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Abstract

We propose a novel approach to combine state-of-the-art time
series data processing methods, such as symbolic aggregate
approximation (SAX), with very recently developed deep
neural network architectures, such as deep recurrent neural
networks (DRNN), for time series data modeling and predic-
tion. Time series data appear extensively in various scientific
domains and industrial applications, yet the challenges in ac-
curate modeling and prediction from such data remain open.
Deep recurrent neural networks (DRNN) have been proposed
as promising approaches to sequence prediction. We extend
this research to the new challenge of the time series prediction
space, building a system that effectively combines recurrent
neural networks (RNN) with time series specific preprocess-
ing techniques. Our experiments show comparisons of model
performance with various data preprocessing techniques. We
demonstrate that preprocessed inputs can steer us towards
simpler (and therefore more computationally efficient) archi-
tectures of neural networks (when compared to original in-
puts).

1 Introduction

Time series data consist of real valued measurements of mul-
tiple parameters at equal intervals. Time series prediction
tasks assume that future values in the series are a function
of historical values of the same series. Electrocardiogram
(ECG) analysis in medicine, stocks prediction in finance, en-
ergy usage prediction in power grids, weather prediction in
meteorology and solar activity prediction in space weather
are a few examples of important real-life applications of
time series modeling and prediction.

Being naturally adept at recognizing shape-related or
color-related patterns (e.g. patterns contained in images),
humans can visually recognize some patterns that frequently
occur in time series data with relative ease. Statistical and
machine learning methods of modeling and predicting time
series attempt to go one step further to uncover the nontriv-
ial patterns. Inherent complexity of time series data stems
from two aspects, namely, high dimensionality (with each
time step being a dimension) and unique temporal proper-
ties (monotonic trends, seasonal variations or temporal auto-
correlations). Deep recurrent neural networks (DRNN) have
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been proposed as promising approaches for sequence mod-
eling and prediction approaches, but so far, extension to the
time series domain has been sparse.

Figure 1: Overview of the prediction approach

In this work, we extend the sequence prediction approach
to explore the suitability of deep learning algorithms to pre-
dicting time series data. Figure 1 shows an overview of the
overall components and processes that constitute the system.
We approach the time series prediction task via regression
and classification. Regression is applied for predicting real
values with input given as real values in a time series seg-
ment. While typical classification tasks aim to predict a la-
bel applied to a time series (e.g. predicting whether an Elec-
troencephalogram indicates presence of stroke), we take a
different approach. Input time series values are discretized
using symbolic aggregate approximation (SAX), and the
classification then predicts the next symbol in the sequence.
Thus our classification approach is, in essence, a variation of
sequence prediction. The predicted value indicates a range
of possible values instead of a real value as given by regres-
sion approach. We report appropriate metrics for evaluating
the efficiency of both approaches. The focus of this work
is on effectiveness of preprocessing techniques. Therefore,
the paper does not discuss novel deep neural network archi-
tectures or activation functions, nor does it claim superior
scalability or accuracy compared to existing systems. These
discussions are out of scope for this paper. Section 1 intro-
duces the problem domain and gives an overview of time se-
ries modeling and prediction approaches. Section 2 gives re-
lated work in existing time series prediction and deep learn-
ing methods. Section 3 describes the proposed method in
detail and experimental setup, and results are given in sec-
tion 4. Section 5 contains conclusions and comments about
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future work.

2 Background and Related Work
Moving average techniques (e.g. Auto Regressive Integrated
Moving Average) and exponential smoothing techniques
(e.g. Holt-Winters) (Asteriou and Hall 2011) are popular
statistical methods applied to time series prediction domain.
Supervised classification using machine learning algorithms
such as support vector machines (SVM), decision trees (DT)
and artificial neural networks (ANN) (Bishop 2006) aim to
learn the parameters that define the best possible model by
scanning the data repeatedly and adjusting parameter values
with the goal of minimizing the error between the predicted
outcome and the expected outcome. An extensive review by
Schmidhuber et el. (Schmidhuber 2015) shows the expan-
sion of ANN into deep learning aided by improvements in
processing power using graphical processing units (GPU).
In contrast to traditional artificial neural networks, deep neu-
ral networks typically apply multiple layers and sparse con-
nections between layers, making the networks ’deep’ and
more complex. Each layer models an abstract and progres-
sively lower level representation of the input, thus learn-
ing salient features in the input and recognizing patterns in
them automatically. Deep neural networks have been found
to be effective in tasks that are easy for humans, but in-
credibly difficult for machines, such as recognizing objects.
Deep learning algorithms emulate human learning processes
(e.g., vision for recognizing objects) in the structure of the
network. Deep learning is said to be a good fit for prob-
lems where the information needed to complete the task is
entirely contained in the input and the information to be
learned is inherently structural. Deep recurrent neural net-
works (DRNN) are deep neural networks where feedback
connections help the network learn from past input values,
which makes them adept at learning sequences. Some of the
variations of RNN include (1) Elman RNN (ERNN) (El-
man 1990) which uses traditional artificial neurons, but adds
weights in hidden layers connected to previous inputs, (2)
Long short term memory (LSTM) (Greff et al. 2015) which
uses a network that is built of units that consist of a mem-
ory cell and gates that control the memory cell’s ability to
accept input, provide output and remember values and (3)
Gated recurrent unit (GRU) (Chung et al. 2014) which uses
a simpler architecture based on gates but claims to match
the performance of LSTM while being computationally ef-
fective. RNN are trained using algorithms based on gradi-
ent descent learning, such as: Stochastic gradient descent
(SGD) (Bottou 2010), Adadelta (Schaul, Zhang, and LeCun
2013), Adagrad (Duchi, Hazan, and Singer 2011), Adam
(Kingma and Ba 2014) and Rmsprop (Tieleman and Hin-
ton ). Various configurations of RNN networks have been
effectively used in a variety of application areas, including:
speech recognition (Graves, Mohamed, and Hinton 2013),
handwriting analysis (Graves 2013), natural language mod-
eling (Graves and Schmidhuber 2005) (Mesnil et al. 2013)
and audio analysis and classification (Chung et al. 2014)
(Eck and Schmidhuber 2002) (Lyu, Wu, and Zhu 2015). Ef-
forts have been made to extend the success of RNN with
sequences into problems involving modeling and predicting

time series (Lee et al. 2009) related to traffic flow predic-
tion (Lv et al. 2015) and energy prediction (Busseti, Os-
band, and Wong 2012). In addition to RNN, deep belief
networks (DBN) (Kuremoto et al. 2014) and deep convolu-
tional networks (Zheng et al. 2014) have also been explored.
Piece-wise aggregate approximation (PAA) (Faloutsos, Ran-
ganathan, and Manolopoulos 1994) and symbolic aggregate
approximation (SAX) (Lin et al. 2007) are techniques that
compresses the time series while preserving enough infor-
mation for further searching, mining or learning tasks. PAA
splits the time series into segments of approximately equal
size and averages the values in a segment. SAX maps the ap-
proximated values to symbols using a predefined alphabet by
splitting the time series value domain into equal probability
regions. In addition to dimensionality reduction, applying
PAA and SAX allows application of natural language and
sequence prediction related deep learning classifier models
and techniques to time series prediction problem.

3 Methodology

Our approach to evaluating the effectiveness of combining
preprocessing strategies with deep learning methods is sum-
marized in Figure 2. The various components of the system
are: (1) preprocessing pipeline, (2) hyper parameter opti-
mization, (3) training, (4) validation and (5) evaluation. The
following subsections describe these components and their
working in detail.

Figure 2: System Architecture

Preprocessing Pipeline

The preprocessing pipeline combines a series of steps with
the goal of compressing the input time series and transform-
ing it into a representation suitable for applying deep learn-
ing models. Figure 3 shows the stages in the pipeline. The
specific configuration of this pipeline, including the process-
ing steps and their order is determined through exploratory
data analysis (EDA). EDA is geared towards understanding
the data exploratory visualizations (histograms, box plots,
scatter plots etc.) and correlation analysis which bring out
the relationships and other patterns. The cleaning step in the
pipeline can include (1) detecting N/A values (2) detecting
gaps and (3) outlier analysis. Affected instances may either
be removed, replaced with interpolated values or preserved
depending on application needs. A sliding window approach
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Figure 3: Various Stages of a Preprocessing Pipeline

is used to transform a continuous time series into discrete se-
quences. The window length, corresponding to the length of
the resulting sequences, and the step size can be adjusted.
For example, a sequence 1-2-3-4-5-6 with sliding window
size of 3 and step size of 1 outputs a set of sequences {1-2-3,
2-3-4, 3-4-5, 4-5-6}. Labeling the sequences with meta-data
encodes additional, potentially relevant, information about
the input data. The meta-data labels are not fed into the arti-
ficial neural network model as an input feature, but are used
to stratify or balance the data set for training and testing pur-
poses. PAA and SAX further compresses and encodes the
time series as a sequence of symbols. If the original time
series is of length w and the PAA is applied to it with a
number of segments n, the time series is compressed by a
factor of n

w . If the number of segments is set too high, PAA
will not result in good compression; at the same time, if the
number of segments is set too low, relevant information may
be lost. Each SAX symbol (the set of symbols is called the
SAX alphabet) represents a slice of values in the domain.
Too large an alphabet will result in effective compression,
while too small an alphabet will lose information. Word em-
bedding (Mikolov et al. 2013) is a technique used in natural
language modeling. In our approach, rather than learning the
embedding via unsupervised training, we use preset random
embedding to serve the purpose of translating a sequence of
SAX symbols into a unique real-valued matrix. The length
of the embedding vector should be kept minimal to avoid
complexity, but long enough to ensure uniqueness in map-
ping.

Hyper Parameter Optimization

Hyper parameters in a neural network model are parameters
that define the model and do not change during the learning
process (e.g., number of hidden layers and neurons, learn-
ing rate, learning algorithm used etc.). Hyper parameter op-
timization (Bengio 2012) includes a search through the hy-
per parameter space, i.e., training the model and evaluating
predictions for each possible combination of hyper param-
eter values with the goal of finding an optimal set of val-
ues. Table 1 lists the hyper parameters and value set used
in experimentation in our work. We partition the data set
into three parts: 10% for optimization, 80% for training and
10% for validation using stratified shuffle split. A manual
grid search through the parameter space is used for finding
optimal models, which are then used for training and com-
parative evaluation.

Training, Validation and Evaluation Metric

The best performing model obtained from the hyper param-
eter optimization is trained using the 80% partition. After

Hyper Parameter Options
Cell Type ERNN,LSTM,GRU

Learning Algorithm SGD,AdaDelta,
Adam,RmsProps

Hidden Layers 1,3
Size of Hidden Layers 50,100,200,

250,500,1000
Learning Rate 0.005,0.05,0.5

Table 1: Hyper Parameters

training, the 10% validation partition is used for reporting
evaluation metric. Root mean squared error (RMSE) is used
for evaluating regression models. For classification, we re-
port multi-class extensions of accuracy and F1 score as met-
rics. Accuracy is indicated as the ratio of correct predictions
to total number of predictions. F1 Score is a harmonic mean
of two metrics, namely precision and recall. Precision fo-
cuses on the impact of negative prediction rate, i.e., classi-
fying a product as defective when it is actually defective.
Recall on positive prediction rate, i.e., classifying a product
as not-defective when it is actually not defective. F1 score is
better suited in cases where the data set contains unbalanced
classes.

4 Experiments

Experiments are conducted on five time series data sets sam-
pled from the interplanetary magnetic field (IMF) and so-
lar wind data set provided by the solar physics data facil-
ity (SPDF) obtained from NASA’s COHO Web (King and
Papitashvili 2005). Deep neural network models are imple-
mented in theano (Bastien et al. 2012) (Bergstra et al. 2010).
Experiments are conducted on a 2.8 GHz Intel Core i7 ma-
chine with 16GB memory and 1 GPU, Nvidia GeForce GT
750M.

Application and Data Set Details

Interplanetary magnetic field (IMF) and solar wind param-
eters in the space between the Sun and Earth are measured
by various satellites near earth’s surface and consolidated
by the Solar Physics Data Facility (SPDF). Fluctuations and
extreme values in interplanetary magnetic field are often
indicators of increased geomagnetic activity and possibly
coronal mass ejection events (CME). Interplanetary coro-
nal mass ejection (ICME) events interfere with the Earth’s
magnetic field and can cause electric and communication
network outages. Predicting IMF values may help us under-
stand and predict ICME events, which in turn, help avoid
damage to power grids and ensure that spacecrafts and air-
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planes operate safely. IMF is reported in radial-tangential-
normal (RTN) coordinate system, where R̂ points radially
away from the sun, T̂ points in the direction of planet’s mo-
tion and N̂ completes the system. In this paper, we attempt
to predict next value of the N-component of IMF (also called
BN) from 24 hours of historical BN data. The data set con-
tains 16 years (1999-2015) of hourly averaged values, con-
taining 149,016 time steps. Although there are 8 features
present in the data set that may aid in prediction, for the
scope of this paper, we only use BN.

Preprocessing

Figure 4: IMF BN Distribution

BN follows a distribution shown in Figure 4. Table 2
shows the preprocessing steps applied and resulting cardi-
nality and distribution changes in the data set. The data set
uses a filler value of 999.9 where measurements are not
available. This value will be filtered out in the cleaning step.

Step Data Size Remarks
Original Series 149016 Before Preprocessing

Cleaning 148977 0.026% of original size
Sliding Window 148863 Sequences of length 25

Labeling 23412 (ICME) 15.71%
125451 (Non-ICME) 84.27%

SAX 17634 A 11.84%
17650 B 11.85%
19470 C 13.07%
18314 D 12.30%
18669 E 12.54%
18261 F 12.26%
19333 G 12.98%
19532 H 13.12%

WordEmbedding 148863 No Change

Table 2: Preprocesing Results

For IMF BN prediction, each time step is labeled with a
flag to indicate presence of interplanetary coronal mass ejec-

tion (ICME) events as given in Dr Ian Richardsons catalog
(Cane and Richardson 2003). Since the IMF BN data set is
hourly averaged and we may be risking loss of salient infor-
mation, we do not apply PAA in our pipeline. SAX alphabet
size was set to 8 to limit the hyper parameter search due to
practical considerations. Table 3 shows the range of IMF BN
values for each alphabet. Embedding converts the sequence
into a real valued (in the range [0,1]) matrix of shape 24 x
10.

BN Value Range Symbol
-50.7 to -2.6 A
-2.6 to -1.4 B
-1.4 to -0.6 C

-0.6 to 0 D
0 to 0.6 E

0.6 to 1.3 F
1.3 to 2.5 G

2.5 to 37.0 H

Table 3: Applying SAX breakpoints to IMF B N

Optimization, Training and Validation

We created five approximately equally sized data sets by
random sampling without replacement from the COHOWeb
IMF data set, imposing stratification and balancing con-
straints as described in Table 4. Creating these data sets
allowed us to study how the classification results change
when class distribution in the input (or ’richness’ of data set)
is controlled. Where balancing was required, larger classes
were randomly under-sampled. For each data set, the opti-
mization, training and validation data sets are created using
stratified shuffle split with 10%-80%-10% splits.

Model Performance

We experiment with RNN consisting of 1 or 3 layers and ba-
sic (ERNN), LSTM or GRU cells. A layer 1 model is a shal-
low model, but is implemented using deep learning frame-
work for effective comparison. A linear regression layer is
added on top for regression experiments and a softmax layer
for classification experiments.

For regression model, the input is a univariate time series
of length 24 (corresponding to 24 hours) and output is a real
number corresponding to the next hour into the future. The
input is cleaned and standardized to a [0,1] range, but not
preprocessed otherwise. The prediction results are given in
Table 5. Compared to the baseline of repeating the last time
step value in the series, which yields an RMSE 2.26 in IMF
data set, out-of-the-box statistical methods do not perform
well. Machine learning methods do better, with SVM and a
multi-layer RNN model yielding results better than baseline.

For classification model, using data sets II to V, the input
is extensively preprocessed. Input is time series segments,
transformed into real valued matrices by the preprocessing
pipeline. The model predicts 8 class labels, corresponding
to SAX symbols. Data set I is fed into the classifier without
preprocessing, with 24 real valued inputs.
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Description Size Class Distribution(%)
I No Constraints 49,000 877 possible distinct values(-50.7 to 37.0), shown in Figure 4.

II Balanced on ICME labels 46,824 50% ICME,50% Non-ICME
III Stratified on ICME labels 49,621 15.72% ICME,84.72% Non-ICME
IV Balanced on SAX labels 48,000 12.5% A, 12.5% B, 12.5% C, 12.5% D,

12.5% E, 12.5% F, 12.5% G, 12.5% H
V Stratified on SAX labels 49,619 8.06% A, 10.29% B, 14.07% C, 16.92% D,

17.54% E, 15.04% F, 9.42% G, 8.66% H

Table 4: Description of data sets

Classification results are shown in Table 6. The model
description short hand given as ”n-layer-m-hidden-celltype”
reads - an RNN consisting of n number of layers, with m
number of celltype (Basic (ERNN), LSTM or GRU) neu-
rons in each hidden layer. For classification, the first base
case is accuracy of random choice for 8 classes, i.e. 12.5%.
The second base case is predictions that repeat the last value
in the series, i.e. 33% accuracy in the IMF data set. Deep
learning models consistently out perform out-of-the box ma-
chine learning methods over all preprocessed datasets such
as SVM and tree classifiers and are better than random
chance prediction and repeating last time step values, yield-
ing up to 44% accuracy. From the results, not preprocessing
the input for classification models results in extremely poor
performance. This may be because there are 877 classes to
be predicted instead of 8. The best accuracy and F1 score ob-
tained with our most complex classification model (3 layers,
250 hidden neurons) for data set I is an order less than the
accuracy obtained using a much simpler models (e.g. 1 layer,
100 hidden neurons) for preprocessed data sets II,III,IV and
V. Results show that effective preprocessing can simplify the
task and thus lead to simpler models which can be equally
effective.

Model RMSE
Simple Exponential Smoothing 16.87

ARIMA(model=1,1,1) 16.07
1-layer-45-hidden-LSTM 0.04

RBF SVM 0.03

3-layer-30-hidden-GRU 0.03

Table 5: Regression model performance

5 Conclusions and Future Work

The paper describes a system that facilitates exploration of
suitability of deep learning methods in time series predic-
tion, and particularly in predicting BN time series. We ex-
plore two approaches, namely regression and classification,
comparing the effect of preprocessing the data set for clas-
sification. A preprocessing pipeline is described that com-
presses the time series input data without losing information
required to train a deep neural network on classification task.
We demonstrate through experiments that classification can
be a viable method for prediction of time series when com-
bined with preprocessing techniques. Compared to models

Model Accuracy F1 Score
I Linear SVM 0.32 0.32

ExtraTreesClassifier 0.31 0.30
3-layer-500-hidden-Basic 0.011 0.12

II Linear SVM 0.35 0.35
ExtraTreesClassifier 0.35 0.35

1-layer-100-hidden-Basic 0.44 0.44

III Linear SVM 0.32 0.32
ExtraTreesClassifier 0.23 0.23

1-layer-500-hidden-Basic 0.38 0.36
IV LinearSVM 0.32 0.32

ExtraTreesClassifier 0.22 0.22
1-layer-100-hidden-Basic 0.39 0.38

V LinearSVM 0.33 0.33
ExtraTreesClassifier 0.24 0.24

1-layer-100-hidden-Basic 0.39 0.38

Table 6: Classification model performance

required for un-preprocessed inputs, the model for prepro-
cessed inputs is simpler in terms of layers and hidden neu-
rons needed to achieve effective classification.

In future research, we intend to extend this framework
to predict more than one value into the future. We envision
that it would also be beneficial to extend the input layer to
handle multiple input features, i.e., multivariate time series.
We would also explore the suitability of other existing deep
learning models, such as encoders, in the context of time
series prediction. To improve efficiency of the framework,
we intend to use alternate methods such as automated grid
searches and random search for hyper parameter optimiza-
tion.
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