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Stochasticity is an essential part of explaining the world.
Increasingly, neuroscientists and cognitive scientists are
identifying mechanisms whereby the brain uses probabilis-
tic reasoning in representational, predictive, and generative
settings. But stochasticity is not always useful: robust per-
ception and memory retrieval require representations that
are immune to corruption by stochastic noise. In an ef-
fort to combine these robust representations with stochastic
computation, we present an architecture that generalizes tra-
ditional recurrent attractor networks to follow probabilistic
Markov dynamics between stable and noise-resistant fixed
points.

Motivation
With the advancement of probabilistic theories of human
cognition (Griffiths et al. 2010), there has been increasing in-
terest in neural mechanisms that can represent and compute
these probabilities. Several new models of neural compu-
tation carry out Bayesian probabilistic inference taking into
account both data and prior knowledge, and can represent
uncertainty about the conclusions they draw (Ma, Beck, and
Pouget 2008; Pecevski, Buesing, and Maass 2011; Shi et
al. 2010). In many tasks, neural mechanisms are required
that can transition stochastically to a new state depending
on the current state: for example, to predict the path of a
moving object (Vul et al. 2009), gauge the effect of a colli-
sion (Sanborn and Griffiths 2009), or estimate the dynamic
motion of fluids (Bates et al. 2015), as well as in the gen-
eral context of carrying out correlated sampling over a pos-
terior distribution (Gershman, Vul, and Tenenbaum 2012;
Bonawitz et al. 2014; Denison et al. 2013). The Markov
transition probabilities in these cases are dictated by knowl-
edge of the world. The stochasticity of transitions allows
decisions that are tempered by uncertainty, rather than mak-
ing a “best guess” or point estimate that is agnostic to uncer-
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tainty and is chosen deterministically based on some mea-
sure of optimality. Further, Markov chain Monte Carlo
methods (Neal 1993) allow us to engineer a Markov chain
with stationary distribution equal to any distribution of in-
terest. Therefore a simple Markov chain with the right tran-
sition probabilities can also form the basis for neurally plau-
sible probabilistic inference on a discrete state space.

It is important here to distinguish between stochastic-
ity in our perception or neural representation of states, and
stochasticity incorporated into a computational step. The
first is unavoidable and due to noise in our sensory modali-
ties and communication channels. The second is inherent to
a process the brain is carrying out in order to make proba-
bilistic judgments, and represents useful information about
the structure of the environment. While it is difficult to
tease apart these sources of noise and variability, (Beck et
al. 2012) suggest that sensory or representational noise is
not the primary reason for trial-to-trial variability seen in hu-
man responses and that there are other sources of stochastic-
ity arising from the process of inference that might be more
important and influential in explaining observed behavioral
variability. Humans are in fact remarkably immune to noise
in percepts - for example when identifying occluded objects
(Johnson and Olshausen 2005) and filtering out one source
of sound amid ambient noise (Handel 1993).

Hopfield networks represent an effective model for stor-
age and representation that is largely immune to noise; dif-
ferent noisy or partial sensory percepts all converge to the
same memory as long as they fall within that memory’s basin
of attraction. These “memory” states are represented in a
distributed system and are robust to the death of individual
neurons. Stochastic transitions in Hopfield networks there-
fore are a step towards stochastic computation that still en-
sures a noise-robust representation of states.

The Markov chain dynamics we model also have appli-
cations in systems where experimental verification is more
lucid. For example, the Bengalese finch’s song has been
effectively modeled as a hidden Markov model (Jin and
Kozhevnikov 2011). While deterministic birdsong in the

The AAAI 2017 Spring Symposium on  
Science of Intelligence: Computational Principles of Natural and Artificial Intelligence

Technical Report SS-17-07 

529



zebra finch has previously been modeled by feedforward
chains of neurons in HVC (Long and Fee 2008), our net-
work provides a potential neural model for stochastic bird-
song. Further, its specific structure has possible parallels in
songbird neural architecture, as we later detail.

Background

A Hopfield network (Hopfield 1982) is a network of binary
neurons with recurrent connections given by a symmetric
synaptic weight matrix, Jij . The state xi of the ith neuron is
updated according to the following rule:

xi ← sign

⎛
⎝ n∑

j=1

Jijxj

⎞
⎠ (1)

With this update rule, every initial state of the network
deterministically falls into one of a number of stable fixed
points which are preserved under updates. The identity of
these fixed points (attractors or memories) can be controlled
by appropriate choice of Jij , according to any of various
learning rules (Hebb 2005; Rosenblatt 1957; Storkey 1997;
Hillar, Sohl-Dickstein, and Koepsell 2012). If the network
is initialized at a corrupted version of a memory, it is then
able to converge to the true memory, provided that the cor-
rupted/noisy initialization falls within the true memory’s
basin of attraction. This allows Hopfield networks to be a
model for content-addressable, associative memory.

Due to symmetry of weights, a traditional Hopfield net-
work always converges to a stable attractor state. By adding
asymmetric connections, it is possible to induce transitions
between the attractor states. (Sompolinsky and Kanter 1986)
show that a set of deterministic transitions between attrac-
tor states can be learned with a Hebbian learning rule, by
means of time-delayed slow connections. Here, the transi-
tion structure is built into the synapses of the network and
is not stochastic. The challenge we address in this paper is
to leverage what we know from past work about determin-
istic transitions in attractor networks and combine it with
a source of noise to make these transitions stochastic, with
controllable Markov probabilities for each transition.

Network architecture

We propose a network consisting of three parts: A memory
network, a noise network, and a mixed network (see Fig. 1).
The memory network taken by itself is an attractor network
with stabilizing recurrent connections; it stores states of the
Markov chain as attractors. The noise network also stores a
number of attractor states (the noise states); in its case, the
transitions between attractors occur uniformly at random.

The mixed network is another attractor network, which
receives input from both the memory and noise networks,
according to fixed random weights. The attractors (mixed
states) of the mixed network are chosen according to the
memory and noise states; thus, a different pair of memory
state and noise state will induce the mixed network to fall
into a different attractor. The memory network receives in-
put from the mixed network, which induces it to transition
between the memory attractor states.

The key insight in our design is that given the combined
state of the noise and memory networks (as captured in the
mixed network), the next memory state is fully determined.
Stochasticity arises from resampling the noise network and
allowing it to fall uniformly at random into a new attractor.
This is in fact the sole source of stochasticity in the model,
and it is in a sense analogous to the reparameterization trick
used in (Kingma and Welling 2013).

In order for transitions between memory states to be de-
termined by the state of mixed network, the attractors for
the mixed network should be linearly separable. A simple
concatenation of memory and noise states would result in
a strong linear dependence between mixed states, making
them difficult to linearly separate (Cover 1965). We recover
linear separability in our model by instead constructing the
mixed network as a random projection of memory and noise
states into a higher dimensional space (Barak, Rigotti, and
Fusi 2013).

The connections from the mixed network back to the
memory network that induce the transition are slow connec-
tions (see (Sompolinsky and Kanter 1986)); they are time-
delayed by a constant τ and are active at intervals of τ . This
allows the memory network to stabilize its previous state
before a transition occurs. Thus, at every time step, each
memory neuron takes a time-delayed linear readout from
the mixed representation, adds it to the Hopfield contribu-
tion from the memory network and passes the sum through
a threshold non-linearity.

Formally, the dynamics are given by the following equa-
tions, where xM

i (0 ≤ i < nM ), xN
j (0 ≤ j < nN ), and xQ

k
(0 ≤ k < nQ) denote states of neurons in the memory net-
work, noise network, and mixed network, respectively. The
function δmod

τ (t) is 1 when t ≡ 0 (mod τ), otherwise 0;
and the notation x(t − τ) denotes the state x at time t − τ
(otherwise assumed to be time t). The function ν(t, τ) repre-
sents a noise function that is resampled uniformly at random
at intervals of τ .1

xM
i ← sign

(
nM∑
�=1

JM
i� x

M
� + δmod

τ (t)

nQ∑
k=1

JMQ
ik xQ

k (t− τ)

)
,

xN
j ← sign

(
nN∑
�=1

JN
j�x

N
� + ν(t, τ)

)
,

xQ
k ← sign

( nQ∑
�=1

JQ
k�x

Q
� +

nM∑
i=1

JQM
ki xM

i +

nN∑
j=1

JQN
kj xN

j

)
,

The weight matrices JM , JN , JQ, and JMQ are learned
(see below), while JQM and JQN are random, with nQ �
nM , nN .

We implement the noise network as a ring attractor —
a ring of neurons where activating any contiguous half-ring
yields an attractor state. Here we have adapted the model
described in (Ben-Yishai, Bar-Or, and Sompolinsky 1995)

1This “clocked” activity, while not biologically implausible,
might be unnecessary; future work might aim to replace it, per-
haps by combining time-delayed neurons with a sparse, high-
dimensional projection to the mixed representation.
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to the discrete setting according to the following dynamics:

JN
ij =

{−1 for nN/4 ≤ |i− j| ≤ 3nN/4,

+1 otherwise,

for 1 ≤ i, j ≤ nN , where we require that nN be even. There
are, then, aN = nN attractor states Ai, which take the form:

Ai =

{
xN
i+k = −1 for 0 ≤ k < nN/2,

xN
i+k = 1 for nN/2 ≤ k < nN ,

where indices are taken modulo nN .
Another possible construction for the noise network is

simply to have a small set of randomly activated neurons
with no recurrent stabilizing connections. In this construc-
tion, the number of noise attractor states is exponential in
the number of noise neurons, allowing higher precision in
probabilities for the same number of noise neurons. How-
ever, this construction has the disadvantage that it is highly
sensitive to the perturbation of single neurons, and so it may
be difficult to distinguish between incidental noise and a re-
sampling of the noise network.

The components in our network all have biological ana-
logues. We use slow neurons to prompt transitions between
memories only after the memories have been allowed to sta-
bilize. These could be implemented via the autapses in (Se-
ung et al. 2000). We use large random expansions to in-
crease linear separability of states, as suggested in (Babadi
and Sompolinsky 2014). Also, the noise network in our ar-
chitecture has a promising parallel in the LMAN region of
the songbird brain, which has been linked to generating vari-
ability in songs during learning (Ölveczky, Andalman, and
Fee 2005). Alternatively, the noise network in our model
could just be any uncorrelated brain region.

Learning

There are several sets of weights that must be determined
within our model. Those denoted JM , JN , JQ, and JMQ

above are learned, while JQM and JQN are random.
The recurrent connections within the memory network

(JM ) and noise network (JN ) are learned using Hebb’s rule,
ensuring that each of the three subnetworks has the desired
attractor states. The weights for slow synapses from the
mixed network to the memory network (JMQ) are chosen
according to methods described in (Sompolinsky and Kan-
ter 1986) for inducing deterministic sequences of attractors.
The weights within the mixed network (JQ) are learned us-
ing the perceptron learning rule, yielding a larger capacity
than the Hebbian approach used in (Sompolinsky and Kan-
ter 1986).

Finally, it is necessary that we determine which
(memory, noise) state pairs should transition to which
new memories. For a desired transition S1 → S2 between
memory states, having probability p in the Markov chain,
we assign (approximately) a p-fraction of noise states, so
that (S1, N) induces a transition to S2 for all N in the p-
fraction. Thus, several noise states, in the presence of a
particular memory state, could result in the same transition;
the number of noise states assigned to a transition is propor-
tional to the probability of that transition. Probabilities may

be approximated to within an accuracy of ε = O(1/aN ),
where aN is the number of attractor states in the noise net-
work.

Let us consider the biological feasibility of our learning
approach. We use a Hebbian rule for stabilizing the pat-
terns, in keeping with the established hypothesis of Hebbian
learning within the brain. For learning state transitions, we
have so far opted to use the perceptron rule in the interest
of increasing capacity. This, however, requires storing and
iterating over a list of pairs of the form (memory, noise).
It is perhaps more biologically feasible to use an online al-
gorithm for which such a list need not be learned and stored,
where learning proceeds by sampling trajectories from the
desired Markov chain.

Such an online learning rule indeed seems possible if
we use Hebbian learning for the state transitions. Specif-
ically, every time a transition occurs in the real world, we
strengthen the corresponding connections in our network.
Since our transitions take the form of (memory + noise)
→ new memory, the noise state used in the transition is
simply whatever (arbitrary) state the noise network is in at
that moment. A slight weakness to this approach is the net-
work must recognize when a particular transition had al-
ready been learned, to prevent overwriting; however, this
seems by no means biologically insurmountable.

Future directions
The connection weights from the mixed network to the
memory network must discriminate between the various
mixed states in order to elicit the right transition. We use
a perceptron learning rule to learn these weights and use
a high-dimensional random projection to form our mixed
state, to increase the number of mixed states that are lin-
early separable (Barak, Rigotti, and Fusi 2013; Cover 1965),
thereby allowing us to encode a larger number of transitions
into our network. In effect, points that were close together
in the original space are far apart in the higher dimensional
space, and thus easy to separate. This comes with a down-
side, however, since small, accidental perturbations in the
original state will likewise be blown up by the random ex-
pansion. In (Barak, Rigotti, and Fusi 2013) this problem is
referred to as a generalization-discrimination trade off. We
did not encounter this problem in our preliminary simula-
tions, since we did not consider noise in our neural update
rule, Equation 1. This ensured that our system always fell
to the very bottom of its attractor states, and in the statistical
mechanics analogy corresponds to operating the system at
zero temperature.

We plan to test empirically the limits of our system’s per-
formance with respect to the level of noise in our update
rule (the temperature of our system), the expansion ratio of
our random projection, and the number of mixed states that
need to be correctly classified. Checking the agreement of
our simulations with theoretical predictions will reveal more
about the capabilities of a system of neural computations
based on stochastic transitions between attractor states.

Our architecture can also implement Markov chain Monte
Carlo, specifically some version of Gibbs sampling. Each
new state is sampled from a distribution conditioned on the
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Figure 1: A schematic of our recurrent network. The cur-
rent memory state is paired with a randomized noise state,
and that pairing determines the next memory state. Since the
noise state is sampled uniformly at random, it follows that
the probability of a particular transition from memory state
S1 to S2 is given by the fraction of noise states that pair with
S1 to produce S2. To implement these transitions, we con-
sider each memory neuron at time t + 1 to be a perceptron
readout of the mixed representation. To increase the separa-
bility ability of these perceptrons, the mixed representation
is a large, random expansion of the (memory, noise) pair-
ings. The state transitions operate on a slow timescale due
to the slow neurons. Not pictured are the self-connections
within the memory network, noise network, and mixed net-
work that serve to stabilize the corresponding states on a fast
timescale.

current state - this is analogous to sampling from a condi-
tional distribution as in Gibbs sampling. Future work could
involve learning and representing these conditionals within
our network and implementing a noise-robust stochastic
sampler over discrete state spaces.
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