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Abstract

Constructional approaches to language are flourishing in
many branches of linguistics but have not yet been taken up
in a serious way by the AI community, mainly due to the lack
of mature computational formalisms and implementations to
support this approach. However there is growing recent re-
search beginning to fill this gap. This paper sketches the prop-
erties we ideally would like to see from computational con-
struction grammars and briefly describes how these properties
have been implemented in one example system, namely Fluid
Construction Grammar.

Background
Language processing requires a formalism for representing
lexicons and grammars as well as algorithms for seman-
tic parsing (going from an utterance to a meaning repre-
sentation), for semantic production (going from a mean-
ing representation to an utterance), and for grammar learn-
ing. The history of research in language processing has
produced a wide range of such formalisms, which can
be categorized along several dimensions, such as procedu-
ral/declarative, semantic/syntactic, abstract/instance-based,
symbolic/numerical, based on rewrite rules versus transition
networks, emphasizing phrase structure versus dependency
structure, etc.

Construction grammar is a relatively recent development
in linguistic theorizing although it has very firm roots in
classical grammars going back for centuries. It started to be
discussed more intensely in the late nineteen-eighties, most
notably by the late Charles Fillmore (Fillmore 1988). See
(Goldberg 1995), (Michaelis 2012) (Boas and Sag 2012),
(Croft 2011) et al.

Despite the great interest and growing success of con-
struction grammar in empirical linguistics, diachronic lin-
guistics, language teaching, child language research, and
other fields of language studies, there is still no widely ac-
cepted formalism for construction grammar nor a robust
easily accessible computational implementation that opera-
tionalises how constructions can be used in comprehending
or formulating utterances, or in language learning. But the
good news is that there are a number of active research pro-
grams trying to fill this gap (Dominey 2017), (Bergen and
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Chang 2003), (Steels 2011)(Steels and Szathmáry 2016),
(Boas and Sag 2012), (Barres and Lee 2014). These for-
malisms differ in terms of which issues they try to cap-
ture computationally and what datastructures and algorithms
they make available. Some formalisms are motivated by cog-
nitive (as opposed to purely computational) issues, whereas
others strive for relevance to neural implementation.

The goal of this paper is not to introduce a particular for-
malism, but to discuss the properties we ideally want these
computational construction grammars to have so that we can
compare and evaluate them, and that developers can more
easily see learn from each other.

Tenets of construction grammars

1. Cutting through layers Everybody agrees that a lan-
guage processing system must reconstruct meaning from
form in language comprehension and find the best way to
turn meaning into form in language production. It is also
well accepted that this bi-directional mapping is mediated
through various structures, capturing aspects of morphol-
ogy, phonology, phrase structure, functional structure, ar-
gument structure, dependencies, semantic structure, infor-
mation structure, discourse. Each of these structures is re-
flected in utterances. For example, phrase structure is sig-
naled through grouping and word order, functional structure
through positions in phrasal structures and morphology, ar-
gument structure through word ordering, case endings, and
prepositions. Traditionally the different intermediary tran-
sient structures are seen as horizontal layers which each
map a representation at one layer to the next one, for ex-
ample, from lexemes and affixes to morphology, from parts
of speech and phrases to dependencies, from phrases and
dependencies to argument structure. Construction grammar-
ians want to cut the cake in a different, vertical way.

Construction grammarians want to organize linguistic
constraints into packets, usually called construction schemas
or simply constructions, that may span several layers. Thus,
grammatical (combinatoric) constructions may contribute or
must be sensitive to information at many layers. Consider for
example subject-verb agreement in Hungarian (Beuls 2011).
It is poly-personal in the sense that it depends both on the
subject (as in English) and on the object, but only when the
subject is a 3d person singular object. A particular choice for
the expression of the object is influenced by whether the ar-
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gument is a definite or indefinite object, and, in some cases,
whether the sentence is negated or not. The phonological
structure of the verb plays a role in the selection of the suf-
fixes that can follow and the main vowel of the verb has to
belong to the same phonological class as the vowel of the
suffix. So we see a variety of criteria at many different lin-
guistic levels (meaning, argument structure, syntactic fea-
tures, phonological and morphological structure) entering
the decision whether and how to establish verb agreement
and case marking. Linguistic theories (such as minimalism)
that insist on strictly modular components and on strict hi-
erarchical locality of information require constantly that in-
formation is moved around up and down trees and from one
unit to another.

What are the computational implications of this vertical
rather than horizontal organization of grammar? The first
implication is that there can no longer be a strict border
between rules at each layer. Construction schemas should
be able to contribute directly to the build up of any kind of
structure, including the meaning of the utterance, and make
use of information from any other kind of structure. The
datastructures that represent transient structures should use
the same format for all possible perspectives, from phonetic
and morphological to semantic and pragmatic. The second
implication is that all information about an utterance be-
ing parsed or produced should be directly accessible, so that
a construction schema can efficiently use that information,
which implies strong non-locality. For example, the con-
struction schemas for verbal agreement in Hungarian need
to have access to information about person, definiteness, the
phonological structure of the verb, etc.

Apart from handling better the non-modular aspects
of language, this non-modular approach can in principle
achieve much more efficient language processing as well,
not only because all needed information is accessible di-
rectly (instead of traversing many different nodes in local-
ized (possibly binary) trees), but also because a construction
schema can group all necessary constraints and apply them
right away, thus avoiding ambiguity, uncertainty, and hence
search. Admittedly writing such non-modular grammars is
not so easy and we therefore need novel engineering tools
to see the impact of a construction schemas or the emergent
interaction between different construction schemas.

2. The nature of generalizations The constructional per-
spective insists also on other ways to capture generalizations
(Goldberg 1995). Construction grammarians try to unpack
grammar into different construction schemas which coop-
erate loosely to determine the final utterance form. For ex-
ample, the number of needed lexical constructions is min-
imized by moving some of the functional or valence infor-
mation often contained in lexical entries to grammatical con-
structions. Thus, there would be no different lexical entries
for the adjective ‘singing’, as in singing canaries, and the
participle ‘singing’ (progressive -ing form) as in They are
singing a Bach chorale. Instead, grammatical constructions
impose appropriate functions on these forms depending on
the context. Similarly, topicalization is handled by combin-
ing the same lexical and argument-structure constructions
with a topicalization construction that determines the con-

stituent ordering, rather than introducing complex filler-gap
operations (van Trijp 2014).

3. Construction schemas as bundles of constraints Tra-
ditional linguistic formalisms are conceived as rule-based
systems that expand in a stepwise manner transient struc-
tures in utterance comprehension and production. And so it
is tempting to see construction schemas as operators as well.
They have conditions (the if-part) and information they add
to the transient structure (the then-part). However the nature
of human language and human language processing suggests
that this is not entirely satisfactory, and that we rather have
to conceive of both a transient structure and a construction
schema as a bundle of constraints for the following reasons:

a. Often linguistic information is not immediately avail-
able to make a decision, neither in the input utterance (in
comprehension) nor in the meaning to be expressed (in pro-
duction), even if we allow construction schemas to span dif-
ferent levels of a linguistic structure. Consider the utterance
“The sheep owned by farmer Paul and later sold to farmer
Miquel used to be kept in an open field until she escaped. It
is only when the pronoun ‘she’ at the very end is encoun-
tered that the parser can decide that ‘the sheep’ is singular.
Of course this underspecification can be handled by open-
ing new branches in the search space at each point where a
choice cannot yet be made. However, that leads to combina-
torial explositions and is therefore only viable for simplistic
grammars and (relatively) short utterances. If we view tran-
sient structures also as bundles of constraints, some of which
are still to be instantiated fully, then uncertainties can be kept
around in the transient structure until they are resolved. For
example, we should be able to store that ‘sheep’ and ‘used
to’ agree for number without having to fill in whether ‘the
sheep’ is singular or plural.

b. Many utterances in ‘real’ spoken discourse are incom-
plete and ungrammatical. In a strict rule-based architecture,
parsers (or producers) typically get stuck, unable to proceed
further because the if-part of a rule did not match. What we
ideally want is that a construction schema can be applied in a
flexible way, which means that some of the constraints on a
schema get relaxed. In many cases, the construction schema
can still be applied partially and processing can continue
providing enough information to make a (possibly partial)
interpretation possible.

c. The ‘neutral’ representation of lexicons and grammars,
independently of their use in comprehension or production,
has been one of the holy grails of research in computational
linguistics for three reasons. (i) If we need only one repre-
sentation of all construction schemas, then we are cutting
the size of the constructicon into half. Given that a reason-
able language system has probably something on the order
of half a million construction schemas, this is significant. (ii)
Language learning and grammar engineering can be accel-
erated because no different set of learning mechanisms and
learning events are needed for learning a separate grammar
for comprehension and another one for production. We also
avoid complex bookkeeping operations to keep the two com-
patible. (In principle every sentence a speaker produces, he
or she can also understand.) (iii) It is possible to do predic-
tive comprehension, because the comprehension process can
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simulate what is to follow by running the formulation pro-
cess even on a partial transient structure, and predictive for-
mulation, because the production process can simulate the
effect on the listener by comprehending what is being pro-
duced. This predictive capacity is also crucial in learning.
Viewing construction schemas as bundles of constraints is a
huge step to achieve the bi-directional properties of a gram-
mar.

It is true that language learners can often comprehend
much more than they can accurately produce themselves and
this is occasionally used as a counter-argument for using
the same grammar representation. However we must keep in
mind that language utterances use multiple cues to help the
listener reconstruct the meaning of an utterance and some of
these cues are redundant in order to make language process-
ing more robust. For example, agreement in French between
article, adjective and noun (as in ‘un petit diner’ - a-Masc-
Sing small-Masc-Sing diner-Masc-Sing) helps to recognize
a set of words as belonging to the same noun phrase but a
French listener would also recognize ‘une petit diner’ or ‘un
petite diner’, and simply assuming that the speaker has made
a mistake.

4. Diversity and competition A basic tenet of the con-
structional approach is that different construction schemas
may be vying for contribution to the analysis or synthesis of
a particular utterance because often there is more than one
way to express the same meaning and there is an enormous
amount of ambiguity and syncretism in human language.
Moreover when language is being learned, the learner may
have to entertain different competing construction schemas.
This competition is increased because of the tremendous
variation found in human language communities. A listener
is incessantly confronted with different idiolects and differ-
ent dialects, and a speaker is also adjusting language based
on social conditions or other contextual factors.

A computational construction grammar needs to be able
to cope with this. This requires two mechanisms:

• It should be possible to store alternatives of a construc-
tion schema, together with information on how central an
alternative is to the core grammar of the speaker’s idi-
olect. For example, every construction schema can have
an associated score which is manipulated by learning al-
gorithms based on the frequency and success of a con-
struction schema in concrete linguistic interactions. One
step further is to refine this score with information about
the contexts in which the particular alternative was appro-
priate.

• There has to be a mechanism for selecting among alterna-
tives. This selection has to be based on a variety of crite-
ria, one is the construction’s score reflecting its entrench-
ment as part of the individual’s constructicon. But there
are other factors, for example, the probability that a par-
ticular construction schema will appear in the present con-
text, the semantic plausibility of pursuing a particular hy-
pothesis, the scope of the construction schema (schemas
covering a larger stretch of the input utterance are pre-
ferred), etc.

5.Networks of constructions

Next, construction grammarians unanimously agree that
construction schemas are not isolated entities but are nodes
in various networks. These networks serve a variety of pur-
poses, most importantly, they help to optimize language pro-
cessing and streamline language learning. From a computa-
tional point of view, the implementation of such networks
is not too complicated. It essentially requires datastructures
to represent the networks, bookkeeping operations to build
them up, ways in which they impact processing, and possi-
bly visualization tools useful for grammar engineers or ana-
lysts. Here is a (non-exhaustive) list of networks that various
projects have tried to accomodate in their implementations.

Family relations It is well known that for a particular
type of construction (such as the noun phrase construction
or the resultative construction) we can identify a fairly ab-
stract skeleton and then many variations with increasingly
more idiosyncratic details, the whole forming a family of
construction schemas (Jackendoff 1997). These family re-
lations should be represented explicitly, which is helpful in
matching, because if a particular construction schema does
not quite match, more abstract versions or closely related
construction schemas should be tried. Family relations are
also extremely valuable in learning, because new construc-
tion schemas need not be learned but can start from ex-
isting ones that are similar and then introduce variations
that are appropriate for the current situation. Many theo-
rists and computational construction grammar implementers
have examined the use of inheritance hierarchies (adopted
from object-oriented programming and frame-based knowl-
edge representation systems.)

Priming A second network captures priming relations be-
tween construction schemas. Two schemas S1 and S2 have
such a priming relation if the successful activation of S1 typ-
ically lead in the next step to the activation of S2. The rela-
tion can also specify what features added by S1 to the tran-
sient structure are the once that S2 is critically relying on to
trigger. Note that the networks are different for comprehen-
sion and production. These priming networks are useful to
speed up construction schema access because they prioritize
which construction schema should be tried next. A priming
network can be acquired automatically by simply monitor-
ing during language processing which construction schemas
get triggered. Priming networks also have a role to play in
grammar engineering, because they show the processing de-
pendencies between different construction schemas.

Construction Sets Another way to organize construction
schemas is in terms of the roles they play in processing. It
is a way to get back some of the benefits of organizing lan-
guage processing in layers. A construction set is a set of con-
struction schemas that form a group because they are about
the same processing issues and are ideally considered before
another construction set is triggered. For example, it is use-
ful to group morphological construction schemas together
and consider them before going higher up to phrasal con-
struction schemas. This is often more efficient and allows us
to deal also with default cases where no explicit informa-
tion is found that overrides the most common case.(Beuls
2011) This does not imply that morphological construction
schemas do not have access to other layers of linguistic
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structure, nor that construction schemas in other groups can-
not add additional morphological details. Organizing con-
struction schemas in sets is also of great help in grammar
engineering. It is for example exploited by the package sys-
tem of ECG.

Fluid Construction Grammar
By way of example, I sketch briefly ways in which Fluid
Construction Grammar (FCG) has addressed these various
challenges. FCG uses feature structures to represent tran-
sient structures (See Figure 1). They represent information
from any perspective in a declarative, explicit way, includ-
ing hierarchical relations between units. Feature structures
are also used in many other formalisms (e.g. HPSG, Unifi-
cation Grammar (Kay 1984)). However, there is an impor-
tant twist, designed to support non-modular direct access.
Units in FCG feature structures correspond to words or word
groupings (e.g. phrases). They have unique names so that
any unit can be addressed directly from any other unit, and
anyone of its feature values can be retrieved or filled. Units
can also be addressed by a partial description, such as ‘the
unit which is an NP, occurs before another unit which is a
VP, and has the same number and gender’. Hierarchical re-
lations (such as phrase structure) are still representable, but
as explicit features of units. They are not the vehicle through
which units or information about units can be addressed and
constrained.

Construction schemas are also represented with feature
structures in FCG, with variables for elements that have to
be bound to the transient structure. The variables are logic
variables and the matching process is based on unification.
There is no ordering to the units, and no constraints on which
unit can be addressed. The same variable can occur at many
locations, and this is a way to represent constraints such as
agreement or sharing of feature values between heads and
constituents.

Implementing construction schemas as bundles of con-
straints poses important challenges to computational con-
struction grammars and there are several ways to real-
ize them. FCG handles this through the use of logic vari-
ables and unification as the basis of construction applica-
tion. Constraints in transient structures are represented by
sharing the same logic variables and when such a vari-
able receives a binding at one point, its value propagates
to all its occurrences elsewhere in the transient structure.
Anti-unification is used for flexible matching of construc-
tion schemas (Steels and Van Eecke 2016). Anti-unification
means that the matcher does not seek the most general uni-
fier by finding variable bindings that makes an expression
(the triggering conditions of a construction schema) a sub-
set of another expression (the transient structure), as in stan-
dard unification. Instead it computes the least general gener-
alization, seeking an expression (a generalization of a con-
struction schema) that would unify with a transient structure.
Anti-unification is achieved by dropping constraints and de-
coupling variables, i.e. introducing two different variables in
positions for which there was only one.

Although bi-directional usage of a grammar is highly de-
sirable it cannot go at the expense of efficiency. FCG tries

to balance these two somewhat conflicting challenges (bi-
directionality and efficiency) by dividing the constraints in a
construction schema into three bundles: There is a compre-
hension lock which contains the constraints that have to be
considered in comprehension, typically constraints relating
to the form of the utterance, a production lock which con-
tains the constraints relevant in formulation, typically related
to the meaning and other semantic aspects of the utterance,
and a set of constraints to be added to the transient struc-
ture in both cases, called the contributor. (See Figure 1.) So
the transient structure is seen as a key that opens a lock of a
construction and then all constraints (from the other lock and
from the contributor) are added to the transient structure.

FCG has facilities addressing the other challenges listed
earlier. It is possible to have alternative construction
schemas competing with each other, partly based on a
score reflecting their past success and hence entrenche-
ment in the population. Construction schemas are orga-
nized in networks, including a priming network which is ac-
quired through language use (see Figure 2 based on (Wellens
2011)), and construction sets.

Tools
There are still many other challenges for computational con-
struction grammars that are worth discussing, particularly
with respect to learning or gaining greater control over con-
struction schemas. Due to space limitations, I focus now
only on engineering tools that would be desirable for devel-
oping broad-coverage grammars. Developing computational
construction grammars is similar to the writing of complex
computer programs by a team of developers and similar en-
gineering tools are needed, such as wiki’s documenting the
code, repositories keeping track of changes, etc. In addition,
grammar development can profit greatly from a set of addi-
tional tools:

1. Inspecting constructional processing. Grammar de-
velopers absolutely require a powerful interface with which
they can inspect the construction schemas in a constructi-
con, they can trigger the comprehension or production of an
utterance, inspect the search space, examine specific nodes
in the search space by seeing the state before and after the
application of a construction schema, and inspect the criteria
by which a particular path was preferred. Ideally the inter-
face should allow the selective testing of alternative paths,
for example, by injecting a construction schema variant at a
particular point in the search space and see the effect.

Several such browsers are being developed by the differ-
ent teams building computational construction grammars.
For example, Fluid Construction Grammar (FCG) features
a browser in the form of a web interface (see Figure 3). It
uses the facilities of web browsers so that it is machine in-
dependent.

2. Web demonstrations It is virtually impossible to de-
scribe in a single paper all the information that is needed
to understand how a particular grammar has been set up or
how certain technical issues (e.g. long-distance dependen-
cies) have been handled. One way out is to create demon-
strations through the web in the form of a set of web pages
that mix text and interaction. However the interaction has
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Figure 1: Left: Example of a transient structure in FCG. It contains a set of units with features and values. These feature
structures represent the constraints known so far about an utterance being parsed or produced. Right: Example of a construction
schema with a comprehension lock, production lock and contributor. Many of the elements in this feature structure are variables
(denoted with a question-mark in front) that will get bound in the unification process.

been pre-compiled so that the viewer can click on any node
as if interacting live with the constructional processor, but
this interaction is simulated by displaying ready-made files.
The advantage of this approach is that viewers use the fa-
miliar environment of web browsing to inspect grammars
and grammatical processing and they can do that through
any device, including tablets. It is a very effective way to
share research results, is very useful in live presentations,
and allows the easy construction of web tutorials.

Such a facility has been built for FCG, and web
demonstrations are now a standard feature of publica-
tions about this system. An example of an FCG grammar
for Portuguese clitics, as reported in (Marques and Beuls
2016), can be accessed through this link: https://www.fcg-
net.org/demos/propor-2016/. An example demonstrating
how flexible construction schema matching works and
plays a role in constructional learning, as discussed in
(Steels and Van Eecke 2016) is given in https://www.fcg-
net.org/demos/frontiers-demo/.

3. External services Another development made possible
thanks to the availability of cloud services is to set up servers
that interactively perform grammar processing through re-
mote access. Such a facility has been set up for FCG, and is
running live as an interactive web service. It is possible to
type in (or select) sentences, see the whole process unfold,
and interactively inspect what happened, using the same web
interface as in normal browsing. Such a service makes it eas-
ier for potential users to experiment with the system because
they do not need to install the underlying processing (which
are LISP-based), and they do not need to bother with updates

as system development proceeds.

Conclusions
Constructing a computational formalism for any kind of ap-
proach to grammar is a difficult and complex matter, and
this is no different in the case of constructional formalization
and processing. Several alternatives are being pursued at the
moment and this is welcome because in this way the possi-
ble design space for computational construction grammars
gets explored faster. We urgently need common benchmarks
to compare implementations not just among computational
construction grammars but also across other grammar for-
malisms that are tackling the same phenomena.

Developing a formalism is one thing, but building a user
community is equally hard. It is difficult and time consum-
ing to master a grammar formalism and be sufficiently profi-
cient to develop real grammars for it. There is indeed a very
steep learning curve, particularly if one is not familiar with
AI programming techniques in general. This explains why
only a few formalisms have ever reached a significant user
community. For computational construction grammar we are
still in the earliest phases of user community formation but
there are clear signs that this is beginning to happen.
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