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Abstract

We present a framework that learns commonsense temporal
knowledge from word definitions. Our work differs from ex-
isting systems in both the way definitions are axiomatized and
the way knowledge is inferred from those axioms. First, we
go beyond axiomatizing just the literal interpretation of a defi-
nition by considering the underlying subtext and assumptions
a reader has to make to understand a definition. Secondly, we
cluster the concept axioms into small event theories that we
use to predict the co-occurrence of concepts in simple sce-
narios. These predictions allow us to identify knowledge de-
rived from the complex interactions among several definitions
that would otherwise be ignored. We show that this frame-
work can derive temporal knowledge across several different
concept domains. Results are compared to human judgment
and demonstrate the effect several features have on evaluation
scores.

Introduction

Common-sense temporal knowledge is one of the several
types of knowledge needed for general purpose natural lan-
guage understanding. Such knowledge helps infer a more
complete narrative from a statement. For instance, from
“Kim was kept up until 2 a.m. by the music.” and the defi-
nition of keep upv5, “prevent from sleeping”, we can infer
that Kim went to sleep around 2 a.m., she intended to go to
sleep before then, and the music probably stopped around
that time. Unfortunately, it is not feasible to hand produce
a large enough lexical knowledge base (KB) for this task.
Instead, automated methods are employed to extract knowl-
edge from natural language.

Systems that focus primarily on facts about instances (e.g.
Nice is in France) as well as concept subsumption and mere-
ology, like NELL (Carlson et al. 2010), can take advan-
tage of large corpora because such knowledge is often en-
coded in surface features like syntax patterns and selectional
preferences. However, finding concept relations (e.g. sleep-
ing precedes waking up) in most forms of natural language
is more difficult. Concept relations are assumed to be so
well known that most language adhering to Grice’s max-
ims (Grice 1975), particularly that communication should
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“be brief”, would omit any useful indication of their na-
ture. One would not normally say “Kim woke up and is no
longer sleeping” because the speaker would assume the au-
dience understands the connection between waking up and
sleeping. There is, however, a type of natural language that
does make concept relations more explicit: concept glosses
(short definitions) found in dictionaries assume the audience
is unfamiliar with the concept and will discuss its relations
to other concepts more explicitly than most other language.

Approaches that axiomatize glosses - like (Harabagiu,
Miller, and Moldovan 1999) and more recently (Clark et al.
2008), (Allen et al. 2013), and (Kim and Schubert 2016) -
differ significantly from corpora-based ones. Most appar-
ently, the input for gloss-based systems is smaller but the
information density is much higher - a good gloss directly
states a concept’s most important qualities and the qualities
of other closely related concepts. Although gloss-based ap-
proaches could be applied to any dictionary, WordNet (WN)
(Miller et al. 1990) is preferred over most other sources be-
cause many of its glosses have been sense tagged and WN
provides additional concept knowledge among those senses
(e.g. hypernym and antonym relations). Furthermore, WN
senses are widely used in other NLP applications which al-
lows for better integration with other projects.

The more recent gloss approaches referenced above work
similarly, but chiefly differ in their representation of the
knowledge extracted. Each parses WN glosses into log-
ical forms (LF) consisting of word senses and thematic
roles. They assert that each concept entails its LF (i.e.
Concept → LFGloss). If the WN gloss for wakenv2 is,
“stopv1 sleepingn1” then the resulting LF would be similar
to Figure 1.

With general event axioms and logical inference one
could learn relationships like event pre- and post-conditions
and entailment. Figure 2 shows a small portion of knowl-
edge we can extract just from LFs and WN’s concept rela-
tions. Although we can extract a great deal of knowledge, it

wakenv2(e1) ∧ agent(e1, x)→
stopv1(e2) ∧ sleepingn1(e3) ∧ agent(e2, x) ∧

effect(e2, e3) ∧ agent(e3, x).

Figure 1: Axiom from awakenv2 - “stopv1 sleepingn1”
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Figure 2: Some of the axioms generated directly from the
definitions of concepts related to wakenv1.

remains sparsely connected. For instance we would expect
wakenv1,“cause to become awake or conscious” to have
most, if not all, of the relationships that wakenv2 has.

We only have one gloss per concept from which to derive
knowledge and we, again, come up against the tendency to
“be brief”. Human readers derive knowledge not only from
the literal meaning of a gloss (like its LF) but also inter-
pret the subtext - the intended meaning of the gloss - and
understand it in the context of related concepts. In previ-
ous work (Orfan and Allen 2015) we explored areas of sub-
text that current methods do not exploit and logical infer-
ence alone cannot handle. Using hand-axiomatized glosses
related to sleepn1 and a general theory about events and time,
we showed that including such underlying information al-
lows us to extract more knowledge from definitions.

In this paper we expand on the ideas in (Orfan and Allen
2015) by increasing the flexibility of the temporal theory,
automating the axiomatization method, and showing that
these methods can be applied to concept domains beyond
just sleepv1. We present a framework that extracts tempo-
ral relations from both the literal and sub-textual informa-
tion found in WN definitions. Axioms are extracted based on
both a gloss’ LF and its underlying meaning. Those axioms
are then combined using a simple temporal model to infer
new temporal relations that would otherwise be overlooked.
We evaluate our results based on human judgment and show
that this framework extracts more relationships than current
methods at a comparable level of precision.

System Overview

Our framework can be broken up into several distinct steps
(outlined in Figure 3). First we choose the concept we wish
to learn about (“Seed Concept”). From that concept we
build a set of neighboring concepts (like those in Figure
2) about events and states close to the seed via LF graphs
and WN’s concept relations (e.g. hypernym, antonym, and
derivationally-related links). For each concept in the set we
convert their gloss’ LF (both the literal interpretation and
subtext) and its concept relations to temporal axioms (“Def-
inition to Axioms”). The axioms are combined with general
temporal axioms (“Temporal Theory”) to produce a small
theory (“Micro-Theory”) that characterizes the seed sense
by describing how the concepts related to it interact.

Using these micro-theories we infer (“Inference”) the
state of the world given several basic premises about the seed

Figure 3: Diagram showing the flow of input through differ-
ent processes to eventually yield concept relations. Rectan-
gles represent data and circles represent processes.

sense (“Obs.1”) like, “Something was sleeping and now is
not sleeping.” These inferences give insight into how events
and states interact according to their definitions. We do this
for several similar premises and infer temporal knowledge
from co-occurrence (“Stats”). For instance, if every time we
assert that someone is asleepadj1 the micro-theory predicts
they are also sleepingn1, then we would infer that asleepn1

entails sleepingn1

In the next section we present the temporal theory we use
to axiomatize concepts. Then we show how definitions are
axiomatized and combined to drive inference. We then de-
scribe how micro-theories are used to make predictions and
how those are used to infer common sense temporal knowl-
edge.

Interval Temporal Logic

We represent glosses and subtext in a simplified derivative of
interval temporal logic (ITL). ITL was developed as a rep-
resentation in (Allen 1984) and further expanded to support
plan reasoning and event prediction in (Allen and Ferguson
1994). ITL was constructed with the purpose of represent-
ing and reasoning about the complexities involved in several
temporal aspects of events and states in natural languages.
However, we have found that definitions predominately rely
on only a few verb aspects: stative, progressive, inceptive,
terminative, and preventative. For the sake of speeding up
event prediction, we created a simplified implementation of
ITL to omit some of the complex temporal relations that we
do not require.

Our implementation represents time as a finite number of
discrete steps that cannot overlap; time steps can be con-
secutive. e.g. meets(t1, t2) means that t1 is directly before
t2. For convenience, assume that meets(t, t + 1) is always
true. We represent two types of lexical concepts, states and
events, defined below. In practice we distinguish between
these two concept types based primarily on where they fall
in WN’s hypernym hierarchy.

• State (s) – properties/states that objects may have/be in
during a given time step (e.g. Awake, Snore)

• Event (e) – processes that affect states when they
start/stop (e.g. Waken, Fall Asleep, Kill)

• Time (t) – a discreet span of time; a time step

In our model, states are said to hold at a certain time.
Events can occur over one or many time steps and are said
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hold(sleepingn1, 1) ¬hold(sleepingn1, 2)
start(wakenv2, 1) stop(wakenv2, 2)
occur(wakenv2, 1) ¬occur(wakenv2, 2)

Figure 4: Representation of a scenario where something is
sleeping to begin with, then wakes and is no longer sleeping.

to start at the first time step they begin to occur and stop
at the first time step they no longer occur. Figure 4 provides
an example describing a scenario with this representation.

• meets(Time,Time) - two time steps are sequential
• hold(State, Time) - a state is true at a certain time.
• occur(Event,Time) - an event is occurring at a certain

time.
• start(Event,Time) - an event starts occurring at a certain

time, is occurring, and its preconditions are true
• stop(Event,Time) - an event stops occurring at a certain

time, is not occurring, and its postconditions are true

We define a set of general axioms to reason about events.
For the sake of space, we will not discuss axioms defining
the semantics of the predicates already described above. One
departure we make from (Allen and Ferguson 1994) is our
handling of explanation closure axioms. Such axioms dictate
that when a state, s, changes then some event that is known
to change s must have caused it. However, given our task, we
have to assume that our knowledge of events is incomplete
and so we cannot be sure what does and does not change s -
all we know is that some event caused it to change. We use
a weakened version of the closure axioms which essentially
states that if s changes states between two time steps, then
some event has either started in the first step or stopped in
the second. Formally: ∀t.hold(s, t) �= hold(s, t + 1) →
∃e(start(e, t) ∨ stop(e, t+ 1))

Axioms from Glosses

Now that we have a logic to represent definitions we can
move on to axiomatizing them. In this paper we focus on
three types of temporal relationships between states and
events: entailment, precondition, and postcondition. Their
formal semantics are shown in Figure 5. We will start by
describing how knowledge is extracted from literal interpre-
tations of glosses and then describe how their underlying
meanings are added.

Like similar approaches we begin by parsing WN glosses.
These parses are generated using the TRIPS parser (Allen
2014), which was previously used in (Allen et al. 2013).
TRIPS is a semantic parser with several features that make
it well suited for understanding definitions. Importantly, it

s ENTAILS s′ ∀t.hold(s, t)→ hold(s′, t)
e ENTAILS e′ ∀t.occur(e, t)→ occur(e′, t)

e PRE s ∀t.start(e, t)→ hold(s, t)
e POST s ∀t.stop(e, t)→ hold(s, t)

Figure 5: Semantics of temporal relationships.

can tag words with WN senses in cases where a sense tag is
not provided. Furthermore, words are linked to a linguisti-
cally motivated ontology that allows us to easily define gen-
eral rules for extracting knowledge. Other works use similar
methods to extract semantic relationships from LFs. For in-
stance, (Clark et al. 2008) includes a set of generic axioms
that connect key WN senses (like becomev1) to semantic re-
lationships like CHANGETO and CHANGEFROM.

We created about 30 LF patterns that extract temporal re-
lationships based on the structure of the LF and the ontology.
An example pattern is shown below:

stop(x) ∧ effect(x, y)⇒ x PRE y and x POST¬y
if x is subsumed by the concept stop and has an effect
relation to y then y is a precondition of x and ¬y is a
postcondition of x

In the case of the LF in Figure 1, we would extract the fol-
lowing two relationships: wakenv1 POST¬sleepingn1
and wakenv1 PRE sleepingn1. Similarly for
stay upv1, “not go to bedv1” we would extract:
stay upv1 ENTAILS¬go to bedv1.

We take advantage of the concept relationships that
WN provides, namely hypernym and antonym links. The
relation, x HYPERNYM y is treated like x ENTAILS y and
x ANTONYM y is treated like x ENTAILS¬y.

We can extract a good amount of knowledge from just
the literal interpretation of glosses and logical entailment,
as (Clark et al. 2008), (Allen et al. 2013), and (Kim and
Schubert 2016) do successfully. But the extracted knowl-
edge is very sparse and disconnected. They only have one
gloss from which to learn and each is only a few words long
- there simply is not enough space to properly characterize a
concept. If we want to extract more knowledge then we have
to look beyond the literal interpretation of a gloss.

Adding Subtext

Below we have listed four intuitions that give insight on how
we can extract more information from a definition beyond
just axiomatizing the LF.

1. Negation in language can mean more than just logi-
cal negation. The definition stay upv1, “not go to bedv1”
does not simply mean stay upv1 ENTAILS¬go to bedv1.
The reader knows that stay upv1 is in the same domain
as go to bedv1 and entails at least some of go to bedv1’s
precondtions and precludes some of its postconditions. In
this case “not go to bedv1” implies that you are able to go
to bed - i.e. you are awake.

2. Glosses are meant to closely approximate the concept
they define, but a gloss cannot typically replace its con-
cept without losing meaning. While Concept→ LFGloss

is true, limited space and other pragmatic considera-
tions mean that in most cases we should not also intro-
duce axioms of the form, LFGloss → Concept (Stock
1988). But a gloss does provide the reader strong evi-
dence for its concept. Unfortunately this is something that
is difficult to manage using only logical entailment. Con-
sider, sleepingn1, “the state of being asleep” and snorev1,
“breathe noisily during one’s sleep”. sleepingn1’s gloss is
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an excellent replacement for sleepingn1 but the gloss for
snorev1 misses some of the subtleties that distinguishes
snoring from loud breathing. We cannot expect a dictio-
nary to explain the physiological causes of snoring so we
have to settle for a less exact description.

3. Derivationally-related links very often point to differ-
ent linguistic realization of a state or event. For in-
stance sleepn1,“a natural and periodic state of rest dur-
ing which consciousness of the world is suspended” has
links to sleepv1, “be asleep” and sleepyadj1,“ready to fall
asleep”. It would be safe to assume if someone is in a state
of sleepn1 then they are also engaged in sleepv1. How-
ever, it is arguably untrue that they are also sleepyadj1.
Given this example, a reader should use derivationally-
related links as evidence of an entailment relation rather
than definite proof.

4. A reader learns a great deal more when considering sev-
eral closely related definitions all at once instead of one
at a time. Figure 2 shows some of the axioms we gen-
erate for concepts related to wakenv1, “cause to be-
come awake or conscious” and wakenv2, “stop sleep-
ing”. Notice that we do not find any entailments between
wakenv1 and wakenv2 directly from the glosses. How-
ever, we have evidence that they are closely related con-
sidering that both are entailed by reawakenv1 and both
entail ¬cause to sleepv1. Given enough evidence we can
conclude that wakenv1 and wakenv2 are different realiza-
tions of the same event.

Intuitions 1 through 3 are essentially ways of extracting
more knowledge by exploiting conventions specific to con-
cept definition. Intuition 4 provides an idea for combining
the literal interpretation of a gloss with this extra knowledge
to find even more concept knowledge. However, before we
can do that we have to axiomatize the subtext we have ex-
tracted using intuition 1 through 3.

From intuition 1 we alter the semantics of relations of the
form, e ENTAILS¬e′ and add to it the following:
∀x. e′ PRE x→ e ENTAILS x

∀x. e′ POST x→ e ENTAILS¬x
i.e. e occurring implies that e′ is not occurring but its pre-

conditions hold and its postconditions do not hold. In the
case of stay upv1, “not go to bedv1” we add the axiom:
stay upv1 ENTAILS¬sleepn1

Intuitions 2 and 3 require weak axioms to represent evi-
dence rather than certainty. To handle inference with these
axioms we use Markov logic networks (MLNs) (Richard-
son and Domingos 2006), which have been shown to be
an effective tool in natural language applications like se-
mantic similarity and textual entailment (Garrette, Erk, and
Mooney 2011; Beltagy et al. 2013). MLNs allow us to de-
fine both certain axioms (like those derived from interpret-
ing glosses literally) which are analogous to first order logic,
and weighted axioms that can be used to reason with un-
certainty. Instead of an absolute truth value, we can infer
probabilities for each predicate. We prefix weak axioms with
[w] to indicate they are true with some weight, w. From in-
tuition 2, for every definite axiom we derive from the lit-

eral gloss interpretation we also add a weak converse. For
stay upv1 ENTAILS¬sleepn1 we create the axiom:
[w] ∀t.¬hold(sleepn1), t)→ hold(stay upv1, t)

Likewise, for wakenv1 PRE sleepingn1:
[w] ∀t.¬hold(sleepingn1, t)→ stop(wakenv1), t)

Intuition 3 simply adds a weak entailment axiom for each
derivationally-related link, e.g. [w] ∀t.hold(sleepn1, t) →
hold(sleepv1, t).

The weight of the soft axioms, w, indicates how closely
we think glosses approximate their concepts in general. For
our experiments we have found that w = 2 gives predic-
tions that fit our intuitions. Changing w will alter the in-
ferred probabilities; however, we will only use these proba-
bilities to discriminate between actual commonsense knowl-
edge and false positives. Instead of embodying real world
probabilities, w should be thought of as a tuning variable.

Following from intuition 4, we combine several related
axioms together, centered around a single concept, to form
what we call a micro-theory. A micro-theory contains the ax-
ioms most salient to understanding its center concept. Given
a micro-theory and a set of assertions about the the world,
we can use the temporal model described in the previous
section to infer the confidence the system has in a predicate
being true at any time step. Figure 7 gives an example of
the scores for a few predicates inferred using a micro-theory
centered around sleepingn1.

The micro-theories may contain denser knowledge than
current methods of knowledge extraction but they are un-
likely to be used as commonsense KBs by the community.
Outside users would have to commit to everything from ITL
representation to the MLN inferencing when all they really
want are simple relations, like wakenv1 ENTAILS wakenv2.
If we want our KB to be useful then we need to distill all of
these axioms into simplified relationships.

Inferring Semantic Relationships
We estimate the confidence our system has in the three
relationships (ENTAILS, PRE, and POST) based on co-
occurrence inferred from the axioms we extracted from
definitions in the previous section. Figure 6 defines the
confidence estimator, Ĉ, for each relationship. If we
wanted to find the value of sleepingn1 ENTAILS snoren2
we would first build a micro-theory centered around
sleepingn1. Next we create a set of premise predicates
(which we will call observations) about sleepingn1, like
{hold(sleepingn1, 1),¬hold(sleepingn1, 2)}, then run in-
ference using the micro-theory and the observation set
to obtain the probability scores in Figure 7. We average
the confidence that snoren2 holds at time t, given that
hold(sleepingn1, t) was in the set of observations. In this
case we have only one instance, P

(
hold(snoren1, 1)

)
= .5

and so, Ĉ(sleepingn1 ENTAILS snoren2) = .5. Likewise,
Ĉ(¬sleepingn1 ENTAILS snoren2) = 0.

In general, for Ĉ(xRy), a score of 1.0 means the systems
is very confident in xRy, 0.5 means it has no knowledge of
xRy, and 0 means it is very confident in xR¬y. We inter-
pret these numbers to mean that knowing sleepingn1 holds
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1. Ĉ(s ENTAILS s′) =
〈{P (

hold(s′, t)
) | hold(s, t) ∈ OBS}〉

2. Ĉ(e ENTAILS e′) =
〈{P (

occur(e′, t)
) | occur(e, t) ∈ OBS}〉

3. Ĉ(e PRE s) =
〈{P (

hold(s, t)
) | start(e, t) ∈ OBS}〉

4. Ĉ(e POST s) =
〈{P (

hold(s, t)
) | stop(e, t) ∈ OBS}〉

Figure 6: Confidence estimators (Ĉ) for each temporal rela-
tion. Each relation x R y is estimated by the average con-
fidence score that y is in a certain state at the same time we
have asserted something about x.

does not indicate the state of snoren2. But, we are very con-
fident that ¬sleepingn1 ENTAILS¬ snoren2. We can gener-
ate a KB by adding all relations with confidence scores that
pass some threshold (e.g. Ĉ < .15 or Ĉ > .85)

We want to know if a relationship is true in gen-
eral, regardless of starting conditions. But these
numbers are directly influenced by the observa-
tion set that generated them. Different initial as-
sertions could predict very different things. Con-
sider {hold(sleepingn1, 1), hold(sleepingn1, 2)} and
{hold(sleepingn1, 1),¬hold(sleepingn1, 2)}. In the first
set, sleepingn1 is static so we would only learn about what
happens when sleepingn1 is true. But in the second set
sleepingn1 changes which entails some event has occurred
which may have complex consequences.

To get a better idea of sleepingn1’s relationships we
have to look at the confidence scores given from several
different starting assertions. For each concept, the system
generates all combinations of it holding or occurring
(depending on its type) in scenarios with up to three time
steps (see Figure 8). For instance, from sleepn1 we would
generate two scenarios each with a single time step, four
scenarios with two time steps each, and eight with with
three time steps: {hold(sleepn1, 1)}, {¬hold(sleepn1, 1)},
{hold(sleepn1, 1), hold(sleepn1, 2)}, {hold(sleepn1, 1),
¬hold(sleepn1, 2)}, etc. We use the inference results from
these scenarios to calculate the confidence our system has
in relations of the form sleepn1 Rx.

Evaluation

To test our framework, we generated micro-theories for 170
concepts related to sleepn1, diev1, curev1, cleanadj1, wetv1,
swimmingn1, and ignitionn3 (in the sense of burning). Each

P (hold(snoren1, 1)) = .5 P (hold(snoren1, 2)) = 0
P (occur(wakenv1, 1)) = .8 P (stop(wakenv1, 2)) = .9

Figure 7: Inferences for some predicates made using
a micro-theory about sleepingn1 with the assertions:
hold(sleepingn1, 1) and ¬hold(sleepingn1, 2).

Figure 8: The process of estimating relationship confidence.
The system builds several observation sets and calculates
Ĉ(ARx) from the probabilities inferred from those sets.

micro-theory involves anywhere from 70 to 450 WN con-
cepts.

To evaluate the four types of relationships shown in Fig-
ure 6, we sampled 76 relationships from each type (304 in
total), a third of which had confidence scores between .2 and
.8 and the other two-thirds of which were drawn from out-
side that range. We did this because we are more interested
in testing the relations the system was confident about.

From each of the relations we sampled, we created a
multiple choice question. Each question presents a sentence
describing a relationship between two concepts and asks
the respondent to fill in a blank with either, “definitely”,
“maybe (unsure)”, or “definitely not” For instance, to test an
ENTAILS relation between a sense of sleeping and a sense
of asleep, the question would read: “If something is sleep-
ing then it is asleep.” The glosses for each of the con-
cepts are also provided but the respondent is instructed to
answer using their own knowledge. We found that crowd-
sourced respondents tended to misunderstand entailment re-
lationships so we answered the questions ourselves.

We evaluate our results by first converting system confi-
dence scores to responses. If Ĉ(xRy) ≥ .85 then the system
answers, “definitely”, if Ĉ(xRy) ≤ .15 then it answers “def-
initely not”, otherwise the system answers “maybe”. The
system’s response is correct if it matches the human’s an-
swer. Since precision is so important to the KB building
task, we are only interested in relations the system is very
confident about. To that end, we do not evaluate any ques-
tions the system answered with “maybe”. After filtering out
those system responses, we are left with about 50 questions.
Figure 9 shows how changing the threshold for answering
affects the system’s performance. From the 170 concepts we
looked at, we found over 3400 relations with a probability
that pass the .15–.85 threshold.

The precision, recall, and F.5 scores are presented in Ta-
ble 1. To calculate recall, we counted all questions where the
correct response passed the .15–.85 threshold and divided it
by the number of human responses that were “definitely” or
“definitely not”. There are about 160 such human responses.
We calculate the F.5 score to weight precision higher than
recall because when building a lexical KB, we are more con-
cerned with the quality of knowledge than the coverage. To
judge the effects of subtext knowledge, we also present re-
sults using a model without any uncertain axioms (No Soft
Axioms).

As shown by the results, the full model’s precision score
is lower than the ablated model’s score; however, the recall
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Figure 9: A plot showing how precision, recall, and F.5 are
affected by the probability threshold. Everything that falls
outside .5 ± threshold is evaluated.

Full No Soft Axioms

P R F.5 P R F.5
0.71 0.20 0.47 0.91 0.12 0.38

Table 1: Stats for two models. Full uses all the features de-
scribed in the paper. No Soft Axioms does not use uncertain
converses of gloss axioms or derivationally related axioms.

and the F.5 scores are higher. In terms of raw numbers, the
full system found 3400 concept relations while the ablated
model only generated 1000 relations. Even when factoring
in the precision scores, the full model generates substantially
more valid concept relations.

Omitting the uncertain axioms (e.g. [w]LFGloss →
Concept) sacrifices recall for precision. Soft converse ax-
ioms provide more opportunities for inference and there-
fore a higher recall; however, these inferences are based on
assumptions which could be too strong or outright wrong.
Although precision is ultimately the most important score
when building a KB, it defeats the purpose if the knowledge
is too sparse. In the future we will tune w to home in on the
ideal weight to apply to our assumptions.

Conclusion

We have identified heuristics along with an inference pro-
cess that can find new relations among WN concepts that
existing methods ignore. By axiomatizing concept defini-
tions and their subtexts and probing their predictions about
co-occurrence, we were able to infer temporal and causal re-
lationships that were not explicitly represented in WN. The
results indicate that this framework could augment lexical
KBs with knowledge that is difficult to find by other means.
We are currently exploring features that predict overly con-
fident inferences so we can further raise precision without
sacrificing recall.
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