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Abstract

Eye gaze patterns are known to have correlation with cogni-
tive context, such as cognitive understanding, difficulty, fa-
tigue and inattention. Traditional eye-gaze metrics that are
developed for such analyses, such as fixation duration, sac-
cade length, the nearest neighbor index (NNI), fail to ac-
commodate the dynamic nature of mental states. In a recent
work, a hidden Markov model-based observation model was
suggested, where the gaze-patterns on the Cartesian plane,
which correspond to each cognitive state, are modeled as
Gaussians. However, we recognized that a single observa-
tion model is not sufficient to represent diverse gaze patterns
that correspond to different cognitive states of the brain. In
this paper, we assume a heterogeneous hidden Markov model
to represent such observations and demonstrate a modified
Baum-Welch approach to train such a model. The effective-
ness of our approach is demonstrated using eyetracking data
collected from volunteers engaged in a simulated task that re-
quired varying levels of cognitive inputs.

1 Introduction

Context-awareness forms the basis for proactive decision
support tools in today’s complex human-machine systems.
Recent advances in context-aware computing and availabil-
ity of low-cost unintrusive eyetrackers are encouraging re-
searchers to employ eyetrackers in modeling user behav-
ior and develop context-aware subsystems. In this paper, we
employ the eye-gaze patterns to characterize the individual’s
cognitive state of the brain (or cognitive context). Cognitive
context-awareness1 should be considered as an integral part
of adaptive automated systems in order to understand the hu-
man operator’s cognitive state and optimize the performance
of the human-machine system.

Eye gaze patterns are known to have correlation with cog-
nitive context, such as cognitive understanding, difficulty,
fatigue and inattention. Several statistical eye movement
metrics, such as average fixation duration, saccade length
and the nearest neighbor index (NNI), have been studied
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1The notion of cognitive context is defined as the state of the
person’s cognitive apparatus and the characteristics of the cognition
that is observed/that occurs are dependent on that state (Mannaru
et al. 2016a).

as indicators of cognitive context (Jacob and Karn 2003;
Di Nocera, Camilli, and Terenzi 2007). Often, these met-
rics are computed either on certain areas of interest (AOIs)
that are predefined by the researcher or on a convex hull sur-
rounding the fixations; however, we believe that the AOIs
have to be modeled adaptively over time. In our recent
work, we suggested a model-based approach to identify the
AOI by modeling the gaze patterns as 2D Gaussians (Man-
naru et al. 2016b). The Markov property of eye gaze tran-
sitions (Pieters, Rosbergen, and Wedel 1999) encouraged
us to model eye movements using hidden Markov models
(HMMs). HMMs have been successfully employed in the
past to model gaze patterns in several applications, such
as user task classification, scanpath modeling and measur-
ing attention switching (Hayashi 2003; Coutrot, Hsiao, and
Chan 2017; Grobelny and Michalski 2017; Hayashi, Beutter,
and McCann 2005). However, we recognized that a single
observation model is not sufficient to represent diverse gaze
patterns that correspond to different cognitive states of the
brain. Indeed, the entropy studies of gaze data suggest that
focused gaze and uniform gaze in a certain AOI may be in-
terpreted as corresponding to over-loaded and under-loaded
cognitive states of the brain, respectively (Tole et al. 1983;
Harris Sr, Glover, and Spady Jr 1986). Therefore, we suggest
the use of a heterogeneous hidden Markov model (HHMM)
to represent gaze patterns as Gaussians and random gazes as
a uniform distribution.

The goal of this paper is to demonstrate a general ap-
proach to model and quantify eye-gaze patterns in a human-
computer interactive system. The rest of this paper is orga-
nized as follows: In Section 2, we present a HHMM-based
approach to represent gaze patterns. In Section 3, two dis-
tinct methods to apply the model-based approach to cogni-
tive context classification are described. The results of mod-
eling simulated and experimental data by the suggested ap-
proach are presented in Section 4, and the paper is concluded
in Section 5.

2 Heterogeneous HMMs for Context

Modeling

A gaze at a computer screen is represented by the coordi-
nates xi = [xi, yi] on the screen. Given a time series of gaze
point data xt, t = 1, 2, . . . , T , where T is the number of
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time samples, its distribution on the screen is modeled as a
Gaussian mixture model (GMM), i.e.,

p(xt|λk) =
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are the parameters corresponding to each Gaussian in the
mixture, and the weights wi sum to unity. Here, k is used
as the index of the GMM; as indicated in Figure 1, there
can be up to L − 1 GMMs in the data, where L is a pa-
rameter that depends on the application and needs to be es-
timated online using the observations. Further, the number
of Gaussians in the kth GMM, Mk, is also a design param-
eter to be estimated; in this paper, we fix Mk = 1 for all
k = 1, 2, . . . L − 1. The area of the screen is denoted by
A and the probability density of random gazes is uniformly
distributed as 1/A.

Figure 1 denotes the structure of the HHMM model that
is proposed in this paper to represent the gaze patterns (sim-
ilar to the ones shown in Figure 2(b)). Rather than modeling
all the gaze patterns as GMMs, the proposed HHMM allows
one to incorporate different models that realistically repre-
sent the nature of human gaze on computer screens.

The probability of gaze transitions from one mode (or
AOI) to another (represented by one of the models in Figure
1(a)) is given by a mode transition matrix, as indicated by
the trellis diagram in Figure 1(b). The elements of the mode
transition matrix can be either estimated online, or they can
be assigned based on subject matter expertise.

The Gaussian mixtures are proposed to capture differ-
ent AOIs that the human is likely to focus on the screen;
the uniform model is designed to capture randomly dis-
persed gaze patterns on the screen. There are conflicting
reports of how random gazes relate to cognitive context;
some researchers claim random gazes are associated with in-
creased cognitive difficulty (Di Nocera, Camilli, and Terenzi
2007), whereas some claim otherwise (Harris Sr, Glover, and
Spady Jr 1986). Regardless, the purpose of this paper is to
present a model that can capture gaze patterns; we leave de-
tailed interpretations for future studies.

3 Approaches to Cognitive Context

Classification

Using the NNI Metric

The nearest neighbor index (NNI) is used to measure the ran-
domness in spatial data. The NNI is defined as (Di Nocera,
Camilli, and Terenzi 2007; Di Nocera, Terenzi, and Camilli
2006)

NNI =
dNN

dRND
(3)

where dRND = 0.5
√

A
N , dNN =

∑N
i=1

(
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(dij)
N

)
, 1 ≤

j ≤ N, j �= i, dij is the distance from the ith gaze point
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Figure 1: Heterogeneous hidden Markov Model. Each AOI
is represented as a Gaussian (with mean mi = [mxi

,myi
]T

and covariance matrix Σi). The L× L state transition prob-
ability matrix (illustrated through the trellis in (b)) de-
scribes the likelihood of transition of gazes between dif-
ferent AOIs, as well as “random gazes” that relate to inat-
tention. The prior probabilities of L models are given by
μ0, μ1, . . . , μL−1.

to the jth gaze point, N is the total number of gazes at
that region, and A is the area of the region. NNI ranges in
value from 0 for a distribution with maximum aggregation
to 2.1491 for a distribution, which is as evenly and widely
spaced as possible. It is less than, equal to, or greater than 1
according to whether the distribution pattern of the individ-
ual gazes in the population is more aggregated, the same as,
or more uniform (regular) than would be expected in an in-
finitely large random distribution of the same density(Clark
and Evans 1954).

Given that a cluster of gaze data is distributed accord-
ing to a Gaussian model with standard deviation σ (in both
directions), the corresponding model-based Gaussian NNI
(GNNI) can be computed as

GNNI(σ) =

(
NNI(σ0)

σ0

)
σ (4)

where NNI(σ0) is computed using (3) on Gaussian dis-
tributed data with standard deviation σ0 in both directions.

Now, assuming that there are L different AOIs, L − 1
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(a) Experimental setup
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(b) Sample eye-gaze measurements

Figure 2: Sample gaze measurements corresponding to one of the SCOUTTM interface screens.

AOIs distributed as circular Gaussians with standard devi-
ation σi, i = 1, . . . , L− 1, the overall GNNI is given by

GNNI = μ0 + μ1GNNI(σ1) + . . .+ μL−1GNNI(σL−1) (5)

where

μ0 + μ1+, . . . ,+μL−1 = 1 (6)

Here, μ0 is the prior probability of the HMM corresponding
to the uniform gaze, μi is the computed prior probability of
the HMM corresponding to the ith AOI.

Alternatively, the NNIs corresponding to a particular AOI
can be computed based on (4) and used for NNI-based clas-
sification. Using NNI for cognitive context classification is
popular among human factors researchers and this method
is an alternative automated way of computing the NNI of
an AOI that avoids random gazes and out-of-sequence gazes
from consideration in computing the NNI. We believe that
the NNI computed through the proposed approach will be
more realistic than the one computed through traditional
methods.

Using the HHMM Classifier

As an example, the application considered in this paper in-
volves three levels of cognitive difficulty: easy, medium and
hard. For cognitive context classification purposes, we pro-
pose that the data corresponding to these three difficulty lev-
els be used to train three different HHMMs. Once the three
models are adequately trained, the trained HHMM can be
used to monitor the cognitive context of a new subject.

Figure 3 illustrates a model-based approach to online clas-
sification of cognitive states. Below, we describe the change
detection algorithm in one of the detection modules of Fig-
ure 3. Consider the following log-likelihood ratio

Sk∗ =

k∗∑
k=1

ln
Pλj (x(k))

Pλi(x(k))
(7)

where Sk∗ can be incrementally updated as new data arrives
and the model change is declared when

Sk∗ − sk∗ > h (8)

where

sk∗ = min
1≤k≤k∗

Sk (9)

is the current minimum value of Sk∗ and h is a predefined
threshold value.

Formally, the model change detection time is written as

k̂∗ = argmin
k∗

{k∗ : Sk∗ − sk∗ > h} (10)

where we have omitted the dependence of S, s and h on i
and j for notational simplicity. Based on the key idea from
Page’s CUSUM algorithm (Page 1954), eq. (10) can be re-
cursively computed as

CUSUMk = max
{
0,CUSUMk−1 + Tk

}
(11)

where

Tk = ln
Pλj (x(k))

Pλi(x(k))
(12)

and a change from model (i) to model (j) is declared when
CUSUMk exceeds the threshold h.

4 Results

In this section, the HHMM training approach is demon-
strated using both simulated and experimental data.

Simulated Data

Figure 4 summarizes the simulated data and the result of
the experiment on it. The simulated data consists of three
Gaussians that are sufficiently separated from each other. A
randomly generated 4× 4 mode transition matrix is used to
switch the model among the three Gaussians and a uniform
gaze distribution.

The objective of the learning algorithm is to use the sim-
ulated gaze data to estimate the model parameters m and Σ
of the three Gaussians, along with the mode transition ma-
trix. Figure 4(a) shows the result of training this data using
a Gaussian HMM with three modes (this is a special case
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Change Detection 
Algorithm:

mode (i) ➔ mode (3)

Change Detection 
Algorithm:

mode (i) ➔ mode (1)

Change Detection 
Algorithm:

mode (i) ➔ mode (2)

Detected ModeCurrent Mode
(i)

Online Gaze Data

Figure 3: Model-based online classification scheme. Current mode (i), i = 1, 2, 3, denotes the detected present state. At a
given time, there needs to be 3 different online change detection algorithms running in parallel. Whenever a change in mode
is detected, the current mode (i) is updated to the new mode. The three models in this application correspond to the cognitive
difficulty levels - {easy,medium, hard}.

of GMM where there is only one Gaussian in the mixture
and w1 = 1.). The blue asterisks (*) represent the simulated
gaze points, the red point shows the estimated mean m and
the red ellipse indicates the estimated covariance Σ of the
model. In other words, the learning algorithm was forced to
estimate only three Gaussians from the data. As shown in
Figure 4(a), two Gaussians were accurately estimated. The
remaining data was forced into a third Gaussian model, re-
sulting in a large covariance matrix. This is also the moti-
vation for having a heterogeneous HMM for representing
eye-gaze data, because real world datasets of gaze patterns
are not necessarily Gaussian distributed.

Figure 4(b) shows the results of training using the pro-
posed HHMM architecture. As expected, all three Gaussian
parameters were accurately learned by assigning the uniform
gaze data to the fourth (uniform) model in the HHMM. It
must be noted that learning the number of GMMs (or AOIs)
is another learning objective; however, this is not tested in
this paper. Information theoretic approaches, such as min-
imum descriptive length (MDL) and Bayesian Information
Criteria (BIC), are possible tools to achieve this objective.

Experimental Data

The SmartEye Pro 6.1 was used to record gaze patterns of
20 participants while they were engaged in a simulated un-
manned aerial system operation on SCOUT2 for approx-

2The Supervisory Control Operations User Testbed (SCOUT)
was developed by researchers at the Naval Research Labora-
tory (NRL) for purposes of exploring UAV-operator (i.e., system)

imately 30 minutes. The participants searched for targets
of varying worth and also responded to chat messages that
comprised requests for information and commands to up-
date flight parameters (refer to (Mannaru et al. 2016a) for
a detailed description of the experiment). The experimental
setup and a sample set of gaze patterns are shown in Fig-
ure 2. This data was used to train the HHMM described in
Section 2.

Figure 5 demonstrates the results of the HHMM training
of the eye tracking data described previously. The number
of Gaussians in each mixture is set to one and the number
of GMMs is set to 4 ( = L − 1). Figure 5 shows the re-
sult of training the eye tracking data using a HHMM. Since
the number of GMMs is set to 4, and the number of Gaus-
sians in each of these GMMs is set to 1, it can be seen that
the HHMM captures four visible “gaze clusters”. The next
objective of testing these models is to relax these assump-
tions and to devise an automated system to select the num-
ber of mixture components in each GMM and the number
of GMMs in a HHMM. Also, the HHMM training demon-
strated in this paper was done using data from one user of
a specific cognitive difficulty. Future training stages will in-
volve three HHMMs, each trained by using data from multi-
ple test subjects undergoing three different difficulty levels.
Once such an HHMM is trained, it will be tested using the
approach illustrated in Figure 3.

performance in a multi-UAV, supervisory control context(Sibley,
Coyne, and Thomas 2016).
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(a) Gaussian HMM. Only two Gaussians were accurately es-
timated and the remaining data was forced into a third Gaus-
sian model, resulting in a large covariance matrix.
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(b) Heterogeneous HMM (HHMM). All three Gaussian pa-
rameters were accurately learned by assigning the uniform
gaze data to the fourth (uniform) model in the HHMM.

Figure 4: Demonstration of HHMM on simulated data.

5 Conclusions

In this paper, we presented a new approach to cognitive con-
text modeling and classification. In a deviation from tradi-
tional approaches that compute a single metric, such as en-
tropy and NNI, we proposed to have a model, viz., hetero-
geneous hidden Markov models (HHMMs), to capture the
patterns of eye gazes. There are several advantages to using
a model to represent the cognitive context rather than a sin-
gle metric: these models are able to capture very complex
features and, once trained, they can be used for online clas-
sification. However, the inability to infer cognitive context
directly from the models is a limitation.

In this paper, we demonstrated the training stage of this
newly proposed HHMM for cognitive context modeling. We
showed that by introducing appropriate models of differ-
ing statistical properties, hence the name “heterogeneous”
HMM, higher accuracies in model training can be achieved.
The demonstration was done on selected data from a single
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Figure 5: Demonstration of HHMM on Eye Tracking Data.
The HHMM captures four visible “gaze clusters”.

participant where the number of Gaussians is fixed a priori.
The next step is to implement model selection criteria to se-
lect the appropriate number of components in the Gaussian
mixture, which forms the basis of the proposed HHMM, and
to train using data from multiple participants for a realistic
performance evaluation.
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