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Abstract

People regularly produce novel sentences that sound native-
like (e.g., she googled us the information), while they also
recognize that other novel sentences sound odd, even though
they are interpretable (e.g., ? She explained us the informa-
tion). This work offers a Bayesian, incremental model that
learns clusters that correspond to grammatical constructions
of different type and token frequencies. Without specifying
in advance the number of constructions, their semantic contri-
butions, nor whether any two constructions compete with one
another, the model successfully generalizes when appropriate
while identifying and suggesting an alternative when faced
with overgeneralization errors. Results are consistent with
recent psycholinguistic work that demonstrates that the exis-
tence of competing alternatives and the frequencies of those
alternatives play a key role in the partial productivity of gram-
matical constructions. The model also goes beyond the psy-
cholinguistic work in that it investigates a role for construc-
tions’ overall frequency.

1 Introduction

Native speakers of a language generalize beyond the sen-
tences they witness in order to produce new utterances,
while at the same time they generally avoid overgeneraliza-
tions that would sound unnatural. For example, as soon as
google became a household term, English speakers freely
used the verb to google in the double-object (DO) construc-
tion (Google me the instructions). At the same time, native
speakers restrict their creative potential to avoid producing
seemingly parallel examples, which in fact sound odd to
proficient English speakers (?Explain me the instructions).
The fact that constructions tend to be partially but not fully
productive has been puzzled over for decades (Braine 1971;
Bowerman 1990; Pinker 1989; Yang and Montrul 2017).

Several psycholinguistic studies have made some head-
way on the problem as experimental work has investigated
possible factors that enable people to learn and use language
creatively without overgeneralizing to produce utterances
that sound odd. Three factors in particular have been the
focus of much work: whether the verb and construction are
semantically compatible; the frequencies of verbs, construc-
tions, and verbs-in-constructions; and whether there exists

Copyright c© 2017, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

a readily-available competing alternative way to express the
intended message.

Recent work has found that when there exists a readily
available (agreed upon) conventional way to express an in-
tended message, it tends to statistically preempt the use and
acceptability of a novel formulation (Boyd and Goldberg
2011; Goldberg 1995; 2006; 2011; Robenalt and Goldberg
2015). That is, participants prefer a familiar witnessed for-
mulation over a novel formulation that is intended to express
the same message. For example, when presented with the
novel formulation, ?She explained him the news and asked
to paraphrase it, people tend to agree on the paraphrase,
She explained the news to him. This has been attributed to
the fact that explain has been previously witnessed in the
“caused-motion” (CM) paraphrase, far more often than in
the DO, even in discourse contexts in which the DO would
have been appropriate (for other verbs) (Goldberg 2011). At
the same time, if there does not exist a readily available
(agreed upon) alternative, people are more likely to accept
the novel formulation. For example, since the novel utter-
ance, She sang him into another dimension, does not lend
itself to an agreed upon, more conventional alternative para-
phrase, speakers are relatively free to use this formulation,
combining sing and the CM in a novel way (Robenalt and
Goldberg 2015).

Other work has argued that people generally do not stray
far from the input, regardless of what message they intend to
convey. This view predicts that novel pairings of a familiar
verb with a construction should be less and less acceptable
as the overall frequency of the verb increases. That is, high
frequency verbs should be particularly resistant to novel
uses, since they have been observed frequently enough that
their conventional distributions would be highly entrenched.
A key difference between this conservatism via entrench-
ment proposal, and statistical preemption is that conser-
vatism is not directly influenced by the intended message
being conveyed (Ambridge et al. 2012; Stefanowitsch 2008;
2011).

Psycholinguistic work directly comparing statistical pre-
emption and conservatism via entrenchment has found con-
flicting results (Ambridge and Blything 2015; Ambridge et
al. 2012). In a recent paper aimed at clarifying these ap-
parent contrastive findings, (Ambridge, Barak, and Wonna-
cott 2018) point to an underlying methodological difficulty
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in teasing apart the various distributional measures in the
corpus-based analysis framework. By utilizing the analyt-
ical power of a computational model, we are able to over-
come these limitations by directly manipulating the input to
the model to represent different hypothesized scenarios.

The incremental Bayesian computational framework de-
scribed here simulates human behaviour in the context of
complex naturalistic data. It provides a useful testbed to in-
vestigate possible influences of semantics, frequencies, and
competition. The model’s framework allows for an evalua-
tion of whether the model can recognize when there exists
a readily-available agreed-upon competing formulation of a
novel utterance type (Robenalt and Goldberg 2015). In par-
ticular, Robenalt and Goldberg asked native English speak-
ers to provide a paraphrase of various novel combinations
of verbs and constructions. When speakers tended to con-
verge on the same paraphrase for a novel sentence, the sen-
tence is considered to have a readily-available agreed-upon
competing alternative (has-CA); when speakers were more
likely to vary in their paraphrases of a sentence, the sen-
tence is considered not to have a readily-available agreed-
upon competing alternative (no-CA). Robenalt and Gold-
berg found that speakers rated equally novel sentences as
more acceptable when there was no competing alternative
(Robenalt and Goldberg 2015). The present model repli-
cates this result. Specifically, provided with a verb and an
intended message, our model identifies the most likely syn-
tactic pattern to be used to express that message. Results
demonstrate that the existence of a readily available com-
peting alternative essentially leads to a rejection of a novel
formulation and the substitution of the more familiar for-
mulation of the intended message. The model additionally
replicates the the psycholinguistic finding that the frequency
of a verb plays a role when there is a competing alternative
formulation (Robenalt and Goldberg 2015): the more fre-
quently an alternative formulation has been witnessed, the
more strongly it is preferred.

Importantly, the present model goes beyond psycholin-
guistic work in that it illuminates a possible role for the over-
all construction frequency. That is, the model is able to com-
pare the role of token frequency of a verb in the competing
construction, with the frequency of the competing construc-
tion across all verbs. The model replicates the finding, just
mentioned above, that a familiar formulation is more likely
to be predicted over a given novel formulation when the spe-
cific verb is more frequent in the competing construction;
the model also demonstrates a secondary role for the overall
frequency of the construction.

2 Computational Model

2.1 Previous models

Several computational models have been applied to explain
human-like performance on production and judgment of
combinations of verbs and constructions. Many of these
have focused on the ability to generalize beyond the ob-
served data in the case of verb alternations (Barak, Gold-
berg, and Stevenson 2016; Ambridge and Blything 2015;
Barak, Fazly, and Stevenson 2014a; Parisien and Stevenson

Figure 1: An illustration of a snapshot of the clusters learned
by the model. The model assigns each input frame to a single
cluster by counting the number of times each feature value
was observed; e.g., the first cluster, marked C1, recorded the
values fall, break, and move for the verb feature. The obser-
vations of each value in each cluster are marked by darker
shades for frequently observed values. The size of the clus-
ter is illustrated by the weight of the cluster’s borders in the
figure. Note, that the semantic and syntactic properties are
simplified in the illustration.

2011; Perfors, Tenenbaum, and Wonnacott 2010). But this
approach is limited in its coverage since a verb alternation
involves only two distinct constructions, each with a simi-
lar meaning. Other work has looked at additional aspects of
restricting over-generalization behaviour. Freudenthal et al.
(2007) and Connor, Fisher, and Roth (2012) present compu-
tational frameworks that make minimal assumptions about
the learner’s knowledge, while showing some ability to re-
treat from overgeneralization errors. However, these models
are limited in the ability to represent fine-grained proper-
ties of the events since neither framework includes semantic
properties.

The model of Alishahi and Stevenson (2008) offers an in-
cremental Bayesian clustering framework that incorporates
semantic and syntactic properties into a learning process de-
signed to simulate natural learning mechanisms. It uses an
incremental process that facilitates the replication of child
over-generalization behaviour (e.g., ? He fell the ball). The
original analysis was based on a small set of mostly high-
frequency action verbs, but Barak, Fazly, and Stevenson
(2013) extended the data provided to the model with addi-
tional verbs, a wider range of semantic classes, and a wider
range of verb frequencies. When the incremental Bayesian
clustering model was enriched with additional semantic fea-
tures, it was found to be superior at replicating human judg-
ments than otherwise comparable models (e.g., Ambridge
and Blything 2015), due to the fact that it takes advantage of
incremental clustering of semantic and syntactic properties
(Barak, Goldberg, and Stevenson 2016).

In Section 2.2, we give an overview of the model of Al-
ishahi and Stevenson (2008), followed by a more precise de-
scription of the mathematical formulation of the model (see
Section 2.3).
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head predicate FIND
Syntactic Features:
syntactic pattern N1 V N2 for N3
argument count 3
complement type none
Semantic Features:
event primitives { physical , cause, possess }
event participants { agent , animate, cause}

{ theme, changed}
{ beneficiary}

Table 1: An example usage-event. The Syntactic features
reflect an utterance such as He found a book for Danny:
i.e., syntactic pattern ‘N1 V N2 for N3’, 3 arguments,
and no sentential complement. The semantic features re-
flect a corresponding conceptualized FINDING event with
a physical action described as ({physical , cause, possess})
whose ‘N1’ participant ({agent , animate, cause}) locates
the ‘N2’ ({theme, changed}) for ‘N3’ ({beneficiary}).

2.2 The present model

The present model simultaneously and incrementally learns
clusters that resemble grammatical constructions (Alishahi
and Stevenson 2008). See Figure 1 for an illustration of the
clusters formed by the model. Input to the model consists
of a sequence of usage-events representing a verb with its
semantics, in a particular construction with its syntactic and
semantic features, including the use of prepositions, argu-
ment count, semantic participants of the event, and semantic
features of the event. For these annotations, we rely on the
parsed and tagged data from Barak, Fazly, and Stevenson
(2014a) as the training input for the model. Table 1 presents
a sample usage-event illustrating values for these features.

At each step, the model assigns a new usage-event to a
cluster that is most similar to the usage-event in feature val-
ues. Thus clusters grow incrementally with every addition
of a usage-event. If none of the existing clusters is simi-
lar enough, the model uses the current usage-event to create
a new cluster. The clustering decision is permanent in the
sense that a usage-event cannot be removed from a cluster,
and clusters cannot be deleted, merged, or divided over the
course of training.

Since each usage-event involves both a verb and a con-
struction, the input to the model does not distinguish be-
tween the contribution of each. And yet, constructional gen-
eralizations emerge as different usage-events involve distinct
verbs with overlapping properties in their syntactic configu-
ration and event participants.

The model can use the clusters to associate the meaning of
a novel verb in She’s gorping him something with a transfer
event and can deduce that a sentential complement syntactic
pattern is the most appropriate to convey a mental meaning,
and so on.1 This is due to the fact that Figure 1, each cluster

1We use the framework developed by Barak, Fazly, and Steven-
son (2012) which includes a mechanism to address the use of sen-
tential complements. Since the current study concerns other con-
structions, we focus on the relevant properties of the model. See
Barak, Fazly, and Stevenson (2012) for details.

includes similar verb usages that co-occur with the same se-
mantic and syntactic values. The learning mechanism thus
allows the model to generalize over the input in order to
bootstrap from the observed input to select appropriate se-
mantics or syntax for a message that is underspecified (for
either semantics or syntax).

2.3 Learning Clusters

The model incrementally learns clusters from a sequence of
usage-events (Us). Importantly, the number of clusters and
their values are not determined in advance. For each usage-
event, the model identifies the best cluster by maximizing
over the similarity in values of the semantic and syntactic
features of the frame and the clusters:

BestCluster(U) = argmax
k∈Clusters

P (k|U) (1)

where k ranges over all existing clusters and a new one. Us-
ing Bayes rule:

P (k|U) =
P (k)P (U |k)

P (U)
∝ P (k)P (U |k) (2)

P (k) is estimated based on the relative size of the cluster
given all observed frames. In this way, the model gives a
higher probability to bigger clusters. The probability of a
new cluster is estimated as a cluster with a single usage-
event. In early stages, when most clusters do not record
many verb usages, the relative size of a new cluster (of 1)
is similar enough to existing clusters to encourage the cre-
ation of more new clusters than at later stages of learning.
The similarity of the event usage U and the cluster k is mea-
sured by their feature values assuming independence of the
features. Formally, the likelihood P (U |k) is estimated as:

P (U |k) =
∏

fi

Pi(v|k) (3)

where fi refers to the ith feature of U and v refers to its
feature value, and Pi(v|k) is calculated using a smoothed
version of:

Pi(v|k) = counti(j, k)

nk
(4)

where counti(j, k) is the number of times the value v was
observed in cluster k for the fi feature out of all the frames
clustered to k denoted by nk. Note that as the learning pro-
cess progresses the model prefers bigger clusters that record
more information despite having the ability to create a new
cluster directly corresponding to the given frame by using
Eq. (3).

3 Experimental Setup

3.1 Input and Training

We aim to train the model on rich linguistic data that repre-
sent the key distributional properties available to child learn-
ers. The frequencies of each verb, construction, and verb-
in-construction are represented by the input stream, which
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was created to be naturalistic, as described here. A spe-
cific input stream of usage-events (i.e., verbs in construc-
tions) is automatically generated following the methodol-
ogy used by Alishahi and Stevenson (2008) and Barak, Fa-
zly, and Stevenson (2014a). The generation of the input is
based on an input-generation lexicon that contains an entry
for each of the 71 verbs included in the data of Barak, Fa-
zly, and Stevenson (2014a). The input covers a wide range
of verbs with varying semantic properties, syntactic con-
structions, and frequency ranges (e.g., go, fall, want, see,
believe).

The lexicon consists of entries for each of the 71 verbs
denoting its overall frequency in a collection of eight cor-
pora from CHILDES (MacWhinney 2000).2 Furthermore,
the lexicon specifies the frequencies of each verb in each
construction, and the intended abstract interpretation of each
usage (e.g., whether the event is one of transfer, caused-
motion, desire, etc.). The construction frequencies for each
verb are estimated based on a manual annotation of a random
sample of 100 uses of each verb in the above corpora. The
syntactic constructions are identified directly from the cor-
pora, while the semantic properties are adapted from several
resources, including Alishahi and Stevenson (2008), Kipper
et al. (2008), and Dowty (1991).

To create a single input stream of 10000 event usages for
the model, we randomly pick a sequence of verbs, one verb
at a time, from the set of all verbs based on the overall fre-
quency of the verbs. Since the model is sensitive to the order
of presentation, we generate 100 individual input streams
using this process. Each input stream captures the same dis-
tributional properties observed in CDS, while the order of
presentation of verbs varies across the 100 simulations. The
reported results are averaged, given all simulations for each
of the experimental sections.

3.2 Set-up of Simulations

Our experiments are designed to analyze how various distri-
butional properties of the input influence the acceptability of
a novel usage-event. For this purpose, we begin by simulat-
ing the paraphrase task reported by Robenalt and Goldberg
(2015). In the behavioral study, participants were presented
with a novel use of a verb in a construction that it does not
normally occur with, with verb-in-construction novelty con-
firmed using the Corpus of Contemporary American English
(COCA) corpus (Davies 2008). In order to operationalize
whether a novel sentence had a competing alternative (Has-
CA) or not (No-CA), Robenalt and Goldberg (2015) asked
a group of participants to paraphrase the sentence if they
could think of a better way to express the intended mean-
ing with the same verb; if not, participants were to simply
rewrite the sentence as it was. Each sentence was consid-
ered to have a readily available competing alternative (has-
CA), when more than half of participants converged on the
same paraphrase; if fewer than half of participants agreed on
a paraphrase, the use of the verb was considered to not have

2(Brown 1973; Suppes 1974; Kuczaj 1977; Bloom, Hood, and
Lightbown 1974; Sachs 1983; Lieven, Salomo, and Tomasello
2009).

a competing alternative (no-CA). For example, participants
tended to agree that the use of find in ?Find a book to me is
more conventionally expressed by Find a book for me. On
the other hand, He sang them into another dimension had
no agreed upon paraphrase involving the verb sing: instead,
participants suggested a wide range of paraphrases for this
sentence.

We simulate this paraphrase task in our model as follows.
First, the model is trained on a randomly ordered input cor-
pus of 10000 verbs-in-constructions that naturally occurred
in the corpora. Then, we present the model with a novel
usage-event for a particular verb, e.g. Find the book to me
or Sing them into another dimension (see Figure 1 for a full
list of semantic and syntactic features composing a usage-
event). After the model sees the novel usage-event exactly
once, the model is queried with a test usage-event which
consists of the same usage-event minus the specification of
a syntactic pattern. That is, the model is required to predict
the likelihood of each syntactic pattern, when queried about
a combination of a fixed verb and semantic features.

The model’s choice is considered as the syntactic pat-
tern assigned the highest likelihood. This is then compared
with whether the sentence (corresponding to a usage-event)
was determined to have a competing alternative or not. The
model’s decision about whether an utterance has (or does
not have) a competing alternative is determined by whether
the same (or a different) syntactic pattern is considered most
likely for the intended meaning and verb. If both partici-
pants and the model agreed on the availability of a compet-
ing alternative, we considered whether the model predicts
the same paraphrase that human participants had as the most
likely syntactic pattern.

At the end of each test query, we remove the occurrence
of the novel usage-event from the learned clusters to prevent
the model from developing an association of the verb to the
feature values in that novel frame; i.e., the model “forgets”
the test usage before it receives the next test usage.

Formally, we calculate the likelihood of each of the possi-
ble values v for the syntactic pattern given a test event usage
Utest, as in:

P (v|Utest) =
∑

k∈Clusters

Pmain(v|k)P (k|Utest) (5)

where Pmain(v|k) is the probability of the main predicate
feature having the value v in cluster k, calculated as in
Eq. (4), and P (k|Utest) is calculated as in Eq. (2) (see Sec-
tion 2 for details).

4 Experiments and Analysis of Results

We evaluate the likelihood of the model to predict the most
appropriate syntactic construction for a given test novel us-
age as explained in the section above. In Section 4.1, we
first analyze the performance of the model by attempting
to replicate the results reported by Robenalt and Goldberg
(2015) for novel usages with and without a competing al-
ternative. We then evaluate how various factors related to
frequency interact within the model and how those relate to
psycholinguistic findings; to do this, we directly manipulate
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Figure 2: The overall frequency values observed for all verbs
in our lexicon as measure in the CHILDES data (see Sec-
tion 3.1.

Overall raw Relative Frequency
of verb of V in CA

find 1749 2%
fall 1115 50%
sing 738 0%
sleep 704 0%

Table 2: The 4 verbs included in the testing data, along with
their overall frequency, and their relative frequency with the
CA, if available, as determined by the CHILDES data. The
CA is taken to be the most likely syntactic pattern; e.g., “N1
find N2 for N3” for find, and “N2 fall” for fall.

the frequency of a construction, or separately, the frequency
of a verb-in-construction, to consider test case scenarios in
the context of the same simulation task (see Section 4.2).

4.1 Novel Construction Judgment

Here we focus on whether the model appropriately differen-
tiates sentences that have a competing alternative (has-CA)
or not (no-CA) according to human judgments. That is, we
evaluate whether the test usage-event specifying a verb and
an interpretation is predicted by the model as most likely
with the same or different syntactic pattern than that which
had been witnessed once. If the model predicts a different
syntactic frame, we compare the predicted frame to the al-
ternative which was produced by humans.

Two verbs with similar frequencies were used in usage-
events that were determined to have-CA: Find a pen to me
and Fell the lamp. That is, participants converged on the
preferred paraphrases, Find a pen for me and The lamp fell.
Two other verbs with similar frequencies represent the No-
CA scenario: Sing the audience into another dimension and
Sleep the afternoon away. That is, participants did not con-
verge on any shared paraphrase and often chose to simply
repeat the novel sentence as it was (see Figure 2 for overall
frequency information and Table 2 for CA frequency infor-
mation).

Results replicate the finding of Robenalt and Goldberg
(2015), as the model prefers a distinct formulation for the
usage-events which corresponded to sentences that have-
CA, while allowing novel usage-events when the corre-
sponding sentences were determined to be No-CA (see Fig-
ure 3). In both cases, the usage-events were novel, so the
model did not already have a cluster including the verb

Figure 3: The model’s likelihoods for the top three values
for the syntactic pattern for each of four verbs: two has-CA,
find and fall on left; and 2 no-CA, sing and sleep on right.

with the presented syntactic pattern and semantic properties;
therefore, the model had to select the best cluster by maxi-
mizing the shared syntactic and semantic properties speci-
fied by the novel usage-event.

In the Has-CA scenario, the model identifies the novel us-
age as most similar to the biggest cluster that associates the
given verb with the intended meaning, despite the mismatch
in the novel usage of a syntactic pattern and observed us-
ages of the same verb. The likelihood calculation is strongly
affected by the cluster in making the prediction. Because
the cluster has recorded previous uses of the same verb with
the CA syntactic pattern and intended meaning, the CA wins
over the novel syntactic pattern which has contributed only a
single occurrence of the novel syntactic pattern value (since
it had been novel). Importantly, the model considers all clus-
ters in predicting the most likely syntactic pattern value for
the test usage-event, as shown in Eq. 5. Although other clus-
ters would include previous usage-events of the novel syn-
tactic pattern, these clusters would not be as influential in
predicting the winning syntactic pattern if the recorded val-
ues for other features did not match the test usage-event.
Similarly, the likelihood is not as biased by clusters that
record the novel syntactic pattern with verbs and semantic
properties that do not match those in the novel usage.

In the No-CA scenario, the model correctly predicts the
novel formulation is the most likely choice. We observe
that the model predicts the novel syntactic pattern with sim-
ilar confidence for both sing the audience into another di-
mension and sleep the afternoon away. Due to the lack
of an existing cluster that associates the novel meaning for
the given verbs in this syntactic pattern, the model adds the
novel training usage to a cluster that records the use of these
syntactic patterns for other verbs with the closest semantic
properties available. For example, the use of sing the au-
dience into another dimension is added to a cluster that in-
cludes usages of verbs such as run or drop with the same
syntactic pattern and a partial overlap in semantic features
(the caused-motion aspect is shared). At the time of predic-
tion, the model considers clusters that match the test usage-
event in any subset of values. Other clusters that recorded

135



usage-events of the verb did not match as well in syntactic
and semantic feature values.

The model mirrors human judgments in another respect
as well. A number of studies have found that the accept-
ability of verbs used in novel ways correlates inversely with
the frequency of the verb; i.e., higher overall verb fre-
quency correlates with lower judgment scores on the novel
sentences (e.g., Theakston 2004). Robenalt and Goldberg
(2015) note that previous work finding this effect had in-
cluded only novel sentences that had a competing alterna-
tive. They tested both types of sentences and found that
verb frequency only correlated (negatively) with judgments
on novel sentences that had a competing alternative. In the
case of novel sentences without a clear competing alterna-
tive, no effect of verb frequency was found. Therefore, it
may be the frequency of the verb in its CA that correlates
inversely with the frequency of the novel sentence, not the
overall frequency of the verb.

The modeling results are consistent with this interpreta-
tion of the judgment data. Notice that here is a difference in
the degree of likelihood predicted for each of the two usage-
events in the has-CA scenario, in that the model finds that
the CA for Fall the lamp has a much higher likelihood than
the CA for Find a new pen to me. Interestingly, even though
find has slightly higher frequency than fall.

the frequencies of their CAs are markedly different. Only
2% of the usages of find occur in its CA (Find something
for someone) compared with 50% of the usages of fall with
its CA (Something fell). With both verbs having an overall
frequency of about 1500 occurrences, the single novel pair-
ing of find with a novel syntax is compared against about 30
usages (2% of 1500), while the novel form for fall is com-
pared against roughly 750 usages (50% of 1500). Thus, the
likelihood of the competing alternative increases with its fre-
quency. The prediction that verb frequency is not relevant
when there is no-CA is not tested in the model as described,
sing and sleep occur with roughly equal frequency in the
corpus, and are predicted to occur in the novel construction
with roughly the same likelihood.

An additional factor that the model allows us to clarify is
whether the overall frequency of the CA grammatical con-
struction matters or whether the only relevant frequency is
that of the specific verb in the CA construction. Recall that
the model creates cohesive clusters that represent the typi-
cal meaning expressed by a syntactic pattern across several
verbs; e.g., a cluster that includes e.g., fall, break, move,
is associated with intransitive syntax (Figure 1). The num-
ber of usage-events within a given cluster is the (token) fre-
quency of a construction.

The model takes each construction’s frequency into ac-
count in determining how likely a new usage-event is to
be associated with a given construction (higher frequency
correlates with higher likelihood). This then influences the
likelihood of the intransitive cluster attracting a novel usage-
event such as He fell the lamp because the high frequency of
the cluster increases the likelihood of that cluster being se-
lected. The high frequency intransitive cluster fits best for
the test usage-event despite the novel syntactic pattern he
fell the lamp, because the this cluster includes occurrences

Overall Observed Modified Modified
freq. freq. in freq. of freq. of

CA find construction
ask 818 45 45 186
buy 1442 103 103 401
change 553 13 13 58
cut 885 20 20 92
draw 615 15 15 68
find 1749 37 747 37
keep 1392 38 38 170
leave 1214 31 31 141
make 4165 65 65 306
sing 738 13 13 62
write 650 23 23 102
Total 14221 404 1113 1622

Table 3: All verbs that occur with “N1 V N2 for N3” pat-
tern in the lexicon, along with (i) their overall frequencies as
measured in the CHILDES data , (ii) their number of occur-
rences with the CA, ”V NP to NP”, (iii) frequencies mod-
ified for find only, and (iv) frequencies of the construction
modified, but not for experiment (modified for all verbs but
find). Total number of occurrences of verbs overall and with
the construction is given in the bottom line.

of the verbs and significant overlap in semantic attributes,
e.g., additional verbs describing motion.

The relatively lower likelihood of find with the CA can be
thus explained in two ways. First, the relatively lower fre-
quency of “N1 V N2 for N3” in the input (compared with the
intransitive syntax) may result in a less strongly entrenched
cluster for this syntax (represented by the weaker line around
C3 in Figure 1). Second, an alternative explanation can be
found in the lower frequency of find with the CA compared
with the higher frequency of fall with its CA.

In the following section, we analyze these two possi-
ble factors–whether overall frequency of the CA or the fre-
quency of the particular verb in the CA–determine the de-
gree of likelihood of selecting a syntactic pattern.

4.2 Construction Frequency

Does the overall token frequency of the CA, across all par-
ticipating verbs play a role in determining the likelihood of
the CA? And if so, how does it compare to the frequency of
the particular verb in its CA? In this section, we investigate
these questions. In particular, we investigate the model’s
predictions for find a pen for me as the CA for find a pen to
me, when we systematically vary a) the overall frequency of
the CA construction (the number of tokens of all verbs oc-
curring in ”V NP for NP”) or b) the frequency of the CA with
the verb find in particular ”find NP for NP” (see Table 3).

In Figure 4, the first panel shows the result we have al-
ready seen: the model’s prediction for find being used in its
CA with the original frequencies as found in CHILDES. The
center panel in Figure 4 shows the predictions when the CA
construction is given a higher token frequency for all verbs
except find: this leads to a higher likelihood of the CA, com-
pared with the original scenario. That is, the higher number
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Figure 4: The model’s likelihoods for the top three values
for the syntactic pattern for 3 CA frequency scenarios for
the verb find. On the left, the results using the observed fre-
quencies in CHILDES data, followed by 2 artificial settings:
(i) increased token frequency for all verbs in the CA except
find and (ii) increased token frequency of only the verb, find,
in the CA.

of occurrences of verbs other than find with “N1 V N2 for
N3” increases the likelihood of find being used in the same
pattern. As the model observes more usages of the CA, the
relevant cluster grows. Our prediction method thus raises
the probability of this cluster for the sake of prediction (see
Eq. (5)).

Importantly, this influence is made possible by the co-
occurrence of verbs with the CA that have semantic proper-
ties that are similar to those of find. If the increased number
of usages of the CA had recorded unrelated meanings, the
cluster would have become less well suited to express the
novel meaning and therefore its likelihood would have been
reduced. That is, the increase in likelihood due to higher
frequency of the construction is due to the higher number
of usage-events of the CA with the intended meaning. This
is consistent with psycholinguistic results reported by Suttle
and Goldberg (2011).

The model also provides support for the influence of the
frequency of the verb find, in particular, in the CA, as sug-
gested by Robenalt and Goldberg (2015). By increasing the
number of occurrences of find with the CA, the likelihood
of the CA reaches the highest rank among the three sce-
narios (see rightmost panel of Figure 4). In this case, the
cluster recording the usage-events of find with the CA be-
comes more entrenched as it did when the frequencies of
other verbs were increased. In addition, the fact that the
additional usage-events share the same semantic properties
(rather than, only partially overlapping meaning), increases
the likelihood of the CA for find all the more, as it provides
evidence that matches the novel formulation in use of verb
(fully), syntactic (partially), and semantic properties (fully).

5 Discussion

This study extends the explanatory power of current psy-
cholinguistic methods by using a Bayesian computational

model to simulate the language acquisition process. The
computational framework enables us to analyze the inter-
action of several distributional properties as the model is
trained incrementally on a naturalistic stream of usage-
events. The model successfully demonstrates the ability to
automatically differentiate between novel usage-events that
should be avoided and those that are more acceptable as cre-
ative extensions. The model correctly captures the follow-
ing: a) constructions emerge as generalizations over usage-
events that have the same form and similar meanings, b) fa-
miliar formulations of an intended message (CAs) are pre-
ferred over novel formulations, c) if there is no CA, a novel-
usage-event is predicted, d) increasing the frequency of the
CA construction (with related verbs) increases the likeli-
hood that the CA will be preferred, and e) increasing the
frequency of the more familiar CA construction with a par-
ticular verb results in an even higher likelihood that the al-
ternative will be preferred for that verb.

The present model, incrementally trained on naturalistic
data, learns generalizations about the relationships between
form and meaning for specific verbs, for specific construc-
tions, and for combinations of verbs and constructions. The
model and analysis presented here has benefited from work
in psycholinguistic research, and the model in turn can be
a benefit to psycholinguistic research. The model supports
the idea that the existence of competing alternatives plays
a role in the likelihood of accepting a novel combination
of verb and construction. The model also suggests that the
frequency of the competing construction, especially with
that same verb, plays a role. Future work is needed in or-
der to add more nuanced semantic properties to the model
and more usage-events. We aim to have demonstrated that
this type of model provides a useful testbed for work on
construction-learning and use of constructions.

Importantly, Barak, Fazly, and Stevenson (2014a)
presents an extension of the model of Alishahi and Steven-
son by simultaneously learning verb classes that capture
high-level correlations among verbs and constructions. The
extended model enables a closer replication of human be-
haviour on a range of different tasks relating to argument
structure acquisition (Barak, Goldberg, and Stevenson 2016;
Barak, Fazly, and Stevenson 2014a; 2014b). In this study,
we choose to perform a preliminary analysis using only the
original model of Alishahi and Stevenson (2008) to evaluate
the role of the full set of properties available to a speaker
who aims to convey a certain message with a particular
verb and construction. We aim to extend this analysis in
the future with a novel methodology, utilizing the extended
model of Barak, Fazly, and Stevenson (2014a) to simulate
grammatical error detection as analyzed by psycholinguistic
studies. In addition, we hope to extend our current analy-
sis to a more comprehensive set of verbs and constructions
that would evaluate the language acquisition process over a
broader range of case scenarios.
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