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Abstract

The objective of this work is to develop methods for detecting
outliers in time series data. Such methods can become the key
component of various monitoring and alerting systems, where
an outlier may be equal to some adverse condition that needs
human attention. However, real-world time series are often
affected by various sources of variability present in the envi-
ronment that may influence the quality of detection; they may
(1) explain some of the changes in the signal that would oth-
erwise lead to false positive detections, as well as, (2) reduce
the sensitivity of the detection algorithm leading to increase
in false negatives. To alleviate these problems, we propose
a new two-layer outlier detection approach that first tries to
model and account for the nonstationarity and periodic vari-
ation in the time series, and then tries to use other observ-
able variables in the environment to explain any additional
signal variation. Our experiments on several data sets in dif-
ferent domains show that our method provides more accurate
modeling of the time series, and that it is able to significantly
improve outlier detection performance.

Introduction

Outlier, or anomaly, detection has been widely studied in
the data mining and machine learning communities (Chan-
dola, Banerjee, and Kumar 2009). It aims to identify out-of-
ordinary data instances, i.e., instances that are very differ-
ent from the rest of the data. Most previous research work
deals with outlier detection for independent and identically
distributed (iid) data. Our focus in this work, however, is on
outlier detection methods for time series data, where data in-
stances may be linked by complex temporal dependencies.
Our goal is to develop outlier detection methods analyzing
time series in real time and being able to identify, as quickly
as possible, aberrant time-series readings. Such methods are
extremely important for the development of various moni-
toring and alerting applications that help humans to screen
behaviors of both natural, as well as, man-made systems.

Real-world time series data may exhibit complex tempo-
ral behaviors due to various sources of variability that may
influence their expression. One possible source of variability
is a periodic or seasonal variation of the signal. For example,
monitoring of various web-based human activities may vary
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depending on what day of the week and what hour of the day
the signal is associated with. Similarly, monitoring of the sea
level is affected by moon gravity and low-and-high-tide vari-
ation. Other sources of variations may be due to other effects
of the environment. Briefly, any variable representing some
aspect of the environment may influence the observed time
series, being reflected in its readings. If this variable is ob-
served but ignored, the readings alone may look aberrant. In
general, additional environmental variables, whenever they
are observed and considered, may explain the time series and
its variation. As an example, consider the time series of web-
based human activities discussed above, and assume the day
we collect the current reading for is a holiday. In that case,
the readings are likely to be different from the regular days
of the week, and changes in the readings may be explained
by the information about holidays. Similarly, the readings
of the sea level may be affected by the weather pattern, for
example, the presence of the storm in the area.

A variety of sources of variability and their combined ef-
fects make the problem of outlier detection for time series
a very challenging problem, especially when many environ-
mental variables are considered, and the time series we work
with and analyze are relatively short and do not provide
many examples of the behaviors for the different sources of
variability. For example, even if we have one year worth of
data for the time series, the number of holidays in one year
remains relatively low. In this work, we tackle the problem
by developing a new two-layer outlier detection method for
nonstationary time series. In the first layer, our procedure
tackles periodic variations and other nonstationarity. By ac-
counting for these variations, it calculates local deviation
scores that measure the deviation of the most recent time-
series readings. However, some of the outlier-looking sig-
nal may still be explained by other environmental variables.
This is the focus of the second layer of the procedure, that
attempts to correlate the local deviation scores with the con-
text variables and hence explain it.

To implement the first layer we use a nonparametric
method, Seasonal-Trend decomposition, or STL (Cleveland
et al. 1990). STL decomposes the time series into three com-
ponents: seasonal, trend, and remainder. As the seasonal and
trend are smoothed, outliers tend to aggregate in the remain-
der. To implement the second layer, we use Bayesian linear
regression, so we can add uncertainty to the model to ac-
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commodate the scarcity of examples for different sources of
variability.

We test our approach and show its benefits on data sets
in three different domains: time series of daily bike rental
counts, time series of daily alert rule firings generated by the
monitoring and alerting components embedded in a clinical
decision support system, and time series of vehicular traffic
volumes generated by sensors placed on major highways.

Related Work
Early work in outlier detection in time series comes from
the statistical literature. In (Fox 1972), the authors define
two types of outliers, additive outliers (AO) and innova-
tional outliers (IO). They consider the autoregressive (AR)
model and develop likelihood ratio tests for detecting out-
liers. In addition to AO and IO, (Tsay 1988) introduce and
study two other types of outliers, level shift (LS) and vari-
ance change (VC). The model is extended to autoregressive
moving-average (ARMA). They study the effects of differ-
ent outliers on the time series and propose different tests
to detect them. Their outlier detection procedure is iterative
and cycles among parameter estimation and outlier detec-
tion/removal. (Chen and Liu 1993) propose to jointly esti-
mate multiple outlier effects and model parameters, instead
of removing outliers one by one as in the previous work.
However, their procedure is still iterative.

All of the above work differs from ours in at least two
aspects. First, their methods are retrospective, i.e., they as-
sume the whole time series is available, and they look back
to find all outliers in the past. In contrast, our work focuses
on online detection, where we want to detect outliers in the
newly observed data as soon as they arrive. Second, the
above methods assume the time series follow the ARMA
model and raise an alarm if a data point significantly deviates
from the model. However, ARMA assumes the time series is
second-order stationary. But in reality, this assumption usu-
ally does not hold, because (a) a time series can have sea-
sonality; (b) a time series can have a trend. We note that (a)
and (b) can be addressed by adding (seasonal) differencing
to the model, resulting in the seasonal autoregressive inte-
grated moving average (SARIMA) model (Box et al. 2015;
Shumway and Stoffer 2010). However, normal points dif-
ferenced with outliers become “false outliers” and result in
false alarms. Also, all these models predict future data from
past data. When there is an outlier in the past data, the future
data, though normal, may be labeled as outliers due to de-
viation from the biased prediction. Therefore, these models
are not suitable for online outlier detection in nonstationary
time series.

More recently, (Yamanishi and Takeuchi 2002) develop
an online algorithm for nonstationary time series. The au-
thors assume the time series follow the autoregressive (AR)
model and introduce a sequential discounting algorithm to
estimate its parameters and to make inference. However, as
they assume AR, which is a subset of ARMA, their method
suffers the same problems as the above methods.

(Laptev, Amizadeh, and Flint 2015) propose an outlier de-
tection framework for time series data that lets one to ex-
clude outliers that may be explained by context variables.

This is done by defining rules on these variables. For ex-
ample, one may define a rule checking whether a day is
a holiday and exclude all these days from consideration.
One limitation of this approach is that it prevents us from
detecting outliers that differ from typical holiday patterns.
Our approach does not have this limitation, since it statisti-
cally models and detects outliers conditioned on the context
variables. Another limitation is that building these rules re-
quires human knowledge. In contrast, our method learns a
statistical model automatically from available data, so hu-
man knowledge is not necessary. It gives us the flexibility to
add all available variables that might be useful for detecting
outliers, and let the data to decide which are more relevant
than the others.

Finally, (Hauskrecht et al. 2013) develop methods for con-
ditional outlier detection on clinical time series mined from
EHR. The approach is built to detect outliers on subset of
discrete valued variables given the rest of the variables and
relies on template featurization that converts time series to
fixed feature vectors. It also assumes the feature vectors are
iid. Our work focuses on counts and real-valued time series,
and online detection methods.

Preliminaries: STL

We start by introducing the Seasonal-Trend decomposition,
or STL (Cleveland et al. 1990), that is used as a build-
ing block for our first-layer model. STL is a nonparametric
decomposition algorithm that applies locally weighted re-
gression, or LOESS (Cleveland and Cleveland 1979; Cleve-
land and Devlin 1988). Given a set of points {(xi, yi) :
i = 1, . . . , n}, LOESS fits a smoothed curve y = g(x).
For any x, to compute g(x), it fits a d-degree polynomial
to {(xi, yi)} weighted by vi(x) = W

(
|xi−x|
λq(x)

)
, where

W (u) = (1 − u3)3, if u ∈ [0, 1], and 0 otherwise. λq(x)
is the distance between x and its q-th nearest neighbor in
{xi}. If q > n, it is λn(x)

q
n .

The main steps of STL are as follows. To separate out sea-
sonal signal, STL fits a curve to each subseries that consists
of the points in the same phase of the cycles in the time se-
ries. After removing the seasonal signal, it fits another curve
to all the points consecutively to get the trend. The residuals
after further removing the trend are called remainders.

It is worth noting that STL is a robust algorithm. It deals
with outliers by down-weighting them and iterating the pro-
cedure. The bisquare weight function, B(u) = (1− u2)2, if
u ∈ [0, 1], and 0 otherwise, is used for this purpose, where
u is the normalized remainder for each point.

Method

In this section, we introduce our method. Let the time se-
ries be y = {yt ∈ R : t = 1, 2, . . .} with context variables
x = {xt ∈ R

p : t = 1, 2, . . .}. Our goal is to compute
an outlier score vt ∈ R at each t based on the data avail-
able at t. Our method consists of two layers. In the first
layer, we remove nonstationarity and temporal dependen-
cies from the data and derive the local deviation scores. In
the second layer, we model the local deviation scores con-
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ditioned on the context variables by Bayesian linear regres-
sion. We adopt Bayesian inference because it supports more
robust online learning by allowing us to add uncertainty to
the model through priors. This is important, because typi-
cally context variable observations for learning the second
layer model are scarce at the beginning (e.g. the number of
observed holidays is small). Adding uncertainty can reduce
false alarms caused by high variance in the estimated param-
eters.

First-Layer Model

The first-layer model takes the input time series, y, and out-
puts a sequence of local deviation scores, z. Since the time
series are usually nonstationary and may even have struc-
tural changes (nonstationarity other than seasonality and
trend), we use a sliding window to restrict the time span con-
sidered, and assume that the time series in an appropriate-
sized window does not have structural changes. Let n(p) be
the period of y. The window size u cannot be too small com-
pared to n(p) because STL needs enough cycles of data for
smoothing. But also it cannot be too large due to nonstation-
arity. We found 5n(p) is good to be used as a default value.

At time t, for the local time series of length u in the win-
dow, yu(t) = {y(t−u+1), y(t−u+2), . . . , yt}, STL is applied
to decompose it into trend, seasonal, and remainder. On the
remainder, r(yu(t)), we calculate the deviation, zt, of the last
point, r(yt), from the population

zt =
r(yt)− μ̂t

σ̂t
, (1)

where μ̂t and σ̂t are estimators of the population mean and
standard deviation. We use the common choices: the sample
mean and the sample standard deviation.

By sliding the window as new data arrive, we get a se-
quence of the local deviation scores, z, as the output of the
first-layer model.

Second-Layer Model

The second-layer model takes the output of the first-layer
model, z, and a time series of context variables, x, as input,
and outputs a sequence of final outlier scores, v. We adopt
a Bayesian approach to model zt given xt. Specifically, we
assume the following linear model

zt|w, β, xt ∼ N(xT
t w, β

−1).

That is, given w, β, and xt, zt follows a normal distribution.
For the prior distribution of (w, β), we use the conjugate
prior, which is a normal-Gamma distribution

w, β ∼ N(w|m0, β
−1S0)Gam(β|a0, b0),

where we use the following parameterization for the proba-
bility density function (pdf) of the Gamma distribution

f(β|a, b) = ba

Γ(a)
βa−1e−bβ .

Let Dt = {(z1, x1), (z2, x2), . . . , (zt, xt)} denote the data
we observe so far at time t. When we observe a new sample

(zt+1, xt+1), the posterior distribution for (w, β) is again
normal-Gamma with updated parameters

w, β|Dt, zt+1, xt+1

∼ N(w|mt+1, β
−1St+1)Gam(β|at+1, bt+1),

where

S−1
t+1 = S−1

t + xt+1x
T
t+1,

mt+1 = St+1(S
−1
t mt + zt+1xt+1), at+1 = at +

1

2
,

bt+1 = bt +
1

2
(z2t+1 −mT

t+1S
−1
t+1mt+1 +mT

t S
−1
t mt).

(2)
The predictive distribution for z, given Dt and the cor-

responding context variable x, is a Student’s t-distribution
with location and scale

z|Dt, x ∼ St(z|μ, σ2, ν),

where the pdf of the distribution is

f(z|μ, σ2, ν) =
Γ( ν+1

2 )

Γ( ν2 )
√
πνσ2

(
1 +

1

ν

(z − μ)2

σ2

)− ν+1
2

,

and

ν = 2at, μ = xTmt, σ
2 =

bt
at

(1 + xTStx). (3)

We define the outlier score for zt+1, given Dt and xt+1, as

vt+1 = 1− pt+1 = 1− P

(
|Tν | > |zt+1 − μ|

σ

)
, (4)

where Tν follows the standard t-distribution with ν degree(s)
of freedom, and pt+1 is the probability of zt+1 taking a more
extreme value than the current value.

In summary, for t = 0, 1, . . ., given (zt+1, xt+1), we com-
pute the outlier score as in (3) and (4). Then, we update the
distribution of the parameters as in (2).

Experimental Evaluation

We evaluate our method on time series data from three dif-
ferent domains.

Bike data consists of the time series (of length 733) that
record the daily bike trip counts taken in San Francisco Bay
Area through the bike share system from August 2013 to
August 2015 1. Additional context variables available for
the count data are holiday indicators and weather data. The
weather data include precipitation, cloud cover, wind direc-
tion, mean temperature, mean dew point, mean humidity,
mean sea level pressure, mean visibility, and mean wind
speed. For temperature, we perform a preprocessing that
transforms the value into the absolute value of the local devi-
ation (similar to (1) with absolute value), because we expect
both very high and very low temperatures to have an impact
the number of bike trips. Outliers detected in such a time se-
ries may reflect various unaccounted events influencing the

1www.kaggle.com/benhamner/sf-bay-area-bike-share
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number of bike rentals, including unexpected closures due
to malfunctions of the rental system.

CDS data consists of daily rule firing counts of a clinical
decision support (CDS) system in a large teaching hospital
(Wright et al. 2016). The rules in the CDS are used to ei-
ther alert on some adverse conditions or recommend certain
actions (such as vaccinations). The data include time series
for 111 such rules, and each time series is of length 1187.
Additional context variables collected are holiday indicators
and the number of electronic health records (EHR) opened.
Both are believed to influence the rule firings. Holidays may
reduce the number of visits, and the number of EHR opened
may give a rough estimate of the number of patients poten-
tially screened by the rules during that day. Outliers may
reflect the different events influencing the rules such as the
beginning of the flu season, or CDS system malfunctions
that may lead to rule silencing or aberrant rule firings.

Traffic data consists of time series of vehicular traffic
volume measurements collected by sensors placed on ma-
jor highways in Pittsburgh area (Šingliar and Hauskrecht
2010). The time series we use here are sampled at a fixed
time across days for a year. We use data from two such sen-
sors. The context variable available for these data is holiday
indicator. Outliers in the time series may indicate traffic ac-
cidents, road repairs, severe weather patterns, or events such
as concerts that lead to the surge in the traffic.

Experiment Setup

Since there are no outliers marked for our data, we test
the performance of the detection methods on simulated out-
liers that correspond to randomly introduced changes in
the original signal. More specifically, outliers are injected
into the time series by randomly sampling a small per-
centage p of points and changing the value by a specified
size δ as yi = yi · δ for each point yi. The values are
rounded to the closest integers, so they are still counts. We
use multiplicative change instead of additive, because the
data show heteroscedasticity (the variance increases as the
mean increases). We set p = {0.01, 0.05, 0.1} and δ =
{2/1, 3/2, 6/5, 5/6, 2/3, 1/2} respectively to see the influ-
ence of different settings on the performance. We consider
the injected outliers as the ground-truth outliers when eval-
uating the performance.

Methods

We compare the following methods:
• RND - detects outliers randomly.
• SARI - ARIMA(1, 1, 0)× (1, 1, 0)7, SARIMA (Box et al.

2015) with a weekly period, (seasonal) differencing, and
(seasonal) order 1 autoregressive term.

• SIMA - ARIMA(0, 1, 1) × (0, 1, 1)7, SARIMA with a
weekly period, (seasonal) differencing, and (seasonal) or-
der 1 moving-average term.

• SARIMA - ARIMA(1, 1, 1) × (1, 1, 1)7, SARIMA com-
bining the above two.

• ND - our first-layer model, using the absolute value of the
output as outlier scores.

• TL1 - our two-layer model using holiday information as a
context variable.

• TL2 - our two-layer model using holiday and additional
information (if available) as context variables.

For all the ARIMA based methods we also use a sliding
window. We estimate the parameters from the past points
and make a prediction for the latest point. The outlier scores
are derived similarly as in (4).

We use R for all the experiments. All methods compared
use a sliding window of size 35 (5n(p)). The hyperparame-
ters for the two-layer method are m0 = 0, S0 = I , a0 = 1,
and b0 = 100, where I is the identity matrix. They are not
tuned, but we intentionally set the prior variance to make the
model uncertain when the data are still scarce, so it does not
raise many false alarms at the beginning. We add a bias term
for the regression. For STL, we set the seasonal smoothing
window size, n(s) = 7, which is the smallest reasonable
value according to (Cleveland et al. 1990), and n(p) = 7, for
the weekly periodicity, and use recommended values for the
other parameters.

Because our data are counts and show heteroscedasticity,
the square-root transformation,

√
x+ 0.5, is applied to sta-

bilize the variance for all methods (Bartlett 1947).

Evaluation

We use precision-alert-rate (PAR) curves to evaluate the
methods (Hauskrecht et al. 2016). Outlier detection meth-
ods are usually applied in monitoring and alerting systems,
where the alert rate needs to be controlled by setting a
threshold for the outlier score. The precision for a given alert
rate is the most important factor in evaluating the perfor-
mance, because whether it is high or low decides whether
the system is useful or annoying, even harmful (Hauskrecht
et al. 2016). If the alert rate and the precision are not well-
controlled, it may lead to so-called alert fatigue (Lee et al.
2010; Embi and Leonard 2012), that is users stop responding
to the alerts due to their ineffectiveness. Since the probabil-
ity of getting an outlier is assumed to be low by definition,
alert rates cannot be set to be high in reality.

We do not use precision-recall (PR) curves to evaluate
the methods, because in reality, it is usually very hard to
get all the outliers without causing alert fatigue. People in-
stead control the alert rate while maintaining good preci-
sion. However, for completeness, we did evaluation with PR
curves (not included due to space limit), and the results show
the advantages of our method as well.

Results

Figure 1 shows the PAR curves for Bike data with different
outlier rates, p, and different outlier sizes (folds of changes),
δ, leading to 18 data sets. The results are organized in a grid
with different folds of changes in rows, and different outlier
rates in columns. The maximum alert rate is kept at 0.1 (10%
of data). We show the precision at different alert rates. The
results show that it is easier to detect stronger outliers (cor-
responding to a larger fold of change), which is expected,
since they are more likely to rise above the natural noise in
the data. If the outlier signal is very weak, it may fall into the
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natural noise level, which is reflected by the PAR curves ap-
proaching RND. Also, as expected, the precision generally
is higher, when more outliers are injected in the data.
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Figure 1: PAR curves for Bike data. Each column has a dif-
ferent rate for injection of outliers, indicated by the labels at
the top. Each row has a different size (fold of change) for
outliers, indicated by the labels on the right.

Comparing the detection methods tested, we see the two
versions of our two-layer method outperform other meth-
ods with the margin increasing for stronger and more fre-
quent outliers. To make the comparison in different settings
easier, we calculate the areas under the PAR curves (AUC-
PAR). To make them comparable for different outlier rates,
we normalize the alert rate relative to the outlier rates. That
is, we calculate the precisions at alert rates corresponding
to α times the outlier rate p, where α ∈ [0, 1], and normal-
ize the AUC to be in [0, 1]. Table 1 shows the AUC-PAR
for Bike data. Similar to the results in Figure 1, our two-
layer methods are the best performing methods across a wide
range of outlier sizes (folds) and rates.

We have performed the same experiments on CDS and
Traffic data. Due to the space limit, we only show AUC-
PAR. The results are compiled in Table 2 and 3 respectively.
We note that for these two data sets we have multiple time
series, so we report the averaged results. That is, given an
alert rate, we average the precision over all time series. Once
again the results show that our two-layer method outper-
forms the baselines.

By comparing the results across different data sets, we no-
tice that the quality of the detection may vary widely. This
is due to the properties of the original time series. For exam-
ple, while Bike data is relatively clean, Traffic and especially
CDS data have much more noise and irregularities, that are
detected as outliers. Hence the precision calculated based on

Table 1: AUC-PAR for Bike data.
rate fold RND SARI SIMA SARIMA ND TL1 TL2
0.01 2/1 0.00 0.09 0.16 0.24 0.14 0.19 0.16
0.01 1/2 0.00 0.00 0.00 0.00 0.00 0.05 0.09
0.01 3/2 0.00 0.00 0.00 0.00 0.00 0.05 0.05
0.01 2/3 0.00 0.00 0.00 0.00 0.00 0.00 0.00
0.01 6/5 0.00 0.00 0.00 0.00 0.00 0.00 0.00
0.01 5/6 0.00 0.00 0.00 0.00 0.00 0.00 0.00
0.05 2/1 0.05 0.56 0.56 0.55 0.71 0.75 0.77
0.05 1/2 0.04 0.31 0.38 0.35 0.48 0.58 0.57
0.05 3/2 0.03 0.33 0.30 0.31 0.38 0.47 0.55
0.05 2/3 0.02 0.13 0.16 0.23 0.24 0.31 0.32
0.05 6/5 0.12 0.07 0.06 0.06 0.10 0.15 0.17
0.05 5/6 0.09 0.02 0.04 0.05 0.08 0.10 0.11
0.1 2/1 0.06 0.54 0.58 0.55 0.72 0.78 0.82
0.1 1/2 0.04 0.29 0.42 0.36 0.44 0.51 0.52
0.1 3/2 0.09 0.27 0.27 0.29 0.38 0.49 0.56
0.1 2/3 0.11 0.12 0.22 0.19 0.25 0.29 0.32
0.1 6/5 0.03 0.08 0.10 0.09 0.13 0.16 0.20
0.1 5/6 0.05 0.05 0.10 0.08 0.14 0.14 0.15

Table 2: AUC-PAR for CDS data.
rate fold RND SARI SIMA SARIMA ND TL1 TL2
0.01 2/1 0.00 0.06 0.05 0.05 0.03 0.07 0.12
0.01 1/2 0.01 0.02 0.02 0.02 0.03 0.03 0.05
0.01 3/2 0.00 0.02 0.02 0.02 0.02 0.02 0.03
0.01 2/3 0.00 0.02 0.02 0.02 0.02 0.02 0.02
0.01 6/5 0.01 0.01 0.01 0.01 0.02 0.02 0.01
0.01 5/6 0.01 0.01 0.01 0.01 0.02 0.02 0.01
0.05 2/1 0.05 0.22 0.22 0.22 0.25 0.30 0.35
0.05 1/2 0.05 0.10 0.11 0.11 0.16 0.17 0.22
0.05 3/2 0.05 0.11 0.11 0.11 0.14 0.14 0.19
0.05 2/3 0.05 0.07 0.08 0.08 0.11 0.10 0.13
0.05 6/5 0.05 0.07 0.07 0.07 0.08 0.07 0.08
0.05 5/6 0.05 0.06 0.06 0.06 0.08 0.07 0.07
0.1 2/1 0.10 0.32 0.37 0.35 0.43 0.47 0.53
0.1 1/2 0.10 0.18 0.22 0.21 0.30 0.31 0.36
0.1 3/2 0.10 0.20 0.22 0.21 0.28 0.28 0.34
0.1 2/3 0.10 0.13 0.15 0.14 0.22 0.21 0.24
0.1 6/5 0.10 0.14 0.14 0.14 0.17 0.16 0.17
0.1 5/6 0.09 0.11 0.12 0.11 0.15 0.14 0.15

injected outliers gets smaller.
Comparing ND with ARIMA based methods, we notice

that ND performs either close to or better than the others in
almost all the experiments. We think the main reason is that
ND accounts for seasonality without differencing, so it does
not “pollute” normal points like ARIMA based methods.

Comparing TL1 with ND and ARIMA based methods, we
see an advantage in most cases. This confirms our assump-
tion that whether the day is a holiday has a significant in-
fluence on the value observed on that day. TL1 makes use
of that information to explain some of the “outliers” in the
data. This can largely reduce the number of false alarms and
therefore increase the precision.

Comparing TL2 with TL1, TL2 dominates TL1 in almost
all cases. This proves the usefulness of additional informa-
tion (EHR counts for CDS data and weather for Bike data),
and demonstrates the flexibility of our method. Whenever
there is new potentially useful information, we can add it
as new context variable(s) to improve the performance. In
reality, it is hard to tell beforehand which context variables
will be helpful for detecting outliers. For our method, we
can just add all the variables that might be helpful and have
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Table 3: AUC-PAR for Traffic data.
rate fold RND SARI SIMA SARIMA ND TL1
0.01 2/1 0.00 0.50 0.50 0.58 0.50 0.64
0.01 1/2 0.00 0.42 0.39 0.39 0.14 0.58
0.01 3/2 0.00 0.00 0.11 0.11 0.11 0.47
0.01 2/3 0.00 0.03 0.14 0.11 0.11 0.00
0.01 6/5 0.00 0.00 0.00 0.00 0.00 0.00
0.01 5/6 0.00 0.00 0.00 0.00 0.00 0.00
0.05 2/1 0.18 0.61 0.74 0.69 0.67 0.85
0.05 1/2 0.04 0.29 0.36 0.35 0.39 0.55
0.05 3/2 0.00 0.29 0.43 0.40 0.41 0.53
0.05 2/3 0.21 0.14 0.26 0.22 0.19 0.28
0.05 6/5 0.00 0.06 0.03 0.02 0.05 0.08
0.05 5/6 0.07 0.04 0.03 0.06 0.01 0.03
0.1 2/1 0.12 0.61 0.74 0.68 0.74 0.86
0.1 1/2 0.05 0.28 0.47 0.43 0.54 0.61
0.1 3/2 0.11 0.38 0.52 0.45 0.51 0.63
0.1 2/3 0.07 0.13 0.30 0.26 0.27 0.30
0.1 6/5 0.12 0.19 0.18 0.19 0.18 0.21
0.1 5/6 0.10 0.06 0.10 0.10 0.07 0.07

the model learn which are. This, we think, is a big advan-
tage over a rule-based model, which needs expert knowledge
and/or trial-and-error to find out which variables are useful
and to define correct rules to filter out false alarms.

Conclusion

We have developed a new two-layer method for online out-
lier detection in nonstationary time series. The first layer re-
moves non-stationarity and temporal dependencies and com-
putes the local deviation scores. The second layer makes use
of the context variables, which may explain some “outliers”
in the data, through Bayesian linear regression on the first-
layer output. We tested the method using data sets from three
different domains. Compared with traditional methods, our
method can handle nonstationary time series and use con-
text variables to filter out explicable “outliers”, resulting in
reduced false alarms and increased precision at reasonable
alerting rates, which is of crucial importance for building
monitoring and alerting systems.
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