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Abstract

Hippocampal CA3 is crucial for long-term associative mem-
ory. CA3 has heavily recurrent connectivity, and memories
are thought to be stored as the pattern of synaptic weights
in CA3. However, despite the well-known importance of the
hippocampus for memory storage and retrieval, up until now,
spiking neural network models of this crucial function only
exist as small-scale, proof-of-concept models. Our work is
the first to develop a biologically plausible spiking neural net-
work model of hippocampus memory encoding and retrieval,
with over two orders-of-magnitude as many neurons in CA3
as previous models. It is also the first to investigate the effect
of neurogenesis in the dentate gyrus on a spiking model of
CA3. Using this model, we first show that a recently devel-
oped plasticity rule is crucial for good encoding and retrieval.
Then, we show how neural properties related to neurogenesis
and neuronal death enhance storage and retrieval of associa-
tive memories in the recurrently connected CA3.

Introduction

It is well known that a brain area called the hippocampus
is heavily involved in long-term memory storage and re-
trieval (Squire 2009). In particular, a sub-area of the hip-
pocampus called CA3 is crucial for long-term declarative
memory, which includes both spatial (Moser, Kropff, and
Moser 2008) and episodic (Tulving 2002) memory. CA3 has
heavily recurrent connectivity (i.e. CA3 neurons form many
synapses with other CA3 neurons), more so than any other
brain area (Rolls et al. 1997), and memories are thought to
be stored as the pattern of synaptic weights in CA3.

However, despite the well-known importance of CA3 for
memory storage and retrieval, up until now, spiking neu-
ral network models of this crucial function only exist as
small-scale models. These existing models, while useful for
illustrating certain computational principles, contain only
up to 30 CA3 neurons (e.g. (Brijesh and Ravindran 2007;
Tan et al. 2013)). Moreover, they lack biological realism.
One would expect a computational model using spiking net-
works to be at least organized in a recurrent manner, with
both excitatory and inhibitory populations forming synap-
tic connections, whilst the neurons are effectively in the
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fluctuation-driven regime, with mean membrane potential
near to threshold.

Our work is the first to develop a biologically realis-
tic spiking neural network model of hippocampus memory
encoding and retrieval, with over two orders-of-magnitude
as many neurons in CA3 as previous models. Before that,
no plasticity mechanism exists to allow the spiking net-
work community or hippocampal modeling community to
do so in plastic spiking networks, whereby a biologically
realistic spiking neural network of a credible size using
spike timing dependent plasticity (STDP) has consistently
failed to form long-lasting memory engrams of a reasonable
number without interference (Chrol-Cannon and Jin 2015;
Kunkel, Diesmann, and Morrison 2011).

While other studies have used feedforward, rate-based
models of CA3, these are less realistic, and it is unclear if
the findings from these simpler models also hold true for
recurrent spiking networks. Such networks have very differ-
ent properties from simpler networks, and one major chal-
lenge is their stability (Zenke, Agnes, and Gerstner 2015;
Abbott and Nelson 2000). Neurogenesis (neuron birth) and
neural apoptosis (neuron death) add extra layers of complex-
ity, as such changes in the neural population have not been
investigated in recurrent spiking CA3 networks before.

Among models of neurogenesis, all use rate-based neu-
rons, with (Aimone, Wiles, and Gage 2009) the only ex-
ception using spiking neurons. However, they do not model
CA3. In (Zenke, Agnes, and Gerstner 2015), new plastic-
ity mechanisms are developed to enable stable encoding of
memories in plastic recurrent networks that can be retrieved
hours (network time) later. However, the plasticity mecha-
nisms have yet to be shown to be reliable for memories of a
realistic number. Also, it is not clear what role neurogenesis
plays in enhancing memory encoding, given a plastic spik-
ing network that can encode reasonable number of memo-
ries. Thus, our paper is the only work that investigates the
effect of neurogenesis on a plastic spiking model of CA3.

Using our model, we first show that a novel plasticity
rule (Zenke, Agnes, and Gerstner 2015) is crucial for good
encoding and retrieval. Then, we show how properties re-
lated to neurogenesis (i.e. increased excitability of newborn
neurons) and neuronal death (i.e. relative balance between
birth and death) are crucial for storage and retrieval, thus
explaining the functional significance of these properties.
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Methods
To study encoding and retrieval of associative memories in
the hippocampus, we construct a three-layer spiking neuron
network model of the hippocampus (Fig. 1). The three layers
are the entorhinal cortex (EC), the dentate gyrus (DG) and
CA3. For simplicity, we do not model CA1, which is thought
to perform a simple comparator or decoding role (Tulving
2002; Rolls et al. 1997; Rolls 1987). Incoming memories
are simulated by stimulating a subset of the EC neurons,
which would trigger spiking activity that cascades to the
other two layers via different pathways. Using three different
sets of STDP models (see Section ), we compare which of
these would enable the stable encoding and retrieval of these
memories. In this section, we describe first the hippocampal
network setup, next the various plasticity rules, the differ-
ent simulation settings and finally the measures to quantify
memory retrieval for our study.

Network setup

The hippocampal network is made up of adaptive integrate-
and-fire (AIF) neurons (Zenke, Agnes, and Gerstner 2015),
of which their dynamics are described further below. The en-
torhinal cortex is modeled using 1024 standalone AIF neu-
rons, which receive no other inputs other than the memory
stimuli. The DG is modeled using standalone AIF neurons.
Depending on the simulation settings, the size of the DG
network can be 1600 or 3200 neurons. The CA3 network is
a recurrent one, comprising of 3200 excitatory neurons and
800 inhibitory neurons. In the recurrent network, the neu-
rons are connected to each other with a Gaussian connectiv-
ity profile, such that neurons that are close to each other have
a higher connectivity probability. EC neurons are connected
to the CA3 excitatory neurons with a connection probability
of 0.15. All DG and CA3 neurons receive fluctuating Pois-
son inputs to achieve a low firing rate of 0.3 spikes/s and a
mean membrane potential of 5mV below spiking threshold.

Figure 1: Network setup. Blue circles denote excitatory neu-
rons and red circles denote inhibitory neurons. Light blue
circles and unfilled circles denote newborn and yet-to-be-
born DG neurons respectively. Blue arrows denote excita-
tory synapses and red arrows denote inhibitory synapses.

Plasticity models

We have three classes of plasticity models in our study,
namely short term plasticity (Tsodyks, Uziel, and Markram
2000), STDP plasticity for excitatory synapses and STDP
plasticity for inhibitory synapses impinging on excitatory
neurons (Vogels et al. 2011). All three are needed for suc-
cessful encoding and retrieval (Zenke, Agnes, and Gerstner

2015). There are three different types of excitatory plasticity
in our study, namely pair STDP (Song, Miller, and Abbott
2000), triplet STDP (Pfister and Gerstner 2006), and uni-
fied plasticity, which is a simplified version of the plastic-
ity model described in (Zenke, Agnes, and Gerstner 2015),
which incorporates Hebbian, heterosynaptic and transmitter-
induced plasticity mechanisms and was shown to reliably
form memory engrams that can be retrieved with little inter-
ference.

In all network settings, the synaptic connections between
EC-CA3 excitatory population and CA3-CA3 excitatory
populations are plastic (using one of the three excitatory
plasticity rules, plus short-term plasticity), the CA3 excita-
tory to CA3 inhibitory population synaptic connections are
plastic (short-term plasticity) and the CA3 inhibitory to CA3
excitatory population synaptic connections are plastic (in-
hibitory plasticity).

The dynamics of short term plasticity has already been
described in the network section; the other plasticity mech-
anisms are now described. The dynamics of pair STDP is
described by:

˙W ij = A+K
i
S
j
(t)− A−K

j
S
i
(t),

whereby the time evolution of the pre-synaptic variable Ki

and postsynaptic variable Kj are respectively described by
K̇i = − Ki

τKi
+Si(t) and K̇j = − Kj

τKj
+Sj(t) and A+/− are

the weight change amplitudes. The dynamics of the triplet
plasticity rule is described by:
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whereby synaptic variables Ki/j
1/2 evolve as per synaptic vari-

ables described for paired STDP, A+/− are weight change
amplitudes and t−ε ensures that weight update is done prior
to spike times. The unified plasticity model is described by:

˙W ij = KiA+K
j
2(t− ε)Sj(t)−K

j
1A−Si(t)

−β(W ij − ˜W ij)(K
j
1(t− ε))3Sj(t) + δSi(t),

whereby synaptic weight tends towards W̃ ij , and every pre-
synaptic spike induces a small increase δ in synaptic weight.
All synaptic variables K and weight change amplitudes A
are as described earlier. The inhibitory plasticity is described
by:

˙W ij = A(K
i
S
j
(t) + (K

j − α)S
i
(t)),

whereby α is the depressing factor.

Simulation settings

Our simulations have two phases: the encoding phase and re-
trieval phase. During the encoding phase, 80 out of the 1600
or 3200 DG neurons are selected to receive a new mem-
ory stimulus from the EC. In the first setting, to simulate
the case whereby the stimulus can be encoded by any ma-
ture DG neuron, these 80 neurons are randomly selected.
In the second setting, to simulate the case whereby new-
born DG neurons are solely responsible for encoding new
memory stimuli, the entire excitatory DG population is di-
vided into blocks of 80, where one block is targeted by one
memory stimulus. In addition to the above two neurogenesis
(NG) settings, a third setting emulates the higher excitabil-
ity of newborn DG neurons (Finnegan and Becker 2015;
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Aimone, Wiles, and Gage 2009) by decreasing the spiking
threshold (and hence increasing excitability) of the 80 neu-
rons targeted by the EC for the duration of the encoding
phase of each stimulus (500ms). (More precisely, by “new-
born neurons”, we are referring to the remaining newborn
DG cells after NG and subsequent cell death of a fraction of
these cells due to inactivity.)

When all the available blocks of 80 DG neurons have been
assigned (e.g. when there are 1600 DG neurons but 40 stim-
uli, requiring 40 × 80 = 3200 DG neurons), we “recycle”
the DG neurons, under the assumption of “turnover home-
ostasis”, whereby the rate of neuron birth and death is rel-
atively balanced (Meltzer, Yabaluri, and Deisseroth 2005).
For each new stimulus to be encoded, 80 out of all the DG
neurons are randomly selected. The synaptic weights of in-
coming (from EC) and outgoing (to CA3) connections are
then set to 0 (simulating neural death). These DG neurons
are then used to encode the new stimulus (simulating NG).
Hence, while EC neurons maybe involved in encoding more
than one stimuli, by design, DG neurons encode only one
stimulus each.

To encode a memory in the EC, 32, 96 or 160 out of
the 1024 EC neurons are randomly selected at the start of
each encoding phase. They are then connected to the se-
lected DG neurons. The selected DG neurons are then ran-
domly connected to a cluster of 100 CA3 excitatory neu-
rons. The randomly selected EC neurons are then stimulated
with 50 spikes each over a duration of 250ms. Spiking ac-
tivities would then cascade down to the CA3 region via the
EC-CA3 pathway and the newly formed EC-DG-CA3 path-
way. The encoding phase involves stimulating the network
with either 5, 40, or 100 stimuli, each lasting for 500ms
(250ms of stimulation, then letting the network activity set-
tle for 250ms).

After all stimuli have been encoded, they are sequen-
tially retrieved in chronological order. The retrieval process
is very similar to encoding (e.g. same set of 32, 96 or 160
EC neurons for each memory are stimulated), except that
during retrieval, only the EC-CA3 pathway is active, while
the EC-DG-CA3 pathway is inactive, a phenomenon ob-
served biologically and common in models (Becker, Mac-
queen, and Wojtowicz 2009; Weisz and Argibay 2009;
Hasselmo and McGaughy 2004).

In all, there are two aspects in which simulation settings
vary, namely 1) the different excitatory plasticity models
(pair STDP, triplet STDP, unified plasticity), and 2) how DG
neurons are selected to encode memories (two settings: se-
lected randomly emulating no NG and normal excitability;
selected via blocks emulating NG and increased excitabil-
ity).

The network is simulated with a range of different
learning rates on the plastic connections, EC-CA3 (feed-
forward) and CA3-CA3 (recurrent) to investigate robustness
of results. All simulations are done on the NEST simula-
tor (Gewaltig, Morrison, and Plesser 2012).

Measures: Signal-to-Noise Ratio (SNR)

To quantify how well each encoded memory is retrieved, a
signal-to-noise ratio (SNR) measure is devised. For each

simulation, we know precisely when the stimuli for each
memory to be encoded is introduced into the network. Like-
wise for the stimuli to retrieve an encoded memory. We also
know which set of CA3 excitatory neurons are stimulated
during encoding in the time window of 500ms, which we
denote as Nenc. For each memory retrieval, we systemati-
cally vary the size of the set of retrieved CA3 excitatory neu-
rons Nret by scanning through a range of spike counts, and
compute its corresponding SNR (see 1). After this has been
done for all memory retrievals, we pick the maximum SNR,
and note down the corresponding spike count and mean size
of all Nret.

Algorithm 1 Computation of SNR
∀A ∈ Nret ,

If A ∈ Nenc , Countsignal + 1
else, Countnoise + 1

SNR =
Countsignal−Countnoise+|Nenc|

2∗|Nenc|

The SNR is normalized to an interval of [0, 1], since
it is highly improbable that Countnoise > |Nenc| given
that we select only neurons spiking more than twice in the
given time window for Nret and the network is in a fluctu-
ation driven regime with low firing rate of ≈ 0.3 spikes/s.
Hence the SNR is unlikely to go below 0, which is also
the case in our data collected. Therefore, a score of 0 most
likely means that Nret ∩ Nenc = ∅, a score of 1 must
mean that Nret = Nenc, and a score of 0.5 must mean that
Countsignal = Countnoise, whereby there are as many sig-
nal neurons as there are noise neurons in Nret, one special
case being Nret = ∅.

Results

In this section, we present results for the comparison of
all 3 plasticity rules using single memory encoding and re-
trieval within a certain parameter range of feedforward (FF;
EC-CA3 pathway) and recurrent (REC; CA3-CA3 excita-
tory population) plasticity learning rates, after which we fur-
ther justify that the parameter range can be further narrowed
down using memory encoding and retrieval simulations of
3 stimuli. Third, using 40 stimuli (hence fully utilizing the
entire dentate gyrus population), we explore the parameter
space (of different learning rates, number of EC neurons per
stimulus, with and without NG) and determine what param-
eters give the best SNR. From these set of results, we ob-
tain for each number of EC neurons per stimulus (32, 96
and 160), a set of parameters that give the best SNR results
for the case of FF plasticity only and both (FF and REC)
plasticity and then use them for simulations of encoding and
retrieval of 200 memories (5 times overloading of the den-
tate gyrus, DG). The purpose of doing so is to investigate if
NG improves SNR results, and how it interacts with FF and
REC plasticity. Retrieval of 200 memories is also conducted
using only partial retrieval such that only a fraction of the
encoding EC neurons are stimulated during retrieval.

Comparison of plasticity rules

In this first set of simulations, we investigate across a set of
parameters (number of EC neurons per stimulus, with and
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Figure 2: Raster plots for encoding (at 1 s) and retrieval (at
1.5 s) of a single stimulus. (a-c) Raster plots for simulations
without NG, 32 EC neurons, and with FF and REC learning
rates at 0.01. (d-f) Raster plots for simulations with NG, 160
EC neurons, and with FF and REC learning rates at 0.15.

without NG, range of FF and REC learning rates), how the
3 different plasticity rules compare using SNR as a metric.
We use a range of learning rates, from 0.0 to 0.2, with an
interval of 0.01. From Figure 2 on page 4, we observe that
the full plasticity model, at low learning rates and 32 EC
neurons per stimulus, is able to trigger sufficient spiking ac-
tivities during retrieval Figure 2 on page 4c, as opposed to
the other 2 plasticity models 2(a,b). At higher learning rates
and 160 EC neurons per stimulus, the pair and triplet plastic-
ity models are also able to retrieve the memory encoded to
some extent but in the process generate considerable amount
of background noise such that their SNR suffer (see Fig-
ure 2 on page 4d,e). On the other hand, the full plasticity
model is able to retrieve the encoded memory without gen-
erating much background noise (see Figure 2 on page 4f).
This demonstrates how the homeostatic terms in the model
help to balance network activities. However, spiking activi-
ties from memory encoding last beyond the usual time win-
dow of 500ms and into the retrieval time window. Hence,
from this set of simulations of the 3 different plasticity mod-
els, we confirm that the full plasticity models outperform
the other 2 models in memory encoding and retrieval across
the broad range of parameters (SNR colormaps not shown),
but persistent activities at high learning rates can become a
problem for simulation with multiple memories. We investi-
gate this in the next simulation with 3 stimuli, whilst using
the same parameters.

Defining parameter space for learning rates

Here, by increasing the number of stimuli to 3, we further in-
vestigate how the full plasticity model would perform given
the same set of parameters as in . As expected, in the set-
ting of low learning rates, retrieval of memories encoded
achieves good SNR (see Figure 3 on page 4a). However, at
high learning rates, spiking activities from memory encod-
ing phase persist into the retrieval phase, adversely affecting
the SNR (see Figure 3 on page 4b). This observation can

Figure 3: Raster plots for encoding (at 1 s) and retrieval (at
2.5 s) of 3 stimuli, and colormaps for SNR given range of
FF and REC learning rates. (a) Raster plot for simulation
with NG, 32 EC neurons, and FF and REC learning rates at
0.06. (b) Raster plot for simulation with NG, 160 EC neu-
rons, and FF and REC learning rates at 0.16. (c) Colormap
for SNR with given range of FF and REC learning rates,
for simulations with NG and 32 EC neurons. White markers
denote learning rates with SNR values above 90 percentile
of the maximum SNR value. (d) Colormap for SNR with
NG and 160 EC neurons. White markers as above.

be made in the SNR colormaps for the learning rates under
different parameter settings. The space of learning rates with
relatively better retrieval is larger in the case of 32 EC neu-
rons per stimulus as compared to larger (96 and 160) number
of EC neurons per stimulus (see Figure 3 on page 4c,d). This
is mainly due to the fact that with more EC neurons per stim-
ulus, there are more synaptic connections on the EC-CA3
pathway potentiated which increase overall excitation of the
CA3 population, leading to poorer SNR overall. Hence, to
discover what the optimal set of parameters are for memory
encoding and retrieval, we repeat the above simulations us-
ing 40 stimuli (fully utilizing the whole DG network), but
with a narrower range of learning rates.

Determining the best parameters

In this set of simulations, the learning rates used are
{0.0, 0.001, 0.01, 0.1}. As shown in Figure 4 on page 5a-
c, increased number of EC neurons per stimulus not only
increase background activities, but is also more prone to
triggering spiking activities in other CA3 memory engrams.
This is because the EC neurons are randomly picked. Hence,
during retrieval, the increased overlap of EC neurons across
memories would also trigger spiking activities in the other
memory engrams. The SNR would deteriorate with the
number of stimuli. The SNR colormaps for the different
number of EC neurons with NG are shown in Figure 4 on
page 5d-f. We further notice that memory retrieval is con-
sistently better for the case of NG than without and that
memory retrieval is better for less EC neurons (see Table
1 on page 6). For the case of 32 EC neurons per stimu-
lus, FF and REC plasticity give better SNR than just FF
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Figure 4: Raster plots for simulation for encoding and re-
trieval of 40 stimuli (retrieval of last 10 stimuli shown), and
colormaps for SNR with given range of FF and REC learn-
ing rates. (a) Raster plot for simulation with 32 EC neurons,
NG and with FF and REC learning rates at 0.1 and 0.01 re-
spectively. (b) Raster plot as above, for 96 EC neurons. (c)
Raster plot as above, for 160 EC neurons. (d) Colormap for
SNR with given range of FF and REC learning rates, for
simulations with NG and 32 EC neurons. White markers de-
note learning rates with SNR values above 95 percentile of
the maximum SNR value. (e) Colormap as above, for 96
EC neurons. (f) Colormap as above, for 160 EC neurons.

alone. But these two modes of plasticity give similar SNR
results for more EC neurons per stimulus. This could be due
to the fact that with more EC neurons per stimulus, a larger
spike count is required to give the optimal SNR. This re-
sults in drop in both signal and noise. While previously, with
32 EC neurons, both signal and noise neurons are more nu-
merous in the FF+REC case than the FF case, resulting in
a higher SNR, this effect is drowned out by the increased
background noise (96 and 160 EC neurons per stimulus).
We further note that a lower learning rate is required to
give the maximum SNR for more EC neurons. We have
also run further simulations such that 1) FF learning rate
= {1.0} and REC learning rate = {0.0, 0.001, 0.01, 0.1}
and 2) FF learning rate = {0.0} and REC learning rate
= {0.001, 0.01, 0.1, 1.0}. Both set of simulation do not
yield better SNR than those above. In particular, for the sec-
ond set of simulations, whereby FF learning rate = 0.0, per-
sistent spiking activities such as those in Figure 3 on page 4b
occur at large REC learning rates, effectively drowning out
spiking activities of retrieved memories. The learning rates
(both FF and FF+REC) for maximum SNR are used next
for simulations of up to 200 stimuli, loading the DG up to
5x its designated capacity.

Robustness of results in DG overloading

For this set of simulations, we select simulation settings
in Table 1 on page 6 with red color font for overload-
ing. Firstly, We tried simulations each with 80, 120, 160 or
200 numbers of stimuli and then retrieved the last 40 en-
coded memories. Next, we tried encoding 200 memories

and then retrieved them in batches of 40 memories each:
{1−40}, {41−80}, {81−120}, {121−160}, {161−200}.
Third, the second set of simulation are repeated with par-
tial retrieval such that only 0.25, 0.5 or 0.75 of encoding
EC neurons are stimulated during retrieval. In general, the
observations made agree with those made in . In the first
simulations, more memories result in poorer retrieval. For
example, for 32 EC neurons and FF+REC plasticity, the
SNR for 80, 120, 160 or 200 numbers of stimuli are respec-
tively 0.86, 0.84, 0.81 and 0.76. The SNR for the retrieved
memory batches in the second simulations ({1− 40}, {41−
80}, {81− 120}, {121− 160}, {161− 200}, same parame-
ters) are respectively 0.51, 0.57, 0.63, 0.71 and 0.76. Hence,
older memories are “forgotten”. The SNR for the third sim-
ulations (partial retrieval of last 40 encoded memories, same
parameters) are respectively 0.72, 0.66 and 0.55 for 0.75,
0.5 and 0.25 of encoding EC neurons stimulated during re-
trieval. The SNR for the partial retrieval of encoded mem-
ories {41− 80} are respectively 0.55, 0.51 and 0.5 for 0.75,
0.5 and 0.25 of encoding EC neurons stimulated during re-
trieval. Hence, partial retrieval can be achieved but only
for the more recent memories. In the above simulations, 32
stimulating EC neurons give better SNR results compared
to 96 EC neurons, and FF+REC plasticity perform better
than just FF plasticity alone.

Discussion
From our results, memory retrieval for up to 200 encoded
stimuli is achieved even when the plasticity is kept on dur-
ing the retrieval phase, despite using a simplified version of
the plasticity models in (Zenke, Agnes, and Gerstner 2015).
While acknowledging that the network has not been simu-
lated for hours to make conclusions about stability of the
simplified plasticity model, we think that the network archi-
tecture also plays a role in preserving encoded memories.
Specifically, memory encoding is done via both the EC-CA3
pathway (plastic) and EC-DG-CA3 pathway (static), while
memory retrieval is done via the EC-CA3 pathway only.
For the case of both FF+REC plasticity, memory engrams
formed using both the EC-CA3 pathways and REC CA3
connections. This gives better SNR than just FF plasticity
alone. While REC plasticity alone may also encode memo-
ries, this occurs at high REC learning rates, which persistent
spiking activities dominate the network. The highly REC
CA3 network hence operate best as an associative memory
by sharing the task of encoding memory engrams between
both FF and REC synaptic connections.

Memory retrieval deteriorates with increased encoded
memories. This is primarily due to noise in the network,
which can be attributed to 3 main sources: 1) during encod-
ing, DG neurons other than those assigned may spike even
if they are less excitable, 2) CA3 neurons are randomly as-
signed during encoding and hence some may already be en-
coding for an earlier stimulus, 3) EC neurons are randomly
selected for each memory and hence may already be used for
an earlier stimulus. For the second and third source of noise,
it can be observed from Table 1 on page 6 how noise neurons
are generally more for the FF+REC case as compared to just
the FF case. We systematically remove the above sources of
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With NG Without NG

FF FF+REC FF FF+REC

32 0.83 75, 10(3) 0.1, 0.0 0.87* 96, 21(3) 0.1, 0.01 0.80 75, 15(3) 0.1, 0.0 0.82 85, 21(3) 0.1, 0.01

96 0.68 54, 18(4) 0.01, 0.0 0.68 60, 23(4) 0.01, 0.01 0.59 34, 15(4) 0.01, 0.0 0.59 33, 14(4) 0.01, 0.001

160 0.60 43, 23(6) 0.01, 0.0 0.59 42, 24(6) 0.01, 0.001 0.54 25, 17(7) 0.01, 0.0 0.53 21, 15(8) 0.01, 0.001

Table 1: Maximum SNR for simulations with 40 stimuli. The results are tabulated for the different number of EC neurons, and
the case of with and without NG. A maximum SNR (first column) is chosen for the case of FF (EC-CA3) plasticity only, and
FF+REC (CA3-CA3) plasticity. In the second column (x, y(z)), x denotes the number of CA3 neurons spiking during retrieval
that are in the set of stimulated CA3 neurons during encoding (signal), while y denotes the number of CA3 neurons spiking
not in the set of stimulated neurons (noise) and z denotes the spike count used to calculate the optimal SNR. In the third
column (x, y), x denotes the learning rate for FF plasticity, while y denotes the learning rate for the REC plasticity. * denotes
the maximum SNR.

noise in one simulation of 40 stimuli, by 1) setting threshold
for un-assigned DG neurons to some arbitrary high values,
2) CA3 neurons are assigned in block, hence there are no
overlap, and 3) EC neurons are selected in blocks, hence
there are no overlap. This results in perfect retrieval with 40
stimuli (no overloading). However, 1) and 3) are biologically
unrealistic while 2) would imply that there must be at least
as many CA3 neurons as there are memories.

In reality, forgetting of older memories is natural. Also,
spiking of other CA3 neurons other than those encoding the
particular memory during retrieval may help to associate
several related memories in downstream networks. Memo-
ries in the hippocampus are also further consolidated in the
cortex, of which how they function as a complete system is
still an active field of research. The model we have studied
set up a framework for further computational studies in such
a direction.
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