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Abstract

Construction of classification models from data in practice
often requires additional human effort to annotate (label) ob-
served data instances. However, this annotation effort may of-
ten be too costly and only a limited number of data instances
may be feasibly labeled. The challenge is to find methods that
let us reduce the number of the labeled instances but at the
same time preserve the quality of the learned models. In this
paper we study the idea of learning classification from soft
label information in which each instance is associated with a
soft-label further refining its class label. One caveat of apply-
ing this idea is that soft-labels based on human assessment
are often noisy. To address this problem, we develop and test
a new classification model learning algorithm that relies on
soft-label binning to limit the effect of soft-label noise. We
show this approach is able to learn classification models more
rapidly and with a smaller number of labeled instances than
(1) existing soft label learning methods, as well as, (2) meth-
ods that learn from class-label information.

Introduction
Meaningful use of data often requires annotation of these
data by humans. This is critical for building various kinds
of classification models capable of differentiating examples
according to human defined categories. Examples of such
problems are annotation of text with human-preselected key-
words or topics, annotation of time series (e.g. videos) with
activities or events of interests captured in the data, annota-
tion of patient instances with diseases, and many others. Un-
fortunately, due to its cost, the annotation of the data may be-
come the bottleneck of the model building process. Briefly,
the annotation effort may be too costly and only a limited
number of data instances may be feasibly labeled. The chal-
lenge then is to develop methods that can learn high-quality
models from a smaller number labeled instances.

Our solution focuses on binary classification and seeks
to advance a relatively new machine learning approach pro-
posed to address the sample annotation problem: learn-
ing with soft label information (Nguyen, Valizadegan, and
Hauskrecht 2011a; 2011b), in which each instance is asso-
ciated with a soft-label reflecting the certainty or belief of
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human annotators in the specific class label, such as, a prob-
ability the patient suffers from a specific disease. The benefit
of soft labels is that they let us distinguish data instances that
are strong, weak or marginal representatives of a class, and
when properly used in the classification training phase they
can help us learn better classification models with a smaller
number of labeled samples. .

Throughout this paper we assume that soft-labels pro-
vided by humans are probabilistic. However, the caveat
of learning from such labels is that humans are unable
to give consistent probabilistic assessments; a phenomenon
well documented in psychology and decision making liter-
ature (Juslin, Olsson, and Winman 1998; Griffin and Tver-
sky 1992). In such a case, learning methods that are robust
to ’noisy’ soft-label assessments are necessary. (Nguyen,
Valizadegan, and Hauskrecht 2011a; 2011b; 2013) address
the problem by using probabilistic soft-labels to first de-
termine the relative order of examples in the training data
and then build the final classification model by consider-
ing all pairwise orderings among them (Joachims 2002;
Herbrich, Graepel, and Obermayer 1999). They showed this
approach is more robust to the soft-label noise than regres-
sion methods trying to directly fit probabilities. However, the
limitations of their approach is that (1) the number of pair-
wise orderings one aims to satisfy is quadratic in the number
of data points in the training data, and (2) all orderings are
treated equally, that is, orderings induced by data points with
smaller soft-label differences are treated equally to orderings
with larger differences.

In this work we first show how one can modify the all-
pair problem formulation through binning where constraints
within each bin are ignored and only constraints among
data points in the different bins are enforced. This leads
to a smaller number of pairwise constraints to satisfy and
exclusion of constraints that are more likely corrupted by
the noise. Second, we reformulate the problem of satisfy-
ing constraints among data points in different bins as an or-
dinal regression problem and solve it using ranking-SVM
(Joachims 2002; Herbrich, Graepel, and Obermayer 1999)
defined on these bins (Chu and Keerthi 2005). This reformu-
lation further reduces the number of constraints one has to
satisfy leading to a more efficient solutions where the num-
ber constraints to satisfy is linear in the number of samples.

The paper is structured as follows. In Section 2, we re-
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view the related soft-label learning work. In Section 3, we
introduce our approach and analyze its benefits In Section 4,
we conduct experiments on multiple synthetic datasets (cor-
rupted with the different noise levels) and real-world human-
labeled datasets in the clinical event prediction domain. In
Section 5, we summarize the results and new directions.

Related Work
Learning with soft-label information The problem of
learning binary classification models from soft-labels ob-
tained from humans is relatively new and was first explored,
to the best of our knowledge, by (Nguyen, Valizadegan, and
Hauskrecht 2011a; 2011b; 2013). In their work, the authors
first studied and developed multiple approaches for learning
classification models from probabilistic labels via regres-
sion. They showed that these approaches may not be the best
and may not learn a good model when soft-labels are subject
to noise, which is very likely when probabilities are based
on human assessments (Juslin, Olsson, and Winman 1998;
Griffin and Tversky 1992; O’Hagan et al. 2007). To deal
with this problem they proposed a more robust method that
ignores numerical differences in probability assessments
and replaces them with pairwise ordering of data points in
the training data. The method learns a parametric discrimi-
native model that maximizes the satisfaction of all the order
constraints. An advantage of the approach is that it builds a
classification model one can easily apply to classify future
data. Its limitation is that the number of constraints it con-
sists of is quadratic in the number of training data instances.

More recently, (Peng and Wong 2014; Peng, Wong, and
Yu 2014) proposed a new non-parametric algorithm for pre-
dicting the probability associated with binary classes based
on the Gaussian process regression. The method defines the
mean function of the Gaussian process to be 0.5 and the co-
variance function using the Radial basis kernel. The model
lets one to predict the probability pi for any new point xi

by calculating the posterior distribution of the Gaussian pro-
cess. The limitations of the approach are the design of the
covariance function (restricted to the radial basis functions),
and a non-parametric nature of the model when it is applied
to prediction tasks.

The model we propose in this work builds upon the work
of (Nguyen, Valizadegan, and Hauskrecht 2013; 2011a;
2011b), but limits the number of constraints one has to sat-
isfy, by binning the probabilistic labels, and by applying the
ordinal regression SVM approach (Chu and Keerthi 2005)
for satisfying the constraints among the bins.

Methodology
We start by first defining and formalizing our learning
problem. After that we review an algorithm proposed by
(Nguyen, Valizadegan, and Hauskrecht 2011a; 2011b) for
learning the classification model from data enriched with
soft-labels, and gradually modify it to make it (a) more ro-
bust to noise and (b) more efficient to solve.

Problem description Our objective is to learn a binary
classifier f : X → Y , where X is an input (feature) space
and Y = {0, 1} represents class labels one can assign to

individual input instances. We want to learn the classifier,
starting from an unlabeled dataset DU that consists of in-
put instances only. The labels to examples are assigned by
a human annotator. In this work, we assume that in addi-
tion to binary {0, 1} labels defining Y we also obtain soft-
label information: a probability pi reflecting annotators be-
lief the example xi belongs to class 1. Hence each labeled
data entry di we can learn from consists of three compo-
nents: di = (xi, yi, pi), an input, a class label and an es-
timate of the probability of class 1. For example, if x is a
patient and y denotes the presence or absence of a disease
or some adverse condition that is based on physician’s eval-
uation of the patient, the probability pi captures the physi-
cian’s belief the patient indeed suffers from the condition.
The human-label assessment, especially the soft-label part,
may not be perfect. This problem is well documented and
was discussed in the Related Work.

Method for learning with soft label information The ap-
proach we follow in this work is motivated by the model
proposed by (Nguyen, Valizadegan, and Hauskrecht 2011a;
2011b) that is more robust to soft-label noise. Briefly, in-
stead of fitting the precise probabilities, it models the rela-
tion between probabilistic assessments in terms of pairwise
order constraints of any two data entries in the labeled data,
and uses them to drive the construction of a binary classifier.

To explain the approach in more depth, let us consider
a function f(xi) = wT xi allowing us to discriminate be-
tween data entries of class 0 and class 1 after picking
an appropriate threshold value. Using the soft label infor-
mation one way we can learn the function is by fitting
the examples and probabilistic labels directly via regres-
sion. However, because regression is sensitive to the soft-
label noise, (Nguyen, Valizadegan, and Hauskrecht 2011a;
2011b) propose to learn this function from pairwise con-
straints induced by the probabilities. Briefly, if any two data
entries xj and xk in the training data satisfy pj > pk, we
expect the ordering function will preserve the order, that is
f(xj) > f(xk) or f(xj)− f(xk) = wT (xj − xk) > 0. The
approach in (Nguyen, Valizadegan, and Hauskrecht 2011a)
aims to satisfy (pairwise) constraints for all pairs of exam-
ples in the training data. Since in practice some constraints
may be violated, the authors’ limit the number of pairwise
constraint violations by using the pairwise-constraint loss
function that is incorporated in the following optimization
problem for finding the discriminative model (Nguyen, Val-
izadegan, and Hauskrecht 2011a):

minw,w0,η,ξ
wT w
2

+B

N∑

i=1

ηi + C

N−1∑

j=1

N∑

k=j+1

ξj,k

yi(wT xi + w0) ≥ 1− ηi ∀i
wT (xj − xk) ≥ 1− ξj,k ∀j, k(pj > pk)

ηi, ξj,k ≥ 0 ∀i, j, k

where i = 1, 2, . . . , N , j = 1, 2, . . . , N − 1 and k =
j + 1, j + 2, . . . , N index entries in the training data. w0

defines the bias term and together with w it defines the bi-
nary decision boundary for the model. The first term in the
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objective function: wT w
2 defines a regularization penalty, the

second term (single sum) defines the hinge loss for all ex-
amples and their binary labels, and the third term (double
sum) defines the pairwise-constraint loss function for pairs
of soft labels. ηi are slack variables defining the hinge loss,
and ξj,k slack variables reflecting individual constraint vio-
lation penalties for soft label pairs pj > pk. Finally B and C
are constants weighting the different loss and regularization
terms in the objective function. The optimization will find
the weights w and w0 and the corresponding discriminant
function that violates the minimum constraints.

Reducing the number of constraints via binning The
number of soft-label constrains in the above problem formu-
lation is O(N2), more precisely N(N−1)

2 . This negatively
affects the efficiency of its solution. In this work we study
binning to alleviate the problem.

The gist of the binning approach is that we divide the
instances into several consequent, non-overlapping bins ac-
cording to their soft label information. The constraints for
pairs of instances that fall into the same bin are then ig-
nored; the constraints among instances in different bins are
kept. One reason for applying this approach is that by bin-
ning we are more likely to remove constraints for instances
with smaller soft label differences, while preserving con-
strains for instances with larger soft label differences. This
is important since the soft-label noise (due to human varia-
tion in soft-label assessment) is more likely to flip the order
of instances with small soft-label difference than the order
of instances with larger soft-label difference. Hence the net
effect of the binning is (1) the reduction in the number of
constraints, as well as, (2) the selection of constraints that
are more likely to be correct in terms of instance ordering.
However, we would like to note that even with binning, the
number of pairwise constraints in the formulation remains
quadratic or O(N2). In the following, we develop a more
efficient solution based on the ordinal regression that signif-
icantly improves the number of constraints one has to satisfy
while learning the model.

The idea of binning is to satisfy constraints only among
entries placed in the different bins. Optimally we would
like to have data entries that are in the same bin accord-
ing to its probability label fall into the same bin also af-
ter the projection. We can use this intuition to reformulate
the optimization problem as an ordinal regression problem
(Chu and Keerthi 2005). Briefly we want to find the func-
tion f(x) = wT x that puts the data points into bins accord-
ing to their soft label. We can achieve this by having every
example x project on the correct side of each bin bound-
ary. For example, if the example x is located in ith bin, then
after the projection, f(x) should be smaller than the lower
margin (boundary) of bin j in the projected space, whenever
i < j. In general, assuming m bins labeled from 1 to m,
bin boundaries b1, b2, . . . bm−1 separating them in the pro-
jected space, and bin function bin(pi) that maps the prob-
ability to the bin number (lowest probability maps to low-
est number), then, after the projection, the example xi with
soft label pi should project to value smaller than bj when-
ever bin(pi) ≤ j, otherwise its value should be larger than

bj . Overall, for N data entries and m boundaries there are
(m−1)N constraints, one for each data entry/boundary pair.
To guarantee the robustness of our model against soft label
noise, we allow violations of constraints by penalizing the
loss function of sample/boundary pairs. By adding the con-
straints for binary class labels, we can formulate the follow-
ing optimization problem:

minw,w0,b,η,ξ
wT w
2

+B

N∑

i=1

ηi + C

m−1∑

j=1

N∑

i=1

ξj,i

yi(wT xi + w0) ≥ 1− ηi ∀i
wT xi − bj ≤ ξj,i − 1 ∀i, j(bin(pi) ≤ j)

wT xi − bj ≥ 1− ξj,i ∀i, j(bin(pi) > j)

ηi, ξj,i ≥ 0 ∀i, j

where j = 1, 2, ...,m − 1 indexes bin boundaries in b,
and i = 1, 2, ..., N indexes data entries. The first term in
the objective function is the regularization term, the sec-
ond term (single sum) defines the hinge loss with respect
to binary labels, and the third term (double sum) defines the
bin-constraint loss function. ηi and ξj,i are slack variables
permitting violations of binary class and soft-label bins re-
spectively. B and C are constants weighting the objective
function terms. Again, this optimization yields a discrimi-
nant function f(xi) = wT xi + w0 that tries to minimize
the number of violated constraints, but the number of con-
strains is reduced to O(mN) as compared to O(N2) for the
pairwise-ordering methods (with or without the binning).

Choosing the number of bins One question that remains
open is how to define bins and how to choose their num-
ber. One possible solution to define the bins is to use an
equal distance binning that splits the range of values (in our
case soft-label values) equally. Another possibility choose
bins of equal size. In our work, we use equal size bin-
ning, that is, the bin boundaries are built such that each
bin covers approximately the same number of examples.
The challenge, however, is to choose the number of bins.
The caveat here is that the number of bins may affect the
quality of the result. If we use N − 1 bins where each bin
only contains one data sample, the optimization problem
is similar to (Nguyen, Valizadegan, and Hauskrecht 2013;
2011a; 2011b) with O(N2) constraints. On the other hand,
if we only use two bins, the bin/sample pairwise ordering is
equivalent to binary classification. The optimal bin choice is
somewhere in between these two extremes.

One approach to select the number of bins is to use the in-
ternal cross-validation approach. Another is to use a heuris-
tic. In this work we experimented with both approaches. The
design of our heuristic is inspired by the results on the opti-
mal binning for discretization of continuous values (Freed-
man and Diaconis 1981) who determined that the number of
bins for N examples should follow floor( 3

√
N) trend. We

analyze this heuristic and compare it to the internal cross-
validation approach.
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Experiments and Results
We test our approach on both synthetic and real-world data.
The first set of experiments uses data from several UCI re-
gression data sets which we transform to soft-label prob-
lems. We use these data to show the performance of the
methods when soft-labels are corrupted with the different
level of noise. The second experiment works with real-world
clinical data with true (human assessed) probabilistic labels.

Experiments on synthetic UCI-based data In this part
we adapted one UCI regression data set (Housing) and
three UCI ordinal classification data sets (Cancer, Wine Red,
Wine White) as follows. For the UCI housing regression data
set we normalized the outputs ranging in R and reinterpreted
them as probabilistic scores. We also defined a binary class
threshold over the probabilistic scores to distinguish class 0
from class 1. For example, the outputs in Housing data set
represents the attractiveness of houses to the consumers. In
this case, we define two classes: houses with high attractive-
ness (class 1) and houses with low attractiveness (class 0).
We use 30% of data entries with top score to define class
1, the rest are assigned to class 0. The UCI ordinal classi-
fication data sets come with multiple classes and full-order
relations among classes. We generate probabilistic labels by
evenly normalizing the class labels according to the total
number of classes. The binary thresholds can be set accord-
ing to the meaning of ordinal classes. For example, Breast
Cancer data set contains six ordinal classes {1, 2, 3, 4, 5, 6},
where {1, 2} are healthy and {3, 4, 5, 6} represent the differ-
ent stages of malignancy. We use this information to re-map
the class labels into {0, 0.2, 0.4, 0.6, 0.8, 1} with a threshold
of 0.3 for the binary label.
SoftSVMOrd: Our new SVM-based ordinal regression model that
splits the data entries into m bins according to the soft labels and
enforces the bin-entry constraints. The bin size m is determined as
floor( 3

√
N).

SoftSVMRankPair: The soft-label method proposed in (Nguyen,
Valizadegan, and Hauskrecht 2011a) that learns the model from all
pairwise constraints reflecting the ordering of data instances.
SoftSVMRankKN: A special version of SoftSVMRankPair that
uses KN pairwise constraints selected randomly from all N(N−1)

2

pairwise constraints. Throughout the experiments the constant K
is selected to assure the SoftSVMOrd and SoftSVMRankKN meth-
ods always use the same number of constraints.
GPR: The Gaussian process regression approach (Peng, Wong, and
Yu 2014) for learning with soft-label information.
SoftLogReg: The logistic-regression-based model based on
(Nguyen, Valizadegan, and Hauskrecht 2011a) that fits the soft-
label information directly to the logistic regression model.
BinarySVM: The standard linear SVM with the hinge loss and
quadratic regularization trained on examples with binary labels.

We evaluated the performance of the different methods by
calculating the Area under the ROC (AUC) the learned clas-
sification model would achieve on the test data. Hence, each
data set prior to the learning was split into the training and
test set (using 2

3 and 1
3 of all data entries respectively). The

learning considered training data only, the AUC was always
calculated on the test set. The test set performance reflects
how well the model generalizes to future data. To avoid po-

tential train/test split biases, we repeated the training process
(splitting) and learning steps 24 times. We report the average
AUC obtained on these test sets. To test the benefits of our
active learning strategy and the impact of soft label informa-
tion on the number of data entries, we trace the performance
of all models for the different sizes N of labeled data. Fig-
ure 1 shows the performance (AUC) of the models on all
four UCI data sets for increasing sizes of N and the differ-
ent levels of soft label noise.

Benefit of soft-labels. Figure 1(top) shows the perfor-
mance of methods when simulated soft-labels are not cor-
rupted by additional noise. The results show that all meth-
ods that rely on soft-label information outperform the SVM
method trained on binary labels only. This demonstrates the
sample-size benefit of soft-labels for learning classification
models and basically reiterates the point made in (Nguyen,
Valizadegan, and Hauskrecht 2011a). Out of all soft-label
methods tried there does not seem to be a clear winner and
all methods perform comparably well. Please notice that
SoftLogReg method which fits the probabilities to the model
via regression is comparable to other methods.

Effect of Noise on Soft Labels Figure 1(top) results as-
sumed the soft labels directly reflect the probabilistic in-
formation. However, in practice, probabilistic information
(when collected from humans) may be imprecise and subject
to noise. This in turn may affect the quality of our models.
Our synthetic noise experiments aim to show the robustness
of the methods to noise in probabilistic scores. In order to
generate soft-label noise, each soft label p derived from the
UCI data, was modified into p′ by injecting a Gaussian noise
of different strength:
Weak noise: p′ = p× (1 + 0.10×N(0, 1))
Strong noise: p′ = p× (1 + 0.30×N(0, 1)).

Briefly, the noise injection levels above indicate the aver-
age proportion of noise to signal at weak (10%) and strong
(30%) levels respectively. Also, we truncated the illegal
probabilistic scores (e.g. probabilistic score that are less than
0 or greater than 1) to the interval of [0, 1]. The results of the
different methods for the weak and strong noise are summa-
rized in the middle and bottom rows of Figure 1 respectively.

When noise is added into the probabilistic labels: Fig-
ure 1 (middle) and (bottom), the performance of a model
may drop. One of the methods, SoftLogReg that directly
fits probabilities is particularly sensitive to the noise and
its performance drops significantly for both noise levels
and across all datasets. Other soft-label models that use
constraints or bins are more robust and do not suffer
from such a performance drop. Our new method, SoftSV-
MOrd, is the most consistent and tends to outperform other
SVM-based models: BinarySVM, SoftSVMRankPair and
SoftSVMRankKN in both noise injection levels. It also out-
performs GPR which is another recently proposed soft-label
learning method. These experiments demonstrate the robust-
ness of our method on the soft-label learning tasks.

Experiments on clinical dataset Whilst the experiments
on synthetic data sets support the benefits of our soft-
label approach, it is unclear whether these results also ex-
tend and generalize to ’true’ soft-labels assessed by hu-
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Figure 1: Performance of methods on four UCI datasets with no noise (top), weak noise (middle) and strong noise (bottom).

Figure 2: Performance on HIT data annotated by 3 experts

mans. In this set of experiments we test the performance
of the methods on the real-world clinical data that were in-
dependently reviewed and assessed in terms of soft-labels
by three different experts. The target label concerned Hep-
arin induced thrombocytopenia (HIT), an adverse clinical
condition that affects patient who are treated with heparin
for prolonged periods of time. The clinical data consists
of 50 patient state features important for detection of HIT
derived from the PCP database (Hauskrecht et al. 2010;
2013). The datasets consists of 579, 571, and 573 labeled
patient state instances for Expert 1, 2 and 3, respectively.
The labels include both binary and soft-label information.

Figure 2 shows the AUC performance of the same meth-
ods and models as used in the previous section on three
expert-annotated HIT datasets. On all three datasets the per-
formance of our SoftSVMOrd method is the best and it out-
performs all other methods. This experiment confirms good
performance of our method and the benefit of the soft-labels
for more efficient training of binary classification models.

Effect of the number of bins One of the parameters of
our method (SoftSVMOrd) is the number of bins used to
learn the model. Figure 3 illustrates the performance of the
method for the different number of bins on the UCI housing
data with two different levels of noise (weak and strong).
The number of examples the model was trained on was
fixed at N = 100. The AUC statistics are averages over 24
train/test splits.

Figure 3: Performance of SoftSVMOrd method on the hous-
ing data for the different number of bins

Figure 4: Average AUC difference for two versions of the
SoftSVMOrd method on six datasets.

The results in Figure 3 show that the number of bins in-
deed influences the quality of the model. Briefly, having two
bins is equivalent to a binary classifier, so the benefit of soft
labels is rather limited. On the other hand, many bins in-
crease the number of constraints for pairs of data points with
similar soft-labels which makes the approach more sensitive
to the soft-label noise. The optimal operating point is in the
middle; it is the bin number that best trade-offs positives and
negatives of soft label information: (1) its ability to refine
the discriminative model, (2) the soft-label noise that may
switch relative order of two examples. Please also note that
our cuberoot heuristic floor( 3

√
100 = 4) correctly estimates

the optimal bin number. Earlier in the paper we mentioned
cross-validation as an alternative to the cube-root heuristic
to pick the number of bins. We would like to note, that al-
though we run both the methods, their results were nearly
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Figure 5: Time consumption (in minutes) of methods on four
UCI datasets with weak noise.

identical.
To show how close these two approaches are, Figure

4 plots average differences in AUC scores for the cross-
validation and heuristic approaches on the housing data
(with three levels of noise) and three HIT datasets. Clearly
the differences in performance across all these experiments
are very small, suggesting the cube root heuristic a good
choice for determining the number of bins.

Experiments and results of time complexity One of the
reasons for introducing the new binning method was to im-
prove the pairwise constraint solution (SoftSVMRankPair
method) proposed by Nguyen (Nguyen, Valizadegan, and
Hauskrecht 2011a). Figure 5 shows the time consumption
of three soft-label methods used earlier (SoftSVMRankPair,
SoftSVMOrd and SoftSVMRankKN) on UCI data sets for
increasing sizes of N and different levels of soft label
noise. We evaluated the time consumption of the different
learning methods by the total minutes elapsed on the train-
ing data. For SoftSVMOrd and SoftSVMRankKN we al-
ways keep the same number of soft-label constraints: KN .
As expected, SoftSVMOrd and SoftSVMRankKN running
times are very close across all experiments. In contrast to
these, the performance of SoftSVMRankPair that uses all
N(N−1)

2 pairwise constraints deteriorates very quickly as
N increases, and at N = 180 the running time increases
about four fold when compared to our SoftSVMOrd ap-
proach. This confirms the running-time benefit of SoftSVM-
RankKN and SoftSVMOrd with the reduced number of soft-
label constraints. Please notice that the results in Figure 1
and in Figure 5 combined demonstrate the benefit of our new
method SoftSVMOrd. It tends to outperform the baseline
SoftSVMRankPair in terms of the solution quality across
many sizes N and this with a remarkably lower running
time. It also outperforms SoftSVMRankKN in terms of the
solution quality at comparable running times.

Conclusion
To obtain labels for classification purposes, we often rely on
human annotators. However, the human annotation process
may be costly. In such a case, different methods of reducing
the labeling cost need to be applied. In this paper we have de-
veloped and tested a new robust method that uses soft-label
information that is able to enrich the feedback one receives

from human and hence improve the number of examples one
has to label to get a good classification model. Our results on
synthetic and real-world clinical data show that our method
(1) can benefit greatly from additional soft-label information
(2) is robust to the different levels of soft-label noise.
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