

Abstract
In this paper we present GitDOX, an open source online,
schema aware XML annotation interface linked to Natural
Language Processing tools, which uses the online GitHub
platform as a backend for version controlled electronic cor-
pus development. We apply this platform to the use case of
transcribing and annotating Coptic manuscript data from
first millennium Egypt, in a collaborative team. The archi-
tecture of the tool is meant to be generic and extensible,
supporting an unbounded range of annotation schemes,
while being simple to use for annotators without extensive
training in computational tools or version control software.

 Introduction
In this paper we describe a new, open source tool for XML
annotation, which we are using to transcribe Coptic manu-
scripts for online publication. The Coptic, the language of
Egypt in the Hellenistic period of the first millennium, is
the last stage of Ancient Egyptian, the language of the hi-
eroglyphs. Written in a modified Greek alphabet with six
added letters, the language is a treasure trove of infor-
mation for researchers in multiple disciplines. Historians
use Coptic documents to study the ancient Mediterranean
in the first millennium; for Religious Studies, the language
offers some of the earliest Christian literature, document-
ing the inception of the Monastic movement; and for Lin-
guists Coptic forms the endpoint of the longest continuous-
ly documented language on the planet, with over 4,000
years of attestation. Making Coptic texts available in digi-
tal format is therefore an important endeavor.
 However, annotating manuscript material can be diffi-
cult: although there are now well documented standards for
transcription, such as TEI XML (http://www.tei-c.org/),
annotation schemes differ substantially in practice. Addi-
tionally, experts in Coptic Studies who can digitize manu-

Copyright © 2017, Association for the Advancement of Artificial Intelli-
gence (www.aaai.org). All rights reserved.

scripts may need extensive training to be able to use such
standards, and enforcing consistent use of tools and sche-
mas subsequently becomes a challenge. If only a handful
of annotation types are supported, a possible solution is to
offer a rich text interface with dedicated buttons represent-
ing manuscript phenomena (e.g. a button to annotate a let-
ter as illuminated). However, as the schema grows more
complex and new annotations are added, the need for ac-
cess to the underlying XML surfaces: the interface may not
be able to keep up with user needs and can become hard to
maintain without access to a permanent software team.
 A second challenge in managing data is the need to co-
ordinate multiple annotators working on the same materi-
als, document progress and potentially compare, and even
revert to older versions. These capabilities are becoming
more commonplace in projects using Version Control
Software (VCS) such as Git, but are still completely un-
used by annotation interfaces. In fact, to the best of our
knowledge, the present contribution forms the first exam-
ple of an annotation interface directly using an online VCS
as a backend, without any local file storage.
 To meet the challenges above, we have endeavored to
create a highly configurable XML editor called GitDOX
(Git Data-storage Online Xml editor) which can be popu-
lated with an arbitrary annotation scheme and guide a col-
laborative team of project annotators while offering access
to linked NLP technologies and keeping track of progress
without any exchange of files.

System Architecture
In order to ensure consistency across users and be able to
update the interface without distributing executables to
annotators, an annotation interface should ideally be online
and server based. This also means that annotators, who are
often domain experts with limited computer and program-
ming skills, can use the tools without ever having to install
software, and can submit annotations without exchanging

GitDOX: A Linked Version Controlled Online

XML Editor for Manuscript Transcription

Shuo Zhang and Amir Zeldes
Department of Linguistics, Georgetown University

ssz6@georgetown.edu, amir.zeldes@georgetown.edu

Proceedings of the Thirtieth International Florida Artificial Intelligence Research Society Conference

619

XML files, e.g. over e-mail. A further advantage is allow-
ing administrators to link and update auxiliary technolo-
gies, such as NLP tools facilitating manual annotation, or
annotation correction. Only a handful of tools support
online, server-based annotation, such as WebAnno
(Yimam et al. 2013) for textual relations and span annota-
tions, Arborator (Gerdes 2013) for dependency syntax, or
rstWeb (Zeldes 2016) for discourse parsing.

GitDOX is a collaborative XML annotation system, im-
plemented as a Python-CGI based web application running
on a server, using SQLite as a local database and the
GitHub platform itself for versioned XML file storage. We
follow the static form-submit architecture of Arborator
(Gerdes 2013), in which no running services are used: Py-
thon scripts are exposed via a Web server (e.g., Apache),
and calling them from a browser accesses the DB to serial-
ize HTML for the client. This means that no service needs
to constantly run and ‘listen’ for an event while the appli-
cation is being used, thereby minimizing server workload.

Figure 1. GitDOX software architecture.
For user interaction, we adapted the CodeMirror

(https://codemirror.net/) module as our browser-embedded
XML editor component. CodeMirror is an open source text
editor implemented in JavaScript (see Figure 2). Using
CodeMirror enables us to build the system with maximum
configurability while requiring minimum server-side load.
Concretely, using the CodeMirror module has the follow-
ing advantages:

(1) Syntax and error high-lighting: by defining a set of
valid XML grammars and tags, modified to the
needs of specific annotation projects, CodeMirror
provides syntax and error highlighting within the
XML editor. This visual cue is especially crucial for
annotators with limited training in XML technology,
who would otherwise be prone to make mistakes
during their annotation process.

(2) Auto complete: CodeMirror offers auto complete
functionality in conjunction with a defined set of
valid XML tags and hierarchy. It is worth mention-
ing that the defined set of valid XML tags and hier-
archy can be easily modified and extended by sup-
plying a simple text file containing such infor-
mation. Therefore, the administrator is able to adapt
the tool for use in any annotation project with its
own XML definitions beyond the Coptic use case1.
The auto-complete feature is also very useful for
non-technically oriented users.

(3) Customizable schema: by relying on auto complete
suggestions and error highlighting to create the cor-
rect schema, we both avoid a complicated interface
with many buttons, and make extending the schema
with new elements trivial: there is virtually no de-
velopment work required to add, remove or change
the behavior of an annotation element or attribute.

(4) Line numbers: when this option is turned on, the
line numbers in the editor interface help facilitate
references to positions in text when discussing with
reviewing editors and in commit messages (see Ver-
sion Control). This feature is particularly desirable
for our use case, since we are preserving line breaks
and line numbers following original manuscript lay-
outs.

(5) Lightweight: CodeMirror is a purely client side Ja-
vaScript-based module, therefore reducing server
load to a minimum.

Figure 2. XML highlighted in CodeMirror
In addition to the XML document editing and annota-

tion, we also provide support for adding metadata associat-
ed with each document (Figure 3 bottom). The system has
built-in support for suggesting pre-defined sets of valid
metadata fields, whereas the users also have the option to
add new fields based on their needs.

The system aims to facilitate the workflow of collabora-
tive annotation projects for users of various levels of tech-
nical abilities and administrative rights. There are three
levels of system users with different levels of admin privi-
leges: annotators, committers, and administrators. Annota-
tors only have access to content editing, including setting

1 For discussions of manuscript encoding and TEL XML for Coptic, see
Schroeder and Zeldes 2016.

620

the status of a document (under review, requesting assis-
tance, etc.) and temporarily saving their work to the data-
base (but not actually creating a time stamped, version con-
trolled datum). Committers, in addition to annotator privi-
leges, use their GitHub account credentials and can make
commits to remote repositories (see below). Administrators
have full admin privileges (including adding or removing
users, configuring the system, etc.). Initially, each docu-
ment is assigned to an annotator and the status is set to
‘editing’. When an annotator finishes their work and the
status is set to ‘review’, a senior editor (usually a commit-
ter or administrator) will review their work. Before data is
committed by a committer, no files are saved: the current
content of a document is just stored temporarily as a string
in the database, which can be edited by any user with edit-
ing permissions. Figure 4 shows the sample workflow of a
collaborative annotation project using the tool.

Figure 3. Example editor interface, with NLP and GitHub func-
tionalities (commit message and commit button)

Version Control
GitDOX uses GitHub directly as a version control plat-
form. However, users may want to save intermediate steps
of their work frequently, e.g. if they leave their computer,
close their browser, or just to ensure no data loss occurs.
Pushing all such save operations to a GitHub repo would
quickly fill the commit history, and require a cumbersome
proliferation of commit messages describing changes at
each save. During the annotation phase, all edited contents
are therefore stored in a SQLite database and no actual
files are serialized to the disk.

In order to reduce the complexity of configuring and us-
ing GitHub for end-users, GitDOX implements a GUI-
based commit functionality for pushing temporarily serial-
ized local files to the GitHub remote repository. Crucially,

this functionality does not require any setup of Git local
working directory by any users. Instead, it utilizes the
GitHub API to directly push a temporary file to the remote
repo (either to create a new file or update an existing file
on the remote repository). The current implementation uses
github3.py (https://github.com/sigmavirus24/github3.py),
a python wrapper for the GitHub API.

When an annotated document is ready for committing,
GitDOX pushes a temporarily serialized file (automatically
deleted after the commit) directly to a remote repository on
GitHub, along with a commit message entered by the user
(Figure 3). This makes it possible for users with no experi-
ence in using VCS to have a free, state-of-the-art, and well-
maintained complete functionality of version control and
history tracking without the need to build an ad-hoc solu-
tion. It is also impossible to create merging conflicts, since
there are no forks or branches: using the commit button
overwrites the previous version of the file, which is still
recoverable from GitHub. And even if users have not
committed their data, they can still access their latest work
from the browser on any computer after saving, since the
database is on the server.

Figure 4. Example workflow of annotation and committing. Cop-
tic manuscript image: Österreichische Nationalbibliothek,

http://data.onb.ac.at/rec/RZ00002466

To view the history of the changes to any file, one can
simply visit the repository on the GitHub website and will
be able to see the current and past versions of the file, as
well as the annotators who made the changes. In designing
this simple GUI interface for GitHub, we take advantage of
GitHub as our powerful backend for VCS, while minimiz-
ing the complexity needed for annotators to use Git, as
well as for administrators to configure Git’s local working
directories for users on the server: since there is no file
storage on the server, admins only need to configure the
target repository for versioned files.

621

Linked NLP
Another major advantage of the online interface is the abil-
ity to maintain online APIs for semi-automatic facilitation
of annotation tasks. In our case, we have implemented a
pilot interface to an NLP component automatically seg-
menting Coptic text on multiple levels (Figure 3, “NLP”).

Word segmentation is one of the most time consuming
tasks for Coptic manuscript entry, since Coptic word mor-
phology is rather complex: much like in Hebrew or Arabic,
word forms are spelled together in so-called bound groups
(Layton 2011: 12-20), which correspond to prosodically
stressed feet. As a result, prepositions, articles and clitic
pronouns are all spelled together with nouns or verbs. To
make matters worse, nouns and verbs themselves can con-
tain affixes or incorporating compounds, which are also
spelled together and must be split apart for analysis. The
following example illustrates some of the issues:

hn-nef-hbēue m-mn̩t.ref.hetb̩.psyxē
in-his-deeds of-ness.er.kill.soul
‘in his deeds of soul-killing’
(Besa, Letter to Aphthonia)

In this example, the first bound group must be split into
three units: ‘in’, ‘his’, and ‘deeds’. The second bound
group, ‘of soul-killing’, must be split into the preposition
‘of’ and ‘soul-killing’, while ‘soul-killing’ itself must be
analyzed to extract derivational affixes, as well as the in-
corporated lexical items ‘kill’ and ‘soul’. This is important
for a variety of research questions, such as the study of
Greek loanwords in Coptic: in the example above, only the
segment /psyxē/, ‘soul’, is a Greek loanword (‘psyche’),
which can only be recognized once segmentation has oc-
curred.

In order to facilitate segmentation for annotators, we
have linked an automatic Coptic tokenizer to our interface,
using a REST API call (cf. Fielding 2000). The linked to-
kenizer achieves a best segmentation accuracy of 90.21%
in a 10-fold cross validation evaluation and is described in
(Zeldes and Schroeder 2016). Annotators can receive seg-
mentation suggestions from the API at the click of a but-
ton, which sends the plain text of their transcription to an
NLP service via a REST service call, and refreshes the
CodeMirror editor with the resulting segmentation. This
means that users do not have to consult an external tool
and copy and paste results, but can perceive the interface
as offering the NLP functionality directly. We hope to ex-
tend this functionality to other useful NLP functions in the
future.

Conclusion
In this paper we presented GitDOX, an online XML editor
linked to NLP services and using GitHub as a backend for
version control of annotation projects. By completely
avoiding file storage on the server and relying on GitHub
as a repository, we get a mature VCS solution ‘for free’
and also hide some of the complexity of VCS management
from users. The online interface means that users can con-
centrate on the annotation task at hand, and administrators
don’t need to worry about file management or e-mail
communications within the project.

Figure 5. Example screenshot of the GitDOX editor in spread-
sheet mode

Because documents are managed online and can be as-
signed a status and an assignee, project management is
relatively simple: senior editors can assign tasks to users,
check progress, and set the GitHub repository address for
each document. Earlier versions can be recovered and
compared (i.e. ‘diffed’) using GitHub itself, and commit
messages, which appear to come from the users’ own ac-
counts, keep track of changes. Updates to the annotation
schema or the NLP components can happen in the back-
ground and are automatically applied to all users as soon as
they log in – there is never a need to update software for
clients or disseminate schema files.

Currently we are applying the GitDOX editor in our
Coptic manuscript annotation project with positive feed-
back from annotators. The project has so far digitized 96
manuscript parts (176 pages) with earlier software, which
are now being ported to the new GitDox interface. All new
documents are being transcribed in the system.

The GitDOX editor is general and easily configurable to
fit any annotation projects with different XML tag and
hierarchy definitions beyond the current use case of Coptic
manuscript annotation. In addition, it is also easy to incor-
porate non-XML based editors into the editor interface,
allowing the user to switch between multiple annotation
editor modes. Shortly before publication, we added a sec-
ond embedded editor next to CodeMirror XML editor
component, using EtherCalc collaborative spreadsheets
(https://ethercalc.org/). As a result, it is now possible to

622

choose spreadsheet editing mode (see Figure 5) and mark
up data in an annotation grid. This also opens up the possi-
bility of binding more advanced NLP tools to add annota-
tion in further columns, such as POS taggers, which we are
currently working on.

There are still several points for improvement which we
would like to work on for the future. First, progress track-
ing for administrators is currently doable only by monitor-
ing GitHub commits and document statuses. Ideally we
would like to have some sort of aggregate dashboard func-
tionality to alert administrators to progress in projects or
subprojects, as well as communicating with groups of users
over the system. It would be also desirable in some use
cases for the user to be able to access past versions of doc-
uments from the tool instead of going to GitHub. Second,
we hope to extend the tool to perform verbose XML sche-
ma validation, on top of the current schema-based syntax
highlighting. Finally, we have also only begun to explore
binding more advanced NLP functionality. Some targets
for future expansion include online dictionary lookup di-
rectly from the editor and automatic normalization, both of
which would feed naturally into our workflow.

Acknowledgement
Support for this project comes from a bilateral grant from
the National Endowment for the Humanities (NEH) and
the German Research Council (DFG), titled KELLIA:
Koptische/Coptic Electronic Language and Literature In-
ternational Alliance (HG-229371-15). We would like to
thank the KELLIA project team for their support and feed-
back, as well as three anonymous reviewers for their valu-
able comments on earlier versions of this paper.

References
Fielding, R. T. 2000. Architectural Styles and the Design of Net-
work-based Software Architectures. PhD Thesis, University of
California, Irvine.
Gerdes, K. 2013. Collaborative Dependency Annotation. In: Pro-
ceedings of the Second International Conference on Dependency
Linguistics (DepLing 2013). Prague, 88–97.
Layton, B. 2011. A Coptic Grammar. Third Edition, Revised and
Expanded. (Porta linguarum orientalium 20.) Wiesbaden: Har-
rassowitz.
Schroeder, C. T., and Zeldes, A. 2016. Raiders of the Lost Cor-
pus. Digital Humanities Quarterly 10(2).
Seid Muhie, Y.; Gurevych, I.; Eckart de Castilho, R.; and Bie-
mann, C. 2013. WebAnno: A Flexible, Web-based and Visually
Supported System for Distributed Annotations. In: Proceedings of
the 51st Annual Meeting of the Association for Computational
Linguistics. Sofia, Bulgaria, 1–6.
Zeldes, A. 2016. rstWeb - A Browser-based Annotation Interface
for Rhetorical Structure Theory and Discourse Relations. In: Pro-

ceedings of NAACL-HLT 2016 System Demonstrations. San Die-
go, CA, 1–5.
Zeldes, A., and Schroeder, C. T. 2016. An NLP Pipeline for Cop-
tic. In: Proceedings of LaTeCH 2016 - The 10th SIGHUM Work-
shop at the Annual Meeting of the ACL. Berlin, 146-155.

623

