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Abstract 
Workflow monitoring and diagnosis can be a complex pro-
cess involving sophisticated computational intensive opera-
tions. The ever-growing data generation and its utilisation 
have increased the complexity of workflow domains leading 
to an increased interest in distributed approaches for effi-
cient workflow monitoring. Existing work has proposed a 
CBR enhancement to tackle deficiencies in areas where data 
volumes increase significantly. In such areas, the notion of a 
“data volume” component was proposed in an enhanced 
CBR architecture. This work proceeds further by evaluating 
a proposed distributed CBR lifecycle based on GPU pro-
gramming to abstract further and evaluate the hypothesis 
that: increased data volumes can be tackled efficiently using 
distributed case bases and processing on demand. Our pro-
posed approach is evaluated against previous work and it 
shows promising speedup gains. This paper signposts future 
research areas in distributed CBR paradigms. 

 Introduction   
The complexity of enterprise applications along with their 
increased data generation and exploitation has led to the 
emergence of a “Big Data” era. Such systems encapsulate 
numerous interconnected business processes with sophisti-
cated mechanisms for capturing, monitoring and managing 
continuous data streams and processes. However, in their 
vast majority they require human intervention to provide 
corrective actions in volatile points of the production 
lifecycle (Kapetanakis et al., 2010a). 
 Several standards have been developed with the aim of 
providing uniform mechanisms for handling business pro-
cesses, such as BPMN (OMG, 2016). Existing work has 
shown a number of successful endeavours focusing on 
diagnosis and management of business workflows by using 
CBR (Aadmodt and Plaza, 1994) primarily as their core 
intelligence mechanism. (Kapetanakis et al., 2010a, 2010b, 
2014) introduced an abstract architectural framework for 
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CBR-based monitoring of business workflows, whilst rep-
resentation and index-based retrieval of agile workflows 
have been introduced by Minor et al (2007). Towards 
workflow monitoring, Dijkman et al. (2009) developed a 
process-ranking model against a pool of process models. 
 Previous work (Agorgianitis et al., 2016) has introduced 
a new categorization of distributed CBR systems along 
with a distributed CBR lifecycle. Its results seemed prom-
ising and have presented increased performance gains. This 
work proceeds by abstracting and evaluating the proposed 
categorisation and CBR distribution with a substantially 
different distribution paradigm, that of GPU programming. 
 The paper continues by presenting the current trends in 
Big Data and ingestion of them by CBR along with a recap 
of our previous work  which we use as a base-line metric. 
A brief illustration of the investigated domain is presented 
upon which the experiments are conducted. Our proposed 
distributed CBR approach (with GPU computing) is then 
presented along with its evaluation part, presenting the 
results of the experiments in comparison with a serial exe-
cution and horizontal distribution approaches. Finally, we 
conclude with a summary of potentials for distributed CBR 
in workflow management and monitoring. 
 

Background Work 
 The ever-growing generation and capture of data in 
modern Information Systems, irrespective of application 
domain, seems a catalyst for great advancements in highly 
distributed systems. Berkley Open Infrastructure for Net-
work Computing (BOINC) (Anderson, 2004) exploits idle 
time from heterogeneous web-enabled devices. Commodi-
ty-based distribution technologies like Apache Hadoop and 
Spark (Zaharia et al., 2010) perform massive distribution 
of processing across thousands of commodity computa-
tional nodes utilising both in-memory and on-disk pro-
cessing schemes. Organizations and enterprises are migrat-
ing to such technologies to tackle an ongoing increased 
data volume (Netflix, 2014). Similarly, in scientific big 
data, a number of techniques are followed to increase effi-
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ciency, scalability and migration of the various research 
domains to the big data world. Batselem et al. (2015) pro-
pose a reasoning approach for Resource Description 
Framework Schema (RDFS) that employs optimized meth-
ods based on Apache Spark. Jalali and Leake (2015) pre-
sent a case study harnessing big data methods, specifically 
MapReduce and locality sensitive hashing (LSH), to make 
ensembles of adaptation for regression (EAR) approach 
feasible for large case bases without compression. 

In previous work (Agorgianitis et al., 2016), we pro-
posed a new categorization of distributed CBR systems 
(horizontal distribution), in which the data volume compo-
nent was a key prerequisite in the integration of distribu-
tion in CBR systems specialized in business process work-
flow monitoring and management. A number of predicates 
were established upon which the following categorisations 
could take place: ground-up distribution; distribution of 
case base and processing on demand; and agent competen-
cy to handle large data volumes. The results of the experi-
ments indicated that considerable performance gains can 
be achieved in specific areas of the CBR cycle in which 
increased data volumes can generate deficiencies. In this 
respect, the initial stages of the CBR cycle (case-loading, 
case-representation and similarity computations) could be 
largely distributed to enhance the performance of CBR 
systems via (GPU programming) whereas keeping the pro-
posed distributed CBR lifecycle paradigm. 

The CBR Domain 
The utilised CBR domain comes from the area of ordering 
and distribution of goods to retail points involving work-
flow experts, data and business rules. The investigated 
business process comprises various phases, such as new 
order generation, order preparation through various de-
partments and finally the dispatching and delivery of goods 
(see Figure 1) in a strictly timely manner. The required 
domain knowledge was acquired through past working 
experience within the domain throughout all departments 
of the workflow lifecycle.  

Scaling CBR with GPU programming 
Horizontal distribution handles increased workloads by 
adding and interconnecting hardware and software re-
sources operating as “one” physical entity (interconnected 
servers). However, vertical distribution could also handle 
scaling, by utilising better each and every resource node by 
increasing the capacity of software and hardware resources 
in order to make it faster. 

Aiming to provide an enhanced degree of abstraction, 
this work advances the state of the art by adapting a Verti-
cal scaling approach. The evaluation is extended to cover 
the two major families of distribution, vertical and horizon-
tal, thereby fully enhancing the volume-CBR lifecycle. 

Vertical Scaling with GPU and CPU programming 
The vertical distribution approach was conducted using a 
mixed distribution workflow. The raw data distribution and 

case loading are implemented using C# and Parallel LINQ 
(PLINQ) (Microsoft, 2016). 
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Figure 1. Business process definition (BPMN) of the inves-
tigated business process 

 
 The similarity computations take place by exploiting 
GPU parallel programming with NVIDIA CUDA kernel 
(NVIDIA, 2016) and the rest of the CBR cycle tasks oper-
ate using C# serial execution. The case bases developed in 
the horizontal scaling and serial execution experiments, 
text based for distributed versions and relational database 
for the serial execution, are both utilised in the vertical 
distribution. The Isomorphic Graph Similarity Links Algo-
rithm 
The business workflow of the current application domain is 
composed of a finite number of actions along with their 
corresponding intervals. Groups of actions and intervals 
are included in every valid instance to have a “complete” 
workflow. Action order is of importance and is fixed since 
the production phase is defined under specific schematics. 
As an example, “a dispatch order cannot take place before 
the generation of an invoice for this specific order”.  
 An ordering process BPMN could be classified as iso-
morphic (Ruohonen, 2008) due to the fixed number of ac-
tions in conjunction with the constant way that the actions 
relate to each other. The lack of loop occurrences in the 
graph representation of the workflow means the graph is 
acyclic. 
    The Isomorphic Graph Similarity Links (IGSL) algo-
rithm is a basic algorithm developed aiming to measure 
similarities of isomorphic and acyclic graphs specifically 
for our domain area. Given two acyclic and isomorphic 
Graphs G and G′, the similarity Sim(G, G′) between the 
two is calculated by:  
 
 
 
where count(E) is the number of edges in G graph and  
σ(Ei , Ei’), with 0≤ σ(Ei ,Ei’) ≤1, is the similarity measure 
between 2 individual edges Ei and Ei′ from graphs G and 
G′ correspondingly. 
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The idea behind the development of the proposed algo- 
rithm is that given the fact that all workflow instances have 
the same number of nodes and the nodes are connected in 
the same way, the similarity between two given graphs 
could be calculated by measuring the distances of the cor-
responding links between the given graphs.  

The GPU parallel programming model introduces the 
utilisation of GPUs in conjunction, depending on the num-
ber of cases up to 10 million. Having completed the simi-
larity computations and their storage, along with the cases 
indices, the similarities are sorted and the K most similar 
indices are returned [Algorithm 1]. 

The K most similar indices are then used to retrieve the 
cases in question from a relational database. The retrieval 
is fast enough since the cases are indexed within the data-
base. Finally, the rest of the CBR cycle (classification, 
adaptation and persistence) occurs in a sequential manner. 

Algorithm 1. GPU - Similarity Computations  
1: function ComputeKSimilarGPUHost 
2: Init Host vars and load data from text media (PLINQ) 
3: › graphsData, newCase, similarities 

4: Allocate the memory on the GPU and copy data 

5: › gpu.Allocate(graphsData, newCase,similarities)

6: › gpu.CopyToDevice(allData) 
7: Launch 100.000 blocks of 1000 threads each 
8: › gpu.Launch(100000,1000).KernelSims(allData) 
9: Copy computed similarities from device 

10:   › gpu.CopyFromDevice(similarities)  
11:   return K most similar indices 
12: function KernelSims 
13: Compute thread Id 
14:  › tId = threadId.x + blockId.x * blockDimension.x 
15:   do while thread Id < Total Number of Cases 
16: Get graph data for each thread based on thread Id  
17: Compute IGSL similarity for current thread Id  
18: › sim[tId] = ISGL(currentGraphData, newCase)  
19:  Update Thread Id so as to ensure exit form loop 
20:  › tId = blockDim.x * thread.gridDim.x 
21: function ISGL 
22:   › similarity = 0 
23:   for each edge1 in newGraph do 
24: for each edge2 in threadGraph do 

25: ›similarity += calculate edge1, edge2 distance 
26:   return similarity 

Evaluation 
For the evaluation part, we assessed the proposed distrib-
uted CBR lifecycle and its level of abstraction by intro-
ducing distribution in CBR. We used heterogeneous dis-
tribution schematics, technologies and workflows in the 
application domain area of business workflow monitor-
ing and diagnosis. Several experiments were conducted, 
integrating distribution in the initial stages of the CBR 
having the following hypotheses: 
Hypothesis 1 Increased data volumes can be tackled 
efficiently using distribution of case base and pro-

cessing on demand, irrespective of underlying distribu-
tion frameworks and schematics. 
Hypothesis 2 Increased data volumes and processing 
can be handled efficiently by a single agent entity 
    The experimental runs were based on 7 real instance-
based generated datasets. Each dataset contained log en-
tries with information relating to actions (workflow-case) 
that occurred within the production phase. Each work-
flow included various actions from the log entries rang-
ing from “invoice generation” to “delivery order”. Fuzzi-
ness was introduced throughout our experimental data 
using 4 main categories of delays (no delay, minor, mod-
erate and severe) along with application of domain 
knowledge delay rules and random fluctuations. 
    The classification of the cases was developed using a 
threshold classification scheme (50%). The actual evalua-
tion of the distributed CBR lifecycle was conducted by 
developing a basic implementation of a k-NN classifica-
tion algorithm in order to classify a new case fed into the 
system. The new case classification was delivered by a 
weighted voting of the k most similar cases.  
     The baseline metrics utilised in the current evaluation 
come from our previous work, including an optimised 
serial execution CBR cycle and a horizontal distribution 
approach using Apache Spark as the underlying distribu-
tion framework. The experimental runs involved a large 
variety of case numbers ranging from: 20 to 10 million. All 
experimental runs were conducted on the same machine (8 
cores, 16 GB RAM, and a conventional NVIDIA display 
adapter with 48 CUDA cores). 

Results 
The results of the experiments are presented in Table 1 in 
contrast with our previous versions (serial and horizontal 
scaling executions) (Agorgianitis et al., 2016). The vertical 
distribution outer- performs the optimised horizontal scal-
ing in each set of experiments.  

 

 
Figure 2. Vertical Scaling, PLINQ and CUDA Time Results  

 
The break-even point, after which someone can notice per-
formance gains, is between 10 and 100 thousand cases. 
Small numbers of cases had better performance via serial 
execution, due to distribution overheads of parallel ap-
proaches (see Figure 2). 
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 A vertical distribution approach (GPU) involves 
more sophisticated execution workflows in comparison to 
the equivalent horizontal approach s i n c e  it exploits two 
distributed technologies (PLINQ and CUDA parallel pro-
gramming). This means that the produced overheads (due 
to parallelism) are greater, something which lead to per-
formance downgrades. Furthermore, the utilisation of 
additional APIs in order to integrate different runtimes 
(CUDAfy) is another factor which introduces additional 
overheads to any vertical parallel execution. 
 

Stored 
Cases 

Serial Ex-
ecution (sec) 

Horizontal 
Scaling (sec) 

GPU 
Scaling (sec) 

20 0.279635668 1.725372791 1.4142951 
103 0.370043755 1.789544344 1.4525411 
104 0.782604933 1.943482876 1.5664515 
105 6.322293282 3.685497522 2.8503591 
106 58.5914855 14.62897038 14.4442463 

5*106 1847.181649 73.43203068 57.708023 
107 2370.668307 140.6282022 111.504969 

 
Table 1. Vertical Scaling, PLINQ and  

CUDA Approach Execution Time Results  
 

From our experiments it seemed like a vertical ap-
proach outperforms any horizontal distribution attempts. 
A maximum speedup of 32 is achieved for 5 million cas-
es, which is a considerable improvement in performance. 
However, speedup appears to be downgraded for experi-
ments with more than 5 million stored cases. 
This observation may not seem valid at first glance 
since the similarity computations are massively parallel-
ized (GPU fires up to 10 million concurrent threads in 
one go). The speedup decrease implies two things. 
First, the similarity algorithm utilised in the experiments 
is a conventional one with a small degree of complexity. 
As a result, increased performance gains are prohibited 
due to the simplicity of the algorithm. Secondly, the dis-
tribution and loading of data are still bound to CPU pro-
cessing which is limited by the number of the available 
cores. So, the bottleneck in terms of similarity computa-
tions is indeed resolved by using GPU programming but 
the one introduced by the data distribution and loading is 
still bound to the number of available cores. 
 

Conclusions 
This paper presents a novel approach in CBR workflow 
monitoring using distributed GPU programming. Super-
linear speedup is observed for a high number of cases, in-
dicating that CBR systems are bound to increase pro-
cessing and I/O.  Distribution is proven to provide perfor-
mance gains in CBR systems tackling increased workloads 
and very large datasets. Further research will focus on for-
mulating a generic architecture capable of incorporating 
distribution in CBR, irrespective of technical features, dis-
tribution schematics and application domains. Similarly 
our focus will be on data optimisation and process distrib-

uted pipelines and dynamic partitioning algorithms for 
large datasets. 
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