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Abstract

The dawn of autonomous robots brings a question of
automated modeling of robot behavior such that the
learned robot capabilities can be used to plan robot
activities. To bridge the continuous world of sensor
readings and control signals with the symbolic world
of planning, one needs to identify robot activities as
somehow compact behaviors that can be repeated later
when a given activity is planned to be performed. In
this paper we focus on identifying activities from a se-
quence of sensor reading and corresponding control sig-
nals by using the methods of machine learning, both
supervised and unsupervised. The methods are exper-
imentally evaluated using data from a flying drone.

Introduction

Autonomous systems and robots are becoming increasingly
interesting for general public as well as for researchers. Fly-
ing drones are frequently discussed by media, but these are
usually remotely controlled devices with limited autonomy.
There are autonomous systems such as self-driving cars
(Google 2016) and warehouse robots (Kiva 2016) that are
carefully pre-programmed by humans to do a specific task
in uncertain and dynamic environments, but these systems
cannot do any other task without being re-programmed. In
our research we address truly autonomous systems that can
learn their capabilities themselves and based on them they
can solve, in principle, any task that their hardware allows.
Such systems typically require planning capabilities and to
do planning, the system needs a formal model of a plan-
ning domain (Ghallab et al. 2004). Reinforcement learning
(Abbeel et al. 2007) and deep learning show very promis-
ing results recently in many areas of autonomous systems
but mainly in tasks that can be solved by reactive techniques
rather than by deliberative techniques. To do more complex
reasoning about the future, some abstract search techniques
are still necessary as, for example, demonstrated by the Al-
phaGo system (Silver et al. 2016). Unfortunately, there is
still a big gap between the continuous world of control sys-
tems for robots (reactive systems) and the symbolic world
of planning and abstract reasoning based frequently on logic
and probability theories (deliberative systems).
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To bridge the gap, it would be useful to build activity
models automatically from observations of agent behavior.
Then the activity model can be used for activity planning
by providing abstract description of activities and also for
plan execution by providing control knowledge for perform-
ing individual activities. One of the first steps to have such
a system is identifying “homogenous” time periods in the
behavior of agent that could be marked as activities.

This paper addresses the problem of identifying primitive
activities of a flying drone from sensor readings. By prim-
itive activities we mean activities corresponding directly to
commands used to control the drone, such as flying forward
or flying backward. By sensor readings we mean informa-
tion from an inertial measurement unit that integrates ac-
celerometer, gyroscope, and magnetometer, but not yet more
complex sensors such as a camera. As the sequence of com-
mands is known together with sensor readings, this gives us
opportunities to exploit and compare both supervised and
unsupervised learning techniques. In the paper we present
several such techniques with their preliminary evaluation.

Used Platform

To do the study, we used an inexpensive flying drone
AR.Drone 2.0 by Parrot Inc. The flight is generally con-
trolled by sending pitch and roll angles (relative to a pre-set
limit) and vertical and yaw speed (Figure 1). The commands
are sent at 30 Hz and the drone’s firmware then tries to reach
and maintain given values until the next command arrives.

Figure 1: AR.Drone and its coordinate system and angles.
(Krajnı́k et al. 2011)
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Though the drone is equipped with two cameras, in our
study we use only the other sensors, namely a 3-axis gyro-
scope, a 3-axis accelerometer, and a magnetometer. Altitude
is measured using an ultrasound sensor and a pressure sen-
sor, which is used in higher altitudes out of the ultrasound
sensor’s range. Data from non-visual sensors, so-called nav-
data, are sent from the drone at 15-200 Hz depending on set-
ting and contains in particular roll and pitch angles, azimuth,
altitude, and a speed vector in the drone centered coordinate
system (Figure 1). The network latency of transmission of
those commands and data is approximately 60 ms.

To control the drone we used the YADrone software
(YADrone 2016) extended by a module for collecting data
with commands sent to the drone and with sensor readings
from the drone. Figure 2 shows the simplistic interface of
this program. We controlled the drone manually using the
keyboard and we collected data for a simple indoor flight –
we navigated the drone to fly forward for a few meters and
then to fly back to the lift-off location. This was repeated
several times, with occasional interruption, when we navi-
gated the drone to fly on one side and to return back with
some rotations; all at the same altitude. This way we col-
lected data with rotations, forward, backward, left, and right
movements. At any time, we used a single command to
achieve intended behaviour, such as forward flight, though
sometimes a different command was used to correct the be-
haviour, for example to correct the direction due to wind
from propellers in a narrow corridor.

Figure 2: YADrone software with the data grabbing module.

Related Works

Activity recognition is a long-term studied area, but mainly
in relation to human activity recognition. For our work it
is particularly relevant sensor-based human activity recog-
nition using wearable sensors (Bulling et al. 2014; Attal et
al. 2015). There are several notable differences between
drone and human activity recognition. First, the set of activ-
ities to recognise is obviously different for humans (siting,
lying, walking, running etc.) and for drones (flying forward
or sidewise, rotating etc.). Second, a wider set of sensors is
usually available for drones though the core sensors, namely
accelerometer and gyroscope, are used in both areas. Third,

sensor data from drones are more noisy (Figure 4) and hence
activities are harder to recognise. Finally, control signals
for drone movement are directly accessible so manual data
annotation is not necessary (for primitive activities), which
simplifies application of supervised learning techniques.

In this paper we will adapt methods used for human activ-
ity recognition, in particular, those for unsupervised activity
recognition by Kwon et al. (Kwon et al. 2014), as well as
classical supervised learning techniques.

Overall Concept

We applied a standard machine learning workflow. We de-
veloped a software for collecting sensor and control data
from AR.Drone that provides two data sets – tables – col-
lected from a drone flight. One table contains time annotated
sensor readings; each row describes information from all
sensors as provided by the AR.Drone (navdata). The other
table contains time annotated commands sent to the drone.
We manually pre-processed the data, which includes selec-
tion of rows, calculating window aggregations (mean, vari-
ance, FFT mean and variance), normalizing values, and join-
ing the tables (for supervised learning). For unsupervised
learning we applied and compared clustering approaches k-
means, mixture of gaussians (GMM), and hierarchical clus-
tering (HIER) as used in (Kwon et al. 2014) and we also
applied a Hidden Markov Model learning that assumes tem-
poral information. Since none of the unsupervised learn-
ing methods discovered true control activities in a satisfac-
tory way, we tried a supervised learning technique, namely
a decision tree learning, to discover how a given activity de-
pends on values of sensor readings. We have chosen de-
cision trees to keep the models simple and understandable
for humans. We also added information from the clustering
algorithm (the cluster is added as another attribute to each
row) to check if it can improve the decision tree prediction.
In the rest of the paper we will describe these steps in detail.

Preprocessing

As we already mentioned, we collected data from a drone
flight into two tables. One table with 25986 records de-
scribed time annotated sensor readings. The first attribute of
each record (row) was a computer time (ctime) and there
were 24 additional attributes (navdata from the AR.Drone).
The other table with 2275 records described time annotated
command data. Again, the first attribute of each record was
a computer time (ctime) and there were three additional
attributes (LeftRight,FrontBack,Angular) that de-
scribe the command data. For example, the numeric value
of the LeftRight attribute indicates by a sign whether the
drone is ordered to fly right, left, or not on any side. Notice
also that there are much fewer commands sent to the drone
than the number of sensor readings obtained from the drone.

Merging of Tables

In the supervised learning we learn the function navdata →
command described as a single table, where each sensor
reading corresponds to a command. Hence the first deci-
sion was how to join the command and navigation data by
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the ctime variable. Since the reaction on a command takes
time (the command is sent to the drone via WiFi and the
sensor reading is sent back to a computer), we determined
the best time delay as follows. Based on how the command
system in the AR.Drone works, we modified the table with
commands. For each sensor reading at time t we introduced
the command line at time t such that the command is taken
from time t1, t1 ≤ t, in the original table and there was no
command at time t2, t1 < t2 ≤ t. This way we got the
command table of the same size as the navdata table (except
the first sensor readings that appeared before the first com-
mand). We then applied the decision tree learning algorithm
(as in the section Supervised Learning) to predict the com-
mands FrontBack and LeftRight for different delays
in sensor readings. The delay corresponds to shift of rows
when merging the tables. Figure 3 shows the prediction er-
ror for different shifts (delays) of rows.

Figure 3: Prediction error based on the shift between
navdata and commands for decision tree learning of
FrontBack (left) and LeftRight (right) commands.

The minimal error was reached for the shift of 2 or 3
records that corresponds to the difference of 10 or 15 in
ctime. All further experiments are done on data merged
with 10 time-units delay. From the merged table, we re-
moved all records before the first command arrived. For
clustering we also standardised the inputs (we scaled the
variables to have mean = 0 and variance = 1).

Windows Size and Aggregation

For unsupervised learning we added some aggregated data.
Motivated by (Kwon et al. 2014) we used a window size 40
with 50% overlap between consecutive windows (for com-
parison we also used window size 1, but the results were not
much different as will be presented later). For each window,
mean and variance of pitch, roll, yaw was calculated.
For window size greater than 1 also Fast Discrete Fourier
Transform (R 2016) mean and variance were computed.

In our experiment seven activities were possible obtained
from commands FrontBack, LeftRight, Angular
with directions (positive or negative) of movement. We en-
code them using triples of digits representing directions: 1
for negative, 2 for the value around zero, 3 for positive sign
(Table 1). For example, 122 means flight forward, while
322 means flight backward (222 means ’do nothing’). To
each window we assigned the most common activity in the
window. Figure 4 shows the mean values of pitch, roll, and
yaw for the most frequent activities as a function of time
windows. These data are much more noisy than data for hu-
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Figure 4: Mean pitch, roll, yaw for windowed data split ac-
cording the true command. In the first column, we can see
lower pitch for the forward movement compared to higher
pitch for the backward movement below.

man activity recognition (Kwon et al. 2014), but still there
are patterns characterising the activities.

Equal Frequency and Full data

As Table 1 shows, the number of samples for different activ-
ities differ significantly, which may influence the clustering
algorithm. Hence, we performed experiments both on full
data and on equally sized data. To create equally sized sam-
ples, we omitted two low–frequency activities 212 and 232
and we selected 50 random records for each remaining ac-
tivities, i.e. 122,322,221,223,222.

FrontBack LeftRight Angular
Activity fwd bwd left right cw acw nothing

122 322 212 232 221 223 222

#samples 227 163 21 47 77 154 607

Table 1: Encoding of assumed activities and the numbers of
window samples for different activities.

Unsupervised Learning

As already mentioned, we tried four different methods of un-
supervised learning: hierarchical clustering, k-means clus-
tering, gaussian mixture model, and Hidden Markov Models
(HMM). While the first three methods do not consider time
annotation, HMM is a model of the system evolution in time.
As we will see, these methods produce different results. The
methods were applied to windowed data, where each record
corresponds to one window, and the attributes of the win-
dow are mean and variance values of pitch, roll, yaw
and Fast Discrete Fourier Transform mean and variance.

HIER, k-means, GMM Clustering

We used hierarchical clustering (HIER) with average–
linkage method (James et al. 2013). The cluster tree was
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Figure 5: A (simplified) HMM model. Each time is rep-
resented by one instance of the hidden variable with each
sensor reading as a dependent variable. There are more than
tree sensor readings in each time, all taken as conditionally
independent given the hidden variable.

cut on the level providing best accuracy.
The k-means algorithm (James et al. 2013) searches k

centres in the feature space such that the overall distance of
data points from its closest center is minimised.

Gaussian Mixture Model (GMM) can be viewed as HMM
(see Figure 5) collapsed in time. GMM has one hidden vari-
able representing the class. The attributes are assumed to be
independent given the class. For each class value, the distri-
bution of any attribute is assumed to be gaussian. We used
the package mclust (Fraley et al. 2012).

For each algorithm we tried the number of clusters be-
tween 2 and 15 and we selected the number of clusters with
the maximal accuracy (Table 2). This number was different
for different methods and it was never higher than 8. We did
not experiment with automatic cluster number selection.

Hidden Markov Model

For sensor readings, we may expect some dependence of
two subsequent sensor readings. To model this dependence
we learned a Hidden Markov Model using the function
learn.hmm() from the library depmixS4 (Visser and
Speekenbring 2010). A HMM aggregates the state of the
robot in an unobserved, hidden state. The sensor readings
depend probabilistically on this state and there is also a prob-
abilistic transition from the current state to the next one. A
simplified HMM is shown in Figure 5.

By learning HMM, we learn the maximum likelihood
(ML) model for each sensor p(Sensork|Hidden) and the
ML state transition matrix P (Hiddeni|Hiddeni−1). As a
side-effect, we know the most probable hidden state for each
time. We take the hidden states as cluster indicators.

Experiment Results

As in (Kwon et al. 2014) we use two evaluation metrics to
measure the quality of clustering: accuracy and Normalized
Mutual Information.

The evaluation of accuracy was adjusted as follows. To
each activity, we assigned a cluster that has the largest por-
tion of the true cluster (the true cluster is formed by the
records for that activity). If two or more activities share the
same cluster, then the cluster was assigned to the activity
that has more records in that cluster, and for the other ac-
tivity the second largest cluster was picked. Notice that this
definition is rather strict. It does not allow for one activity

to be represented by more clusters. Therefore, the optimal
number of clusters tends to be small.

As another measure, we used Normalized Mutual Infor-
mation (NMI) ranging from 0 – no information between dis-
tributions to 1 – full agreement (Strehl and Ghosh 2002).
The NMI is defined as follows:

NMI =
2 ·∑r

i=1

∑s
j=1 ni,j log

(
n·ni,j

ni·nj

)
√∑r

i=1 ni log
ni

n

∑s
j=1 nj log

nj

n

where r is the number of clusters, s is the number of classes
(different activities), ni,j is the number of records in cluster
i and class j and ni, nj , n are marginals corresponding to
clusters, classes, and overall marginal.

For each clustering method (HIER, k–means, GMM,
HMM) we evaluated three experimental settings and mea-
sured the accuracy and NMI (Table 2). The experiments
differ in the window size (either window size 40 with 50%
overlap or window size 1, and in the data used (either the
equal–frequency subsample or the full data).

method HIER k–means GMM HMM
accuracy
w=1, eq.f. 44.8% 43.6% 36.0% 48.8%
w=40, eq.f. 42.8% 38.0% 49.6% 44.4%
w=40, full 44.8% 42.8% 47.2% 48.0%
NMI
w=1, eq.f. 0.326 0.235 0.202 0.411
w=40, eq.f. 0.290 0.230 0.370 0.422
w=40, full 0.325 0.176 0.392 0.350
# clusters
w=1, eq.f. 6 6 6 6
w=40, eq.f. 6 4 5 8
w=40, full 7 5 6 5

Table 2: Accuracy and NMI for clustering methods (HIER,
k–means, GMM, HMM) with the window size (w) 1 or 40,
and full or equal-frequency data. In each experiment, the
number of clusters maximizing accuracy was selected (the
third part of the table) and NMI was calculated for the same
number of clusters.

The accuracy of random guessing is 20% since we have 5
distinct classes (after removing two less-frequent activities).
Hierarchical clustering and k–means provide slightly worse
results than GMM and HMM clusterings, but even the best
results for drone activity recognition are much worse than
for human activity recognition, where GMM reached value
1 both for accuracy and NMI (Kwon et al. 2014). The reason
could be that data are much more noisy for AR.Drone (see
Figure 4). This may not be the problem of sensor readings
rather than of the less stable flight. However, this requires
further research. Note also that putting equality between ac-
tivities and commands may not be the right thing as, for ex-
ample, flying forward requires more commands in unstable
(such as windy) environments.
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Comparison of Obtained Clusters

Interestingly, the split of records into clusters is different
for different methods of clustering. Table 3 shows normal-
ized mutual information (NMI) between clusterings. The
clusters obtained by HIER and k-means are most similar
(NMI=0.69), HMM clusters are most different from these
(NMI=0.24 and 0.28). Hence different clustering methods
use different information to build the clusters, which may
be exploited for example in decision tree learning based on
clusters. The difference of clusterings is illustrated in the
projection to two attributes in Figure 6.

method HIER k-means GMM HMM
HIER 1 0.69 0.38 0.24

k-means 1 0.43 0.28
GMM 1 0.36

Table 3: NMI comparison of different clustering methods.
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Figure 6: Projection of the clustering results for k-means
(left) and HMM (right) into two attributes (yaw and roll).

Supervised Learning

Since the clustering algorithms were far from perfect rep-
resentation of activities, we tried to learn a sensor descrip-
tion corresponding to each activity by techniques of super-
vised learning. In particular, we will learn the function
navdata → activity using the decision trees.

Decision Trees

As a supervised learning method we used classical decision
tree learning using the library tree (Ripley 2016). We
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Figure 7: The decision tree predicting the activity based on
the windowed input attributes.

performed 10 times random selection of stratified data, 50
training examples from each class, 5 test samples from each
class. In each run, we constructed the decision tree and we
used cross validation on the training data sample to select
best pruning of the tree. Then, we evaluated this pruned tree
by the test data. Figure 7 shows the pruned decision tree for
the activity based on the windowed data.

Decision Trees Exploiting Clusters

We were also interested in whether clustering helps to iden-
tify the activity. This has been implemented by using clus-
ters assigned by each unsupervised learning method (HIER,
k-means, GMM, HMM) as attributes of records. Only these
cluster attributes were then used for decision tree learn-
ing. Figure 8 shows the obtained decision tree for the
activity based on the cluster assignment.

Model Comparison

We compared the model accuracy for decision trees con-
structed from different input data. The decision tree based
on clustering results (see the previous section) has the ac-
curacy 65%. This means that the clustering contains quite
high potential to discover the true activity. The prediction
based on windowed data was even better (81.2%) and adding
the cluster attributes improved the accuracy only very little.
Table 4 summarises the results of accuracy with respect to
the test data. In any case, the decision-tree learning method
achieved much better results than any clustering method.

clusters clusters data both
5 0.648 0.812 0.844
6 0.760 0.800 0.828

Table 4: Accuracy comparison for a decision tree based on
cluster assignment, on the windowed data, and on the com-
bination of both. All numbers are averaged over 10 experi-
ments. The first row gives results for 5 clusters, the second
for 6 clusters.

Conclusions and Future Research

In this paper we studied two approaches to identify activi-
ties of a flying drone, one based on unsupervised learning
(clustering) and one based on supervised learning (decision
trees). It seems that identifying blocks of time, that could
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Figure 8: The decision tree predicting the activity based on
the cluster assignment by the algorithms HIER, k-means,
GMM, and HMM.
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be called activities, is relatively straightforward, if primitive
moving activities are assumed only. We have found the ob-
tained clusters reasonable enough (see Figures 6 and 8), but
as the empirical evaluation using the command data showed,
the unsupervised learning provided sensor reading clusters
that do not correspond fully to the original commands and
accuracy was much worse than for human activity recog-
nition. The decision tree learning seems much more accu-
rate than clustering regarding primitive activities – control
commands. Also the experimental results showed the accu-
racy of decision tree learning can be slightly improved by
including information about clusters found by the unsuper-
vised learning methods.

There are several directions for future research. It is pos-
sible to exploit information from cameras, such as optical
flow, as additional sensor input. Another possible future step
is application of the presented techniques, with the focus
on unsupervised learning, to identify more complex moving
patterns that repeat when drones perform some mission – for
example circular or lawn-mower patterns when searching for
an object (Bernardini et al. 2014). These movements do not
correspond to a single command and hence are more inter-
esting from the perspective of planning using more complex
activities. Having activities comprising more commands
brings another interesting problem, namely learning how to
perform such an activity (how to control the drone to execute
the activity). Reinforcement learning seems to be a good and
verified technology there (Abbeel et al. 2007). From the per-
spective of activity planning it would be also interesting to
learn some abstract description of such complex activities in
the form of activity preconditions and effects (Ghallab et al.
2004). This is critical for building planning domain models
that can be used to obtain even more complex goal-driven
behavior of autonomous systems.
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