Introduction

Several aspects of human intelligence are crucially influenced by deep subcortical structures in the human brain. For example, sensation and perception are shaped by interactions between the thalamus and neocortex; memory is critically influenced by oscillations involving the hippocampus; and learning ability and emotional intelligence are shaped by limbic structures such as the amygdala (Kandel, Schwartz, and Jessell 2000; Nolte 2009). Thus, non-invasive techniques to characterize subcortical neural currents in the intact functioning human brain would help elucidate important features of human intelligence. Present techniques for characterizing deep brain activity have limited temporal resolution, and thus cannot resolve millisecond-scale neural currents. Magnetoencephalography (MEG) and electroencephalography (EEG) measure fields generated by neural currents with high temporal resolution. Here, we demonstrate that deep sources underlying M/EEG fields can be resolved with a sparse representation learning approach. We then introduce a novel source estimation algorithm to characterize neural currents within subcortical structures, and demonstrate performance on realistic simulated examples.

Methods

Problem Setup: Neural current sources, modeled with an ensemble of current dipoles, generate M/EEG fields Y:

$$ Y_{N \times T} = G_{N \times M} X_{M \times T} + V_{N \times T}, $$

where G is the gain matrix determined by Maxwell’s equations, X are the amplitudes of the current dipoles, V is the noise, N is the number of M/EEG sensors, M is the number of current dipole sources, and T is the number of time points measured. The source estimation problem is to reconstruct X given Y, G and the statistics of V (Hamalainen 1993).

Construction of Source Spaces and Gain Matrices: We acquired high resolution T1-weighted structural MRIs on healthy volunteers (Siemens 3T TimTrio™ scanner, multi-echo MPRAGE sequence) and used them to reconstruct cortical surfaces and segment subcortical volumes (Dale,
We characterized the extent to which M/EEG fields arising from subsets of sources. A subset of sources $B \subseteq C \cup S$ (Figs.1A-B). For each patch and subdivision in this source space, we numerically computed the gain matrices using the MNE software package (Gramfort et al. 2014). A subset of sources $\mathcal{F} \subset B$ has gain matrices and source currents denoted by $G_\mathcal{F}$ and $X_\mathcal{F}$ respectively.

Field Geometry Analysis: We consider M/EEG fields Y_1 and Y_2 arising from subsets of sources D_1, $D_2 \subset B$ respectively. The degree of distinction between Y_1 and Y_2 is specified by the extent of correlation between subspaces spanned by G_{D_1} and G_{D_2}. Subspace correlations can be quantified using principal angles (Bjorck and Golub 1973). Low angles $\rightarrow 0^\circ$ correspond to overlapping subspaces and indistinguishable fields, while high angles $\rightarrow 90^\circ$ correspond to near-orthogonal subspaces and distinct fields.

Theory and Algorithm

M/EEG Fields due to Cortical vs. Subcortical Currents: We characterized the extent to which M/EEG fields arising from subcortical and cortical sources can be distinguished from each other. We computed principal angles $\Theta_{S,C}$ between subspaces spanned by the subcortical and cortical gain matrices $G_{k,S}$ and G_{C} (Fig.2, blue). The principal angles across subcortical sources are low, suggesting that fields generated by subcortical sources can be explained by surrogate currents on the cortex.

However, in many neuroscience studies, the set of cortical areas with salient activity at any moment in time is typically not all-encompassing, and instead tends to be limited to a finite number of well-circumscribed areas. Therefore, we considered small subsets of the cortical source space, denoted C_{sp} and computed principal angles $\Theta_{S,C_{sp}}$ between subspaces spanned by $G_{k,S}$ and $G_{C_{sp}}$ (Fig.2, brown). The principal angles are now higher, suggesting that fields generated by subcortical sources can be distinguished from those generated by small subsets of cortical sources. We performed these analyses for several random subsets of cortical sources and found similar trends, suggesting that employing sparse approximations of G_C can enable robust distinctions between MEG fields from cortical and subcortical sources.

Source Estimation Algorithm: The above observations suggest that a hierarchical procedure to learn sparse representations of the M/EEG data can enable subcortical source estimation. Suitable algorithms would be (a) effective in identifying relevant sparse features in high-dimensional problems, and (b) amenable to hierarchical ‘dictionary learning’ type implementations. The class of projection pursuit methods fulfils both criteria.

We employ a subspace pursuit algorithm (Dai and Milenkovic 2009; Needell and Tropp 2009; Babadi et al. 2014) to hierarchically estimate neural currents in both cortical and subcortical structures. Specifically, we first employ subspace pursuit to locate the L sparse cortical sources most relevant to the data, and prune out irrelevant cortical sources. We then construct a composite space of sparse cortical sources and distributed subcortical sources and repeat subspace pursuit to further reduce the space of possible sources. This process systematically refines the distributed brain source space to relevant spatially sparse subsets to reduce dimensionality and improve sensitivity for weak sources, and ultimately outputs locations and time courses of cortical and subcortical source currents underlying the data.
Performance Evaluation

Finally, we demonstrate performance of the algorithm on realistic evoked response simulations. We simulated noisy MEG evoked responses corresponding to a somatosensory median nerve stimulation paradigm (Fig.3A). In this paradigm, the ventral posterior lateral thalamus (VPL Th.) is activated during the first 15 msec, followed by activity in the somatosensory cortex. The early MEG fields arising from the VPL Th. are well below the noise floor. We then employed our hierarchical subspace pursuit algorithm to estimate source locations and currents. Fig. 3B shows the simulated (dashed) and the estimated (solid) time courses. Fig. 3C shows the simulated and estimated source locations. The estimates resemble the simulated ground truth, suggesting the ability to resolve sources in specific thalamic subdivisions.

Conclusions

Our results establish the feasibility of characterizing millisecond-scale neural currents within subcortical regions using non-invasive M/EEG recordings in humans. As such, this work opens up unique opportunities to study aspects of human intelligence – such as perception, emotion and memory – that involve subcortical structures and have a significant influence on higher cortical reasoning.

Acknowledgments

We acknowledge helpful discussions on canonical correlations and sparsity with Emery N. Brown at the Massachusetts Institute of Technology. This work was supported by NIH grants P41-EB015896, 5R01-EB009048, 1S1-0RR031599-01 and NCRR grant 1S10RR031599-01 to M.S.H, and NIH grant DP2-OD006454 to P.L.P.

References

Figure 3: (A) Simulated MEG evoked responses corresponding to a somatosensory median nerve stimulation paradigm (one trace per sensor). (B) Simulated (dashed) vs. estimated (solid) time courses for neural currents. (C) Source locations estimated (right) by hierarchical subspace pursuit closely approximate those in simulations (left).