The AAAI 2017 Spring Symposium on
Computational Construction Grammar and Natural Language Understanding
Technical Report SS-17-02

Processing Natural Language
About Ongoing Actions in ECG

Steve Doubleday
University of California, Irvine,
Irvine, California 92697
stevedoubleday @ gmail.com

Sean Trott
International Computer Sciences Institute
1947 Center Street
Berkeley, California 94704

Abstract

Actions may not proceed as planned; they may be interrupted,
resumed or overridden. This is a challenge to handle in a
natural language understanding system. We describe exten-
sions to an existing implementation for the control of au-
tonomous systems by natural language, which enables such
systems to handle incoming language requests regarding ac-
tions. Language Communication with Autonomous Systems
(LCAS) has been extended with support for X-nets, param-
eterized executable schemas representing actions. X-nets en-
able the system to control actions at a desired level of gran-
ularity, while providing a mechanism for language requests
to be processed asynchronously. Standard semantics imple-
mented include requests to stop, continue, or override the ex-
isting action. The specific domain demonstrated is the control
of motion of a simulated robot, but the approach is general,
and could be applied to other domains. (Demonstration video:
https://youtu.be/SPwHpng3N;j8)

Introduction

A challenge for natural language understanding systems that
interface with robots is responding to changes in the situa-
tion communicated through language. Robots and other au-
tonomous systems must deal with interrupts from the phys-
ical world, but to our knowledge none also incorporate a
mechanism to interrupt an action through language. Ac-
tions may need to be interrupted, cancelled, stopped, re-
sumed, or overridden. Underlying these responses are as-
sumptions about the state of events. The temporal structure
of events is expressed in linguistic constructions termed as-
pect (Narayanan 1997); an action can be about to start, or
ongoing, or just completed. An action that is interrupted or
stopped is presumed to be ongoing; one that is cancelled is
presumed not to have started yet.

We have extended an existing ECG-based system, Lan-
guage Communication with Autonomous Systems (LCAS)
(Trott et al. 2015), to enable it to handle language requests
regarding the actions of simulated robotic agents. LCAS is

Copyright (© 2017, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

171

Jerome Feldman
International Computer Sciences Institute
1947 Center Street
Berkeley, California 94704

the current implementation of a general approach to lan-
guage understanding termed the Neural Theory of Language
(NTL), which has been under development for many years.
The NTL approach separates the computational problems of
language understanding into two phases, analysis and enact-
ment (Feldman, Bryant, and Dodge 2009). In the system ar-
chitecture, these are termed the “language side” and the “ac-
tion side”, respectively. During the analysis phase, an Em-
bodied Construction Grammar (ECG) analyzer (Feldman,
Bryant, and Dodge 2009) parses the text of the user’s request
to the system, creating a formal semantic representation of
the text that is further refined to produce inputs to the enact-
ment phase. In the enactment phase, the focus of the current
work, the actions referenced by the text are carried out. Po-
tentially, these actions might also be simulated, to enable
inference about future states; this is a goal for future work.

The extensions to LCAS center around the use of X-
nets (Narayanan 1997), which implement parameterized ex-
ecutable schemas representing actions. An X-net is imple-
mented as an extension to a Petri net (Murata 1989). The
Petri net formalism is useful for the description and analysis
of concurrent processing in distributed systems. An X-net
implements many of the standard semantics we associate
with action. Actions can be enabled, started, ongoing, or
done, which expresses the normal execution path. Actions
can also be suspended, resumed, or restarted, and handle ex-
ception conditions. In addition to having a shared standard
action semantics, each X-net is tailored to meet the demands
of a set of related tasks. In this case, a Move X-net serves as
an interface to drive the motion of a simulated robot. Asyn-
chronous communication links the language side of the sys-
tem, handling new user requests as they arrive, to the action
side of the system, which drives the motion of the simulated
robot.

X-Nets and Simulation Semantics

There is considerable evidence that language understand-
ing proceeds in part by simulating the actions implied by
the text (Bergen, Chang, and Narayan 2004; Bergen 2012;
Schilling and Narayanan 2013). Some researchers have an-

alyzed the link between action and language by mapping
from body parts to nouns, and mapping from body mo-
tions to verbs (Pastra and Aloimonos 2012). Focusing on
the physical motions that constitute the elements of an ac-
tion, it is possible to build a grammar of actions as se-
quences of body poses. This non-verbal grammar of ac-
tion has been used to simplify the problem of recogniz-
ing the actions of other agents (Summers-Stay et al. 2012;
Yang et al. 2015). A further extension is to interpret se-
quences of action primitives as action plans or fragments
of action plans, which simplifies the creation of new ac-
tion plans or the interpretation of the observed actions of
other agents (Guha et al. 2013). Potentially, this approach
might also be used as another way to simplify the problem
of language acquisition, which relies on non-verbal informa-
tion to narrow the range of possible interpretations of under-
specified linguistic expressions (Chang and Gurevich 2004;
Chang 2008).

The current research focuses on a different problem — the
link between linguistic expressions and actions that an agent
already “knows” how to do, and may be in some stage of
performing. Actions and the simulation of actions can be
modeled by executable schemas parameterized by language
(Narayanan 1997; 2010; Schilling and Narayanan 2013). For
example, verbs concerning motion can be organized in terms
of an implicit ascending speed parameter: “crawl”, “amble”,
“walk”, “run”, “dash”. Linguistic aspect involves the use of
grammar to parameterize the state of actions in reference to
a general event model. An action can be impending, under
way, or completed.

An executable schema can be implemented as an X-net, a
parameterized Petri net representation of an action. The Petri
net formalism models distributed processing as a set of states
and transitions among states, connected by directed arcs.
Transitions fire when the pre-conditions defined by their in-
put arcs are met, generating updates to the places connected
to their output arcs. The pre- and post-conditions take the
form of one or more tokens in a place. The vector of token
counts for all places in the Petri net constitutes its current
state, or marking. Figure 1 depicts a transition that will not
fire; Figure 2 depicts an enabled transition before and after
firing; after firing the transition is disabled. In this case, fir-
ing consumes two tokens and creates one token.

Inputs are not all marked; transition disabled.

Figure 1: Transition not yet enabled, as all input places are
not marked.

X-nets define a standard action semantics, states and tran-
sitions that are common to all actions. Depicted as an event

172

Both inputs marked; transition enabled. Fires, creating one token.

Figure 2: When all input places are marked, transition is en-
abled and fires, marking the output place

Enable Disable

Ready

Enabled Prepare

Cancel

Canceled Undo Undone

Figure 3: Event graph (controller) depicting the structure of
events (Narayanan 2010)

graph in Figure 3, this serves as a useful intermediate-level
abstraction for the representation of actions (Narayanan
2010; Doubleday 2017). Scalar parameters can be passed to
an X-net, enabling it to perform computations to modify its
processing, e.g., to move faster or slower. X-nets can also be
composed of more granular X-nets, where each X-net has
some ability to perform error recovery locally, with escala-
tion to higher levels as needed.

These X-net capabilities enable a system to control ac-
tions. They also enable a system to reason in a consis-
tent way about actions. X-nets provide a natural way to
model linguistic aspect. By examining the current mark-
ing of an X-net, we can distinguish between actions that
are about to begin, or are ongoing, or just completed. X-
nets can also support reasoning about events in general
(Sinha 2008), including hypothetical or counter-factual lan-
guage. Finally, X-nets can support the use of simulation
as a planning mechanism. Rather than viewing a sequence
of actions as a vector in a pre-defined search space, e.g.,
(Guha et al. 2013), the agent might explore future alterna-
tives by simulating the execution of one or more X-nets,
and evaluating the results of the simulation (Hesslow 2002;
Schilling and Narayanan 2013). For a formal analysis of the
applicability of X-nets to the modeling of actions, including
limitations and neural plausibility, see Narayanan (1997).

System Architecture
System for Natural Language Understanding

We have implemented an ECG-based system for natural lan-
guage understanding (Trott et al. 2015; Khayrallah, Trott,
and Feldman 2015; Eppe et al. 2016). The general architec-
ture for this system is depicted in Figure 4. Most of our pre-
vious work has focused on extending the core system frame-
work to the robotics domain, in applications such as Morse
(Echeverria et al. 2011) and ROS (Eppe, Trott, and Feldman
2016), but the system was designed to facilitate simple re-
targeting to new domains and applications. Ongoing work
includes applications such as real-time strategy games (Star-
Craft), metaphor analysis, and mental space modeling.

Observations Applicats
-— pprcahon «— Task AP
Inferences (World) App-

interactions

Commands
and data
Speech/Text
- éha.red Ontalag_v; -
Templates
ﬁECG Analyzgr Specialize% Problem
Solver(s)
Ul-Agent

Figure 4: System Architecture for natural language under-
standing.

The system is modular; at the highest level, it can be di-
vided into a language side and an action side. The language
side, depicted on the left in Figure 4, receives speech or
text as input, and produces a structured representation of
the text’s meaning called an Action Specification (ActSpec).
This ActSpec, which can describe a command, query, or as-
sertion about the world, is communicated as a JSON object
to the action side of the system. The action side, depicted on
the right in Figure 4, consists of a Problem Solver, a world
model, and a Task API. The Problem Solver unpacks the Act-
Spec to determine what task is to be accomplished and with
what parameters. The Problem Solver refers to the world
model to determine the constraints on the possible solutions
to the problems posed by the target task, and computes a so-
lution. Finally, the Problem Solver makes API calls to the
underlying application, which constitute the actions neces-
sary to accomplish the target task. Communication between
the language and action sides is enabled by shared ActSpec
templates, which guide ActSpec creation, and a shared on-
tology. The separation of the language and action sides al-
lows them to be run on separate processes; thus, the action-
side can solve ActSpecs while the language-side continues
to receive text and speech input.

A crucial theoretical underpinning of the system design
is previous work on mental simulation of language (Bergen
2012). The language side produces the parameters for the
simulation of an event, which can then be simulated or exe-
cuted by the action side.

173

More concretely, the ECG Analyzer (Bryant 2008), a cog-
nitively plausible language parser, uses an Embodied Con-
struction Grammar (Bergen, Chang, and Narayan 2004;
Feldman, Bryant, and Dodge 2009) to produce a Seman-
tic Specification (SemSpec) of the events described in lan-
guage. The SemSpec maps constructional information to the
meaning of the sentence. Task-relevant information from the
SemSpec is extracted by the Specializer and formatted into
an ActSpec. This ActSpec provides the parameters for the
simulation of language.

In the system described in (Khayrallah, Trott, and Feld-
man 2015; Trott et al. 2015), the action side executed these
incoming ActSpecs as they arrived. In the current work, X-
nets are introduced to provide additional mechanisms for
simulation and control.

Integration of X-nets

The architecture depicted in Figure 4 has been modified to
have the Problem Solver execute one or more X-nets to rep-
resent the action being undertaken through the task API. The
Problem Solver examines the state of the X-net either dur-
ing or after execution to make inferences about progress on
the task. Integrating X-nets into the architecture enables the
system to deal with the following types of tasks, events, or
requests:

e suspension: “Robotl, stop moving!”
e resumption: “Robot1, continue moving!”

e interruption and redirection: while a move is in progress,
e.g. “Robotl, move to the green box!”, a new target is
specified: “Robotl, move to the blue box!”

For the application of controlling a simulated robot, the
Problem Solver invokes the Move X-net (Figure 5). The
Move X-net supports an additional parameterization, imple-
menting different speeds for different verbs: amble (slow),
move (normal), dash (fast).

X-net Problem Solver

The incorporation of X-nets into the LCAS architecture al-
lows a systematic decoupling of the language side and ac-
tion side of the architecture, such that the user can inter-
act without restriction with the system, often in response to
the current system behavior. The user can interrupt, cancel,
resume, or restart the action, as appropriate, without being
constrained by blocking or synchronous control flows. As is
seen in both biological and mechanical action loops, there is
some inherent delay between a new request and the action
response, but the asynchronous nature of Petri net execution
enables this to be handled in a principled way, without resort
to complex logic or ad hoc exception handling.

To support this decoupling, the execution of an X-net
Problem Solver involves two threads, one that listens on a
queue for new incoming requests from the language side,
and a second thread that interacts with the particular X-net
appropriate to the task at hand. In turn, the X-net interacts
with the task API to accomplish the objective. For an ongo-
ing action, a new incoming request will be translated by the
Problem Solver into an update to one or more places in the

currently executing X-net, which in turn will cause a change
in the X-net flow of control, corresponding to the meaning
of the new request. Requests regarding actions that have not
yet started or have completed may result in the invocation of
a new X-net, or no change.

Petri net Extensions to Support External Systems

X-net support is built on PIPE V5, an open source Java Petri
net editor and debugging environment! (Bonet et al. 2007;
Dingle, Knottenbelt, and Suto 2009; Tattersall and Knotten-
belt 2014). To support the current work, PIPE was extended
to provide support for interfaces to and from external sys-
tems, and for execution through an API2. The extensions in-
clude:

e External Transition: an extension to a Petri net transition,
providing a mechanism to execute Java code whenever
the transition fires. The External Transition has access to
the state of the Petri net, and is optionally given a context
passed from the external system, consisting of an instance
of an arbitrary Java class.

e External Input Place: an extension to a Petri net place,
providing a mechanism for an external system to update
the marking of the place with one or more tokens.

e External Output Place: an extension to a Petri net place,
providing a mechanism for an external system to be noti-
fied whenever the marking of the place changes.

e PNML extensions: extensions to the Petri Net Markup
Language, which defines the specification of a Petri net in
XML format, to support external transitions and places.

e Merge Place: an extension to a Petri net place, enabling
a Petri net to be composed of multiple other Petri nets
for purposes of design and coding. Merge places serve to
connect the various Petri nets together, and are then col-
lapsed to single places at execution time, creating a single
executable Petri net.

e Runner: the Runner interface enables an external system
to interact with a Petri net. The interface supports the fol-
lowing functions:

— load a Petri net from a PNML file
— start Petri net execution
— mark a place in a Petri net

— subscribe to notifications of a change in marking of a
place in a Petri net

— pass an object to be made available to a Petri net tran-
sition when it fires

— subscribe to notifications of global Petri net events, in-
cluding starting or stopping execution, and firing a tran-
sition

"https://github.com/sarahtattersall/PIPE

2Current code: https://github.com/sjdayday/PIPECore/tree/
hierarchical-nets. Documentation: https://github.com/sjdayday/
PIPECore/wiki. In the future, the extensions will be integrated as a
release of PIPE.

174

Standard Action Semantics and the Move X-net

Figure 5 shows the Move X-net, which controls the motion
of a simulated robot. The upper portion of the X-net is an
implementation of a subset of the standard action seman-
tics depicted in Figure 3. Updating or reading places in this
X-net provides a simple, standard interface to many of the
operations that we assume should be available in any action
— starting, stopping, resuming or restarting an action.

The lower portion of the Move X-net depicts the logic
specific to controlling motion. This is a simplified interface
that defers specifics of trajectory planning to the Problem
Solver and to the simulator (Morse, in the current example),
but additional logic could be added as needed for other do-
mains, without affecting the operation of the standard action
semantics in the upper portion of the X-net.

ggggg

O ()
Start!| Ongoing Finis|
1 1
anmg
1
Amven

Moved

ggggg

Enabled

Move

Figure 5: Move X-net

X-net Interface to an External System

The mechanics of the interface between the LCAS system
and the Petri net implementation of the Move X-net is de-
picted in Figure 6. This serves as an example of the general
interaction between an X-net and any external system.

Prepare Ready

External transitions use Morse
channel to share parameters Moving

Place marked by external system

Place read by external system Move: &)

Figure 6: Move X-net interface to an external system

From the perspective of the X-net, the external system
here is the Problem Solver component of the LCAS sys-
tem, which controls execution of the motion by populat-
ing some subset of the standard external input places: En-
abled, Suspend, Resume and Restart. The Problem Solver
monitors progress of the motion by listening for updates to
standard external output places: Ready, Ongoing, Done, and

Suspended. The interaction with the task API, in this case
the Morse simulator, happens through bi-directional updates
to an instance of the task-specific MotionChannel Java class.
These updates happen during the external transitions: Move,
SuspendT, ResumeT, and RestartT. Each transition commu-
nicates an appropriate target operation, as well as the target
position of the simulated robot, from the perspective of the
X-net. When any transition fires, control passes from the X-
net back to the Problem Solver, which performs any appro-
priate pending action and updates the current position of the
robot from the perspective of the Morse simulator, and then
returns control back to the X-net. Finally, when the Morse
simulator detects that the simulated robot has arrived at the
destination, it updates the Arrived external output place to
trigger transition of the Move X-net to the Done state.

The mechanics of the integration between the Python
implementation of LCAS and the Java implementation of
the Petri net is handled through the JPype Python package.
JPype enables a Python script to start and attach a new JVM
to the current Python thread, and then to create instances
of Java classes. The methods and public fields of the Java
instances are then available for inspection and update by the
script through syntax that is consistent with Python. The first
Problem Solver script creates the JVM, and any subsequent
Problem Solver instances use the same JVM. Each Problem
Solver then creates an X-net as needed for its current task,
using the Runner API, and interacts with that X-net until its
task is completed.

The interaction between the Problem Solver and the X-net
can be configured to be effectively synchronous, such that
every state change in the X-net enables the Problem Solver
to regain control. Depending on the task, however, the Prob-
lem Solver may not need such granular control, and may
only register for asynchronous notifications. Regardless of
the degree of coupling between the Problem Solver and the
X-net, this does not alter the overall asynchronous relation-
ship between the language side and the action side in the
LCAS architecture. The processing of requests from the end
user proceeds asynchronously from the combined activity
of the Problem Solver, X-net, and supporting task API. The
standard action semantics provide natural support for the in-
terruption of ongoing action, the preemption of pending ac-
tion, or no operation when the action is already complete.

Robot Motion Example
Normal Motion

The integration of the Problem Solver, Move X-net, and
the Morse simulator to accomplish motion of the simulated
robot, has been demonstrated in the context of various lan-
guage commands?. In response to the command “Robotl,
move to the blue box!”, the language side generates an Act-
Spec to the action side, adding it to the queue of requests to
be processed by the X-net Morse Problem Solver. The Prob-
lem Solver listens for each firing event in an executing X-
net, which gives it an opportunity to check the queue for any
new incoming requests. This ensures that latency involved in

3Demonstration video: https://youtu.be/8PwHpng3Nj8

175

processing a new request is short. In this case, the incoming
request causes a new instance of a PetriNetRunner to be cre-
ated, which implements the Runner API. Next, an instance
of the Move X-net is instantiated through the Runner API,
and the Problem Solver subscribes for updates to the vari-
ous external output places of interest in the X-net, primar-
ily those defined in the standard action semantics. A new
instance of a MotionChannel is created, to act as a shared
context for all of the External Transitions in the Move X-
net, and as the communication channel between the X-net
and Morse. The Problem Solver updates the MotionChannel
with the location of the blue box, and the default speed. The
Problem Solver requests that the Enabled place in the X-net
be updated with a single token, and then requests that the
X-net be run. The PetriNetRunner starts the execution of the
Petri net, and notifies the listening Problem Solver of every
event to which it has subscribed. As noted earlier, these no-
tifications include the firing of every transition, so that any
new incoming language requests can be processed promptly.
Flow of control passes through the Ready place and then
through the Start transition, causing both the Ongoing and
Moving places to be populated, as depicted in Figure 7.

When the Move External Transition fires, the Motion-
Channel is updated with the target operation of “move”.
The target location having been previously populated by the
Problem Solver, control passes back to the Problem Solver,
which passes the MotionChannel information to the Morse
simulator, which begins the simulated robot motion. Control
then returns to the X-net, which loops through the Moved
place and the Wait transition, before returning to Moving.

The Wait transition populates the Moving place. The tran-
sition is designated as a timed transition, to wait a config-
urable amount of time before firing. Currently, however, the
transition fires immediately, pending addition of the neces-
sary support to the underlying PIPE implementation. Im-
plementation as a timed transition is intended as a perfor-
mance optimization, to prevent the Moving / Moved loop
from consuming system resources unproductively, and as a
better model of the delays involved in physical motion.

Each time the MotionChannel information is passed to
Morse, Morse updates the current location of the robot; this
information is currently unused by the X-net, but would be
available if more advanced functions were required. Finally,
when the simulated robot reaches the target location, the
MotionChannel is updated, and the Arrived place is marked,
driving the X-net through the Finish transition to the Done
place. The Problem Solver is notified that the X-net is Done,
indicating normal completion of the motion.

Processing Other Requests

The power of the standard action semantics is seen when
the system processes other incoming requests. Requests of
very different syntactic form and meaning are handled with
little additional complexity. “Robotl, stop moving!” causes
the Problem Solver to populate the Suspend place. If the X-
net action is currently Ongoing, this causes the SuspendT
External Transition to fire. This transition updates the Mo-
tionChannel target operation to be “suspend”, which in turn
causes Morse to stop the motion of the robot simulator. The

Enabled Prepare Ready Done

Figure 7: Motion in progress

transition’s firing also updates the state of the X-net to Sus-
pended, causing the Problem Solver to be notified that mo-
tion has stopped.

In response to the request “Robotl, continue moving!”,
the Problem Solver populates the Resume place. If the cur-
rent state of the X-net is Suspended, this drives the ResumeT
External Transition, which updates the MotionChannel tar-
get operation to “resume”. This causes Morse to start the
simulated robot moving again, resuming its trajectory to-
ward the current goal. Race conditions are handled simply,
with no additional logic. If the X-net is not in a Suspended
state, the update of the Resume place has no impact on pro-
cessing; it is effectively ignored.

Finally, the more complicated case of interruption and re-
direction is also handled simply. The user might wish to
override a request that is in progress, e.g., “Robot1, move to
the blue box!” The new request might be “Robot1, dash to
the green box!” This new request causes the Problem Solver
to calculate a trajectory towards the green box, and to up-
date the MotionChannel both with the location of the green
box, and with a higher speed value. As well, both the Sus-
pend and Restart places are marked as in Figure 8. X-net
execution first transitions to the Suspended state, as in the
“stop moving!” example, causing Morse to stop motion of
the simulated robot. The population of both the Restart and
the Suspended places then drives the firing of the RestartT
External Transition, which updates the MotionChannel tar-
get operation to “restart”. This causes Morse to start the mo-
tion of the simulated robot again, following the new trajec-
tory and speed. The X-net flow of control then passes back
through the Ready place and the Start transition, re-entering
the Ongoing state.

Non-Linguistic Events

In addition to linguistic requests, a robot frequently encoun-
ters other events as it solves various tasks. Many of these
events involve changes to the environment, such as a mov-
ing object suddenly crossing paths with the robot’s trajec-
tory, or encountering a previously unknown obstacle. Envi-
ronmental interrupts are challenging because the robot must
dynamically adjust its world model to reflect these changes,
and then develop a new plan to continue solving the original
task.

We implemented a general protocol for how the Problem

176

Enabled Prepare Ready Done

Figure 8: Motion to be interrupted and re-directed

Solver should behave when experiencing world-based inter-
rupts, and extended this to the Morse domain. In the Morse
demo (Trott et al. 2015), we addressed the problem of en-
countering objects that were not previously in the Problem
Solver’s world model. Novel objects could potentially dis-
rupt the Problem Solver’s original plan for solving a task;
for example, if the robot is asked to a push a box north, it
might find that a previously unknown box is in the way of
its original path.

On the Morse side, our solution involved attaching a sim-
ulated proximity sensor to the instance of the robot model.
Whenever the robot passes within a certain threshold of dis-
tance from an object, the proximity sensor relays informa-
tion back to the Problem Solver about the object’s location,
color, and size. If the Problem Solver already knows about
the object, the world model is simply verified to make sure
the object location is correct. If the object is unknown, how-
ever, the Problem Solver performs three functions, in order:

1. The Problem Solver updates its world model with the new
information.

2. The Problem Solver sends an ActSpec back to the Ul-

Agent, to notify the human user that a new object has been
discovered.

3. The Problem Solver develops a new plan for the original

task, now taking into account the updated world model.

Previous work also addressed the problem of disparate
world models among multiple agents (Trott et al. 2015); in
that case, (2) also involves sending notification ActSpecs to
the other robots, so that they can also update their world
models.

Conclusion

We have demonstrated the ability to handle language re-
quests regarding the current state of actions in a graceful
fashion, enabling actions to be interrupted, resumed and
overridden. This is a useful advance in the natural language
control of autonomous systems. The separation of language
inputs from the control of actions enables both to proceed
asynchronously. This enables the overall system to be re-
sponsive to new requests, while maintaining control of ac-

“http://www.openrobots.org/morse/doc/1.2/user/sensors/ prox-
imity.html

tions at an appropriate level of granularity. Although demon-
strated in the limited domain of movement of a simulated
robot, the approach can be extended to other domains in a
straightforward manner.

Limitations

There are several limitations of the system. The system
does not address the problem of perceiving and interpret-
ing the actions of other agents (Summers-Stay et al. 2012;
Yang et al. 2015). From a technical perspective, support in
PIPE for external interfaces is limited to the API described
earlier; interaction through a graphical interface is not yet
supported, but should be available in the future. The stan-
dard semantics of X-nets invites some programmatic sup-
port; this has been discussed® but work has not yet begun.
Finally, no effort has been made to optimize the system for
performance and scale.

Future Work

The system supports current action. A next step is to have
the system support simulated action, where the execution
of X-nets can be used to reason about the consequences of
possible future actions (Sinha 2008). This would enable the
evaluation of counterfactual or hypothetical statements, such
as “Robotl, if you moved north of the green box, could you
push it south?”

Future work should also examine the problem of integrat-
ing our work on non-linguistic events with the mechanism
for X-net control.

Acknowledgements

We thank Luca Gilardi for his help in designing the sys-
tem framework, and for the creation of the GUI for the
ECG Workbench Editor. Professor William Knottenbelt and
his students at Imperial College, London, created and have
maintained PIPE through many releases. Sarah Tattersall
performed a thorough refactoring of the PIPE code base,
without which the external system extensions would not
have been possible.

References

Bergen, B.; Chang, N.; and Narayan, S. 2004. Simulated action in
an embodied construction grammar. In Proceedings of the Twenty-
Sixth Annual Conference of the Cognitive Science Society, 108—
113.

Bergen, B. K. 2012. Louder than words: The new science of how
the mind makes meaning. Basic Books.

Bonet, P.; Lladd, C. M.; Puijaner, R.; and Knottenbelt, W. J. 2007.
PIPE v2. 5: A Petri net tool for performance modelling. In Proc.
23rd Latin American Conference on Informatics (CLEI 2007).

Bryant, J. E. 2008. Best-Fit Constructional Analysis. Ph.D. Dis-
sertation, University of California at Berkeley.

Chang, N., and Gurevich, O. 2004. Context-driven construction
learning. In Proceedings of the 26th Annual Meeting of the Cogni-
tive Science Society, 204-209.

>https://github.com/sjdayday/xschema/wiki

177

Chang, N. 2008. Constructing Grammar: A Computational Model
of the Emergence of Early Constructions. University of California,
Berkeley.

Dingle, N. J.; Knottenbelt, W. J.; and Suto, T. 2009. PIPE2: a tool
for the performance evaluation of generalised stochastic Petri Nets.
ACM SIGMETRICS Performance Evaluation Review 36(4):34-39.

Doubleday, S. 2017. A Computational Model of Spatial Navigation
During Simulated Motion in Rats. Ph.D. Dissertation, University
of California at Irvine.

Echeverria, G.; Lassabe, N.; Degroote, A.; and Lemaignan, S.
2011. Modular Open Robots Simulation Engine: MORSE. In 2071
IEEE International Conference Robotics and Automation, 46-51.
Eppe, M.; Trott, S.; Raghuram, V.; Feldman, J.; and Janin, A.
2016. Application-Independent and Integration-Friendly Natural
Language Understanding. Forthcoming (under review).

Eppe, M.; Trott, S.; and Feldman, J. 2016. Exploiting Deep Seman-
tics and Compositionality of Natural Language for Human-Robot-
Interaction. In 2016 IEEE/RSJ International Conference on Intel-
ligent Robots and Systems in Daejeon, Korea.

Feldman, J.; Bryant, J. E.; and Dodge, E. 2009. A Neural Theory
of Language and Embodied Construction Grammar. In The Oxford
Handbook of Computational Linguistics. Oxford University Press.
38— 111.

Guha, A.; Yang, Y.; Fermu, C.; Aloimonos, Y.; et al. 2013.
Minimalist plans for interpreting manipulation actions. In 2013
1IEEE/RSJ International Conference on Intelligent Robots and Sys-
tems, 5908-5914. 1EEE.

Hesslow, G. 2002. Conscious thought as simulation of behaviour
and perception. Trends in cognitive sciences 6(6):242-247.

Khayrallah, H.; Trott, S.; and Feldman, J. 2015. Natural Lan-
guage For Human Robot Interaction. In International Conference
on Human-Robot Interaction (HRI).

Murata, T. 1989. Petri nets: Properties, analysis and applications.
In Proceedings of the IEEE 77.4, volume 77, 541-580. IEEE.

Narayanan, S. 1997. Knowledge-based Action representations for
metaphor and aspect (KARMA). Ph.D. Dissertation, University of
California at Berkeley.

Narayanan, S. 2010. Mind changes: A simulation semantics ac-
count of counterfactuals. In Cognitive Science. Working Paper,
University of California, Berkeley.

Pastra, K., and Aloimonos, Y. 2012. The minimalist grammar of
action. Philosophical Transactions of the Royal Society of London
B: Biological Sciences 367(1585):103-117.

Schilling, M., and Narayanan, S. 2013. Communicating with Ex-
ecutable Action Representations. In AAAI Spring Symposium: De-
signing Intelligent Robots.

Sinha, S. 2008. Answering Questions About Complex Events.
Ph.D. Dissertation, University of California at Berkeley.
Summers-Stay, D.; Teo, C. L.; Yang, Y.; Fermiiller, C.; and Aloi-
monos, Y. 2012. Using a minimal action grammar for activity
understanding in the real world. In 2012 IEEE/RSJ International
Conference on Intelligent Robots and Systems, 4104—4111. IEEE.
Tattersall, S., and Knottenbelt, W. 2014. PIPE-The Great Re-
Plumbing. Master’s thesis, Imperial College London.

Trott, S.; Appriou, A.; Feldman, J.; and Janin, A. 2015. Natu-
ral Language Understanding and Communication for Multi-Agent
Systems. In AAAI Fall Symposium, 137-141.

Yang, Y.; Li, Y.; Fermiiller, C.; and Aloimonos, Y. 2015. Robot
learning manipulation action plans by “watching” unconstrained
videos from the world wide web. In AAAI, 3686-3693.

