi-
tive instances, however, rather than clustering the scores on
the high end, the classifier’s probability estimates are more
evenly distributed.

It would be particularly helpful to improve classification
for a few simple but highly ambiguous connectives, such as
to, if, for, and so. These collectively accounted for about
two thirds of all misclassifications by the filter.

Interestingly, the system has more trouble with effects
than with causes. This seems to be because causes tend to be
subjects or nominal modifiers, which are short and therefore
easier for the system to guess correctly. In contrast, effects
are frequently primary clauses, complements, or direct ob-
jects, which tend to be more complex.

Lessons Learned From Constructicon-Based

Annotation of Causal Language

In the process of examining the BECauSE corpus, two ma-
jor issues with constructicon-based annotation became ap-
parent: the problem of individuating constructions, which is
particular to this style of applying CxG; and the problem of
overlapping meanings, which raises concerns for computa-
tional CxG systems in general.

Individuating Constructions

Computational formalizations of CxG typically try to spell
out a list of linguistic forms and inheritance relationships.
Conceptually, this is similar to building a lexicon of words,
except that the units are more structured, with arguments,
semantic mappings, and constraints.

This approach does eliminate the problematic abstraction
barriers that conventional NLP systems must contend with.
However, building a constructicon for NLP use raises an
equally serious problem of what to include as a construc-
tion.

As an example, consider the following examples of con-
structions where the extremity of a graded attribute leads to
some result (variants of all of these were found in the cor-
pus):

(11) too sweet to eat

(12) too sweet for me to eat

(13) sweet enough to eat

(14) sweet enough for me to eat

(15) sweet enough that I can eat it

(16) so sweet that I can’t eat it

(17) so sweet I can’t eat it

How many different constructional patterns are in play
here? One option is simply to say that each example em-
ploys a separate construction. However, this approach is ex-
tremely unparsimonious: (13), (14), and (15) share an obvi-
ous enough 〈complement〉 structure; (13) is almost identical
to (14), but with an optional argument removed, and like-
wise for (11) and (12); (17) is identical to (16) but without

182

the optional complementizer; and the to tokens in (11), (13),
and (14) seems to perform identical functions.

The usual CxG answer is to construct a hierarchy of in-
heritance relationships that capture just the right general-
izations. Such hierarchies have indeed been carefully con-
structed in other domains (e.g., Hasegawa et al., 2010). At
some point, though, a product of multiple interacting con-
structions starts to become conventionalized, enabling the
combined form to take on unique, non-compositional prop-
erties. How conventionalized must such a combination be
before it is considered its own construction? Does as a re-
sult appear as a collocation often enough that it deserves its
own constructicon entry, even though more compositional
variants such as as one result occasionally show up?

In theory, the difficulty of individuating constructions
should be particularly problematic for the “constructions on
top” approach. After all, its entire raison d’être is to sidestep
a full-fledged analysis of all the underlying constructions.
But without the complete analysis, it is impossible to de-
termine where one construction ends and another begins, or
where multiple constructions are interacting. This approach
avoids the work of the analysis, but it also cannot reap the
benefits.

In practice, this issue is not too damning for “construc-
tions on top”; the takeaway here for NLP constructicon de-
velopers is simply that the decisions must be made. The
lines between constructions may be drawn semi-arbitrarily,
but as long as they mostly match the right set of surface
patterns, it should not matter whether a pattern is consid-
ered one construction or two, the implications for the the-
ory notwithstanding. In fact, the lack of precise definition
may even be a benefit: decisions can be made more on
the grounds of convenience for machine learning algorithms
than rigorous consistency and elegance.

This “quick-and-dirty” style of analysis also allows re-
searchers to discover observations like the patterns in (11)-
(17). These are the very observations that a fuller construc-
tion grammar will ultimately need to explain. The discov-
ery of such organized observations is precisely the hope that
Fillmore expressed in his introduction to the FrameNet Con-
structicon.

Multiple Overlapping Meanings

The second problem is a familiar one from word sense dis-
ambiguation: constructions often suggest meanings from
multiple related semantic domains. In some cases, this is
simply a matter of one meaning implying another. For
instance, example (14) (the enough for X to Y construc-
tion) would be annotated in BECauSE as causal. However,
FrameNet’s LU inventory includes it in the SUFFICIENCY
frame (under the LU too). While the concept of SUFFI-
CIENCY does not link directly to a causation or enablement
frame in FrameNet, the concepts of sufficiency and causality
are not in conflict; sufficiency for a particular outcome im-
plies enablement. Augmenting the FrameNet lexicon with
relations between frames or frame elements would resolve
this problem. Indeed, FrameNet already supports such addi-
tions.

The trickier cases are the ones displaying semantic drift
into non-prototypical meanings. For example, imagine a
speaker who wants to express that taking a drink caused her
headache to lessen. She might say:
(18) My head was hurting, but taking a drink made it feel

much better.
This example is clearly causal. But equally felicitous, per-

haps even more so, would be to express the thought as:
(19) My head was hurting, but after I took a drink, it felt

much better.
Obviously, after expresses a temporal relationship. How-

ever, because temporal and causal relations are so inter-
twined in our mental models of the world, temporal lan-
guage is often borrowed to suggest causal relationships.
Similar overlaps occur between causation and hypotheticals
(if you touch it, it will fall over), obligation and permission
(my father let me take a cookie), creation and termination
(these reports create a perception of higher risk), and many
other relations that overlap with causation in the real world.
In FrameNet terminology, each of these constructions can
evoke either relevant frame, or both simultaneously.

In principle, multiple frames could be handled by posit-
ing a separate version of the construction for each possi-
ble combination of meanings, where the meaning side of
the construction can be a conjunction if necessary. This is
precisely what a constructicon must posit. As a practical
matter, the conjunctions could be represented either explic-
itly, by listing all allowed combinations, or implicitly, by
allowing multiple constructions with the same form to be
active at once. Which option is preferable is a question of
implementation priorities: elaborating each combination ex-
plicitly is unwieldy, but the implicit option makes it harder
for the constructicon builder to specify what combinations
are disallowed.

Whatever the implementation, the downside of treating
overlapping meanings as separate constructions is that it still
requires making binary decisions about precisely when a
given meaning is present. In reality, as with word senses,
there are often shades of meaning. The way if came to
convey causation, for example, was by diachronic seman-
tic drift, which presumably must have begun with hints
of causal meaning that gradually became more prominent.
Also, it seems profligate to posit a new construction every
time a more radial instance of an existing construction ap-
pears.

A construction representation more consistent with CxG’s
cognitive roots would help considerably here. With some
formal notion of a semantic space, it would be possible to
formalize the concept of prototypes and radial categories
(see, e.g., Lewandowska-Tomaszczyk, 2007). The meaning
side of a construction would then be a distribution in that
space. For example, the meaning of the create construction
would be concentrated in the creation/termination realm, but
with a spread that extends to a lesser degree into causation.
The construction could then be instantiated with a mean-
ing anywhere within the distribution, with the strength of
the radial aspects determined by contextual factors and con-
straints. Such a continuous representation would even allow

183

novel uses of the construction at the boundaries of the mean-
ing distribution.

Conclusions

The constructicon approach presented here is a way to in-
ject CxG principles into NLP even before full-fledged con-
struction grammar tools are ready for widespread use. As
the BECauSE corpus and the Causeway tagger demonstrate,
working with a constructicon of constructions tied directly
to semantic frames offers insight and practical lessons for
both constructional analysis and future NLP tools built on it.

An effort is currently underway to revise and extend BE-
CauSE to indicate where relations that overlap with causality
are also present. (It will also include about 500 additional
sentences, and fix some quirks of the original annotation
scheme.) To handle multiple meanings, this effort imple-
ments the implicit option of allowing multiple constructions
with the same form to be active at once.

In the longer term, we hope that the CxG and NLP com-
munities will work together to define more flexible repre-
sentations for semantic frames. To that end, the construc-
ticon approach can help with rapid experimentation. Ul-
timately, with fluidity in the representations of both form
and meaning, CxG-based tools should outperform their non-
constructional counterparts.

References

Bergen, B., and Chang, N. 2005. Embodied construction
grammar in simulation-based language understanding. Con-
struction grammars: Cognitive grounding and theoretical
extensions 3:147–190.
Boas, H. C., and Sag, I. A. 2012. Sign-based construction
grammar. CSLI Publications/Center for the Study of Lan-
guage and Information.
Copestake, A. A., and Flickinger, D. 2000. An open source
grammar development environment and broad-coverage En-
glish grammar using HPSG. In Proceedings of the Second
conference on Language Resources and Evaluation (LREC-
2000).
Dunietz, J.; Levin, L.; and Carbonell, J. 2015. Annotating
causal language using corpus lexicography of constructions.
In The 9th Linguistic Annotation Workshop held in conjun-
cion with NAACL 2015, 188–196.
Dunietz, J.; Levin, L.; and Carbonell, J. In press. Auto-
matically tagging constructions of causation and their slot-
fillers. In Transactions of the Association for Computational
Linguistics.
Fillmore, C. J.; Kay, P.; and O’Connor, M. C. 1988. Reg-
ularity and idiomaticity in grammatical constructions: The
case of let alone. Language 64(3):501–538.
Fillmore, C. J.; Lee-Goldman, R.; and Rhomieux, R. 2012.
The FrameNet constructicon. Sign-Based Construction
Grammar 309–372.
Fillmore, C. J. 1985. Syntactic intrusions and the notion of
grammatical construction. In Annual Meeting of the Berke-
ley Linguistics Society, volume 11, 73–86.

Fillmore, C. J. 1988. The mechanisms of construction gram-
mar. In Axmaker, S.; Jaisser, A.; and Singmaster, H., eds.,
Proceedings of the Fourteenth Annual Meeting of the Berke-
ley Linguistics Society, volume 14, 35–55. Berkeley Lin-
guistics Society.
Hasegawa, Y.; Lee-Goldman, R.; Ohara, K. H.; Fujii, S.; and
Fillmore, C. J. 2010. On expressing measurement and com-
parison in English and Japanese. Contrastive construction
grammar 169–200.
Lewandowska-Tomaszczyk, B. 2007. Polysemy, prototypes,
and radial categories. The Oxford handbook of cognitive lin-
guistics 139–169.
Marcus, M.; Kim, G.; Marcinkiewicz, M. A.; MacIntyre, R.;
Bies, A.; Ferguson, M.; Katz, K.; and Schasberger, B. 1994.
The Penn Treebank: Annotating predicate argument struc-
ture. In Proceedings of the Workshop on Human Language
Technology, HLT ’94, 114–119. Stroudsburg, PA, USA: As-
sociation for Computational Linguistics.
Ruppenhofer, J.; Ellsworth, M.; Petruck, M. R. L.; Johnson,
C. R.; Baker, C.; and Scheffczyk, J. 2016. FrameNet II:
Extended theory and practice.
Sandhaus, E. 2008. The New York Times annotated corpus.
Linguistic Data Consortium, Philadelphia.
Smith, N. A.; Cardie, C.; Washington, A. L.; and Wilkerson,
J. 2014. Overview of the 2014 NLP unshared task in poli-
informatics. In Proceedings of the ACL 2014 Workshop on
Language Technologies and Computational Social Science.
Steels, L. 2012. Computational issues in Fluid Construction
Grammar. Lecture Notes in Computer Science 7249.
Vieu, L.; Muller, P.; Candito, M.; and Djemaa, M. 2016.
A general framework for the annotation of causality based
on FrameNet. In Calzolari, N.; Choukri, K.; Declerck, T.;
Goggi, S.; Grobelnik, M.; Maegaard, B.; Mariani, J.; Mazo,
H.; Moreno, A.; Odijk, J.; and Piperidis, S., eds., Proceed-
ings of LREC 2016. Paris, France: European Language Re-
sources Association (ELRA).

184

