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Abstract

We propose an alternative to Wi-Fi for robotic commu-
nication, as its increased use in a competition environ-
ment has lead to highly overlapping and interfering net-
works. This interference often causes unreliable trans-
mission of data, which affects teams’ ability to coordi-
nate complex behaviors. Our method uses fixed length
Dual Tone Multi Frequency (DTMF) messages and uses
a basic packet structure designed to reduce data corrup-
tion as a result of noise. We conducted twelve different
experiments varying the distance between robots and
message format, as well as whether the robots are walk-
ing or sitting silently. The results show that while this
method appears to be sensitive to room reverberation
and multipath effects, it has very low data corruption
rates, which makes it suitable for use in some applica-
tions.

1 Introduction
For most autonomous robotics tasks involving multiple
robots, some level of communication is crucial for coordi-
nating complex actions to achieve a desired goal. A popu-
lar method of communication between robots (especially in
RoboCup) is Wi-Fi. With hundreds of robots communicat-
ing on several independent overlapping Wi-Fi networks, in-
terference is rampant, often causing network delays of sev-
eral seconds, and in the worst cases, dropping entire con-
nections altogether. It is therefore desirable to have an al-
ternative method of communication, which, while possibly
inferior to a strong Wi-Fi connection, is useful in situations
where Wi-Fi has become unusable. Of course, the usefulness
of a alternative communication method extends beyond just
Wi-Fi. Any system which might encounter a catastrophic
level of interference could benefit from having a backup
communication scheme.

There are a few potential candidates to consider when
looking for ways to transmit data from one robot to another.
Since we are working on a standard platform, we cannot
modify or enhance our robots’ hardware to accommodate al-
ternative communication equipment, and are limited to using
the robots’ existing hardware for transmitting and receiving
messages. One possibility is to use visual communication,
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controlling LEDs on the robot to send data through the vis-
ible or infrared spectrum, or perhaps even using the robot’s
physical movements to encode data in some way. A ma-
jor caveat to visual communication is that it is line-of-sight
only; if one robot moves in front of another or turns so that
its LEDs are no longer visible, the channel is interrupted.
Another problem with visual communication schemes is that
they would require complex vision algorithms for detecting
signals, which are often not suitable when processing power
is limited. Another, more favorable possibility for an alter-
native communication system is to encode data as audio, and
broadcast it via the robot’s loudspeakers. This does not suf-
fer from the same problems as visual communication be-
cause sound waves travel around obstacles, and analyzing
audio samples can be done efficiently. Our research shows
that the Dual-Tone Multi-Frequency (DTMF) method, while
unreliable in certain conditions, can be used to broadcast
messages with low probability of message corruption.

Much research has been devoted to audio signals fea-
turing humanoid robots, especially in the past decade. Au-
dio signals can be important sensor information as they can
be used for various purposes, whether for the communica-
tion between multiple robots, the detection of audio cues in
the environment or game events such as whistles, or using
the audio signals to improve self-localization. A demonstra-
tion within the RoboCup Standard Platform League (SPL)
in 2013 in Eindhoven by the team RoboEireann revealed
how difficult it is to communicate between NAOs, humanoid
robots engineered by Aldebaran (SoftBank) robotics, on the
soccer field in a noisy environment.

The paper is organized as follows: we discuss relevant
work in the next section and describe our approach in Sec-
tion 3. Our experimental set-up and the conducted robot tests
is explained in Section 4. We discuss the pros and cons of our
results in Section 5, and conclude and outline future work in
the remaining Section 6.

2 Related Work
When consulting the literature, one finds a number of re-
search papers that relate to our work. We include work that
is not only related to communication, but also work that de-
velops audio processing techniques for sensing the environ-
ment, since communication and sensing are inherently re-
lated. Saxena and Ng (Saxena and Ng 2009) present a learn-
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ing approach for the problem of estimating the incident an-
gle of a sound using just one microphone not connected to
a mobile robot. The experimental results show that their ap-
proach is able to accurately localize a wide range of sounds,
such as human speech, dog barking, or a waterfall. Most ex-
isting research investigates sound-source localization using
static microphone arrays, particularly for the purpose of nav-
igation. These methods are used by Sun et al. for a audio-
based robot navigation system for a rescue robot. It is de-
veloped using tetrahedral microphone array to guide a robot
finding the target shouting for help in a rescue scenario (Sun
et al. 2011). The approach uses speech recognition technol-
ogy and a Time DOA (TDOA) method. The authors claim
that the system meets the desired outcome.

Another recent application of audio based communication
has been developed by Sauer et al. (Sauer, Dickel, and Lotter
2014) for the purpose of facilitating control and adjustment
of hearing aids by using high frequency audio signals sent
from a smart phone. Their technique involves fully redun-
dant transmission by sending the same control signals across
multiple different frequencies, so that in the case of envi-
ronmental noise masking one frequency, there is a higher
chance that the control codes can still be recovered by the
earpiece.

ASIMO, the remarkable humanoid developed by
HONDA also uses the auditory system for its tasks. An
early paper from 2002 introduces the use of a commercial
speech recognition and synthesis system on ASIMO. The
authors state that the audio quality and intonation of voice
need more work and that they are not yet satisfactory for use
on the robot (Sakagami et al. 2002). Okuno et al. (Okuno,
Nakadai, and Kim 2011) present a later version of ASIMO’s
ability to use the auditory system for tasks at hand. They use
the HARK open-source robot audition software (Nakadai
et al. 2010) and made experiments with speech and music.
The authors claim that the active audition improves the
localization of the robot with regard to the periphery.

Carrara et al. (Carrara and Adams 2014) have shown
that audio communication between machines is possible and
practical for covert transmission of data in an office environ-
ment between computers in a manner which is imperceptible
to humans. By using frequencies just above the human hear-
ing range of about 20kHz - 20.5kHz they were able to trans-
mit data at a rate of 140 bps, and were able to achieve 6.7
kbps when using audible frequencies between 500Hz and
18kHz.

Latest research such as the paper by Jayagopi et al.
(Jayagopi et al. 2013) suggest that significant background
noise presented in a real HRI setting makes auditory tasks
challenging. The authors introduced a conversational HRI
dataset with a real-behaving robot inducing interactive be-
havior with and between humans. The paper however does
not discuss the auditory methods used in detail. We assume
that the authors use the standard auditory recognition that
comes with the NAO.

All mentioned approaches and techniques so far differ
from our approach (a) in the method used, (b) in the ap-
plication of the audio recognition, and (c) the RoboCanes
framework, a robotics framework developed by the Robo-

Canes robotic soccer team at the University of Miami. Here,
all audio modules have been implemented from scratch and
run within the framework’s system loop.

Nguyen and Bushnell (Nguyen and Bushnell 2004) have
suggested that acoustic communication using DTMF is, in
general not, recommended for mobile robot applications due
to the unreliability in acoustical integrity of the signal during
transmission. While their transmission methods are similar,
there are key differences in the recognition methods used:
the frequencies used in their experiments are the generic
set of frequencies used in telecommunications (which lie
in a range prone to environmental noise). We sought to ex-
periment with different sets of frequencies, chosen for spe-
cific empirical reasons, and to overcome signal degradation
through robust filters.

Other uses of DTMF technology for robotic communica-
tion have been explored apart from acoustical environments.
Srivastava et al. (Srivastava et al. 2014) and Aswath et al.
(Aswath et al. 2013) have used DTMF with mobile phones
for long range control of robots. Each of these works uses a
mobile phone directly connected to embedded hardware and
the signal is transmitted through RF, not acoustically.

3 Approach
There are many methods for transferring data over analog
media, but most are not suitable for communicating over
the open air waves with a moving, noisy robot. Some of the
challenges presented by this domain are relatively high noise
levels (which can be unpredictable, especially in a robotics
competition environment), interference from the internal vi-
brations of the robot (such as motors, fans, and stressed plas-
tic), and unknown/changing distance between communicat-
ing robots. The latter of the above challenges means that us-
ing a Phase Shift Keying (PSK) method would likely per-
form poorly, since the data is embedded in the phase of the
carrier wave. As a robot moves closer or further away from
the sender, the distance – and thus the phase of a signal –
will drift. This effect would be particularly prominent in sys-
tems which use high frequency carrier waves, as their wave-
lengths are very short and thus sensitive to small changes in
distance. Frequency Shift Keying (FSK) handles the prob-
lem of the robots moving around since humanoid robots
rarely reach speeds that would affect the frequencies via the
Doppler effect, but they have a different weakness since sin-
gle tones are modulated between two or more frequencies.
Interference on one of those frequencies is likely to cause a
data corruption error.

The Dual-Tone Multi-Frequency (DTMF) method uses
eight different frequencies, divided equally into two groups:
low tones and high tones. Symbols are transmitted by com-
bining one frequency from the set of low frequency tones
and one frequency from the set of high frequency tones using
additive synthesis followed by a short period of silence and
playing the resulting signal through a loudspeaker. The num-
ber of bits which can be transmitted through one symbol for
a generalized DTMF scheme with a frequency groups, each
with b frequencies is log2b

a. Since we use the typical two
groups of four frequencies each, we can send log24

2 = 4
bits at a time. Sending arbitrary bytes of data is convenient,
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since eight bit bytes can be broken into four bit codes, which
allow a direct mapping to the sixteen possible symbols of
DTMF.

This method is less prone to errors than FSK in noisy en-
vironments because if the probability of random noise coin-
ciding with a chosen frequency f is P (f) , then probability
of random noise emulating two chosen frequencies f1 and
f2 simultaneously is P (f1) · P (f2). This assumes that the
probability of random noise producing each of the two fre-
quencies is independent of each other. However, frequencies
in open-air environments are often not independent; while
many sounds have a fundamental frequency, they are often
accompanied by harmonic frequencies. Usually, the higher
the multiple of the fundamental frequency a harmonic is, the
lower the amplitude of that harmonic. This means that the
most highly correlated frequencies in any noisy environment
tend to be ratios whose numerator and denominator are small
integers; since either f is the fundamental frequency, or f
is some harmonic fn of some other fundamental frequency
f1 = 1

nfn, and is related to the other harmonics of f1 by
fk = k

nfn. Since the frequencies present in general noisy
environments are not known beforehand, we cannot choose
frequencies which avoid the harmonics present in the sig-
nals. We can, however choose frequencies whose ratios are
not fractions with small a and b – that is – frequencies whose
least common multiple are large. To achieve this, we divide
our window length ws by prime numbers p in the range of
1
4ws ≤ p ≤ 1

2ws in order to determine the appropriate wave-
lengths for the low and high tones. The corresponding fre-
quencies are calculated according to f = s/λ, where s is the
speed of sound. This method of selecting frequencies en-
sures that they share only distant harmonics while making
sure that there are at least two periods of each frequency per
window.

3.1 DTMF Transmitter
The transmitter sends encoded data as DTMF symbols
through open-air sound waves. The encoded data can eas-
ily be converted to playable waveforms by isolating four
bit segments of the message (conveniently represented as a
hexadecimal-digit) and then using Table 1 to determine the
appropriate frequency pair for that symbol. The two frequen-
cies are combined using additive synthesis. Each waveform
is pre-computed and simply indexed by each four bit section
of the message. The gain of each DTMF tone is gently faded
at the end as to avoid discontinuities which result in unde-
sirable pops and clicks in the resulting audio signal resulting
from waveforms ending with non-zero samples.

3.2 DTMF Receiver
The receiver works very differently from the transmitter.
This is mostly due to the fact that everything has to work in
reverse: going from audio samples to decoded digital data.
The process is illustrated in Fig 3. Recorded audio is passed
in windows of samples through a series of Goertzel filters to
isolate the desired frequency magnitudes. This is done con-
tinuously on the new recorded samples, which generates a
stream of vectors of frequency magnitudes (see Fig. 1). This

Figure 1: Magnitudes for individual frequencies

stream of Goertzel responses is then analyzed in two more
steps. First, we need to identify sequences in the magnitudes
that have enough similarity with a message. If a sequence
has been identified as message, the symbols are decoded and
the robot has received a message.

The first step is to capture audio data from the robot’s mi-
crophones. We acquire our audio samples from the ALSA
library, and use a 2,400 sample sliding window, advancing
the window by half of its length after each analysis step.
With a sample rate of 48,000, this means we are effectively
performing 40 analysis steps per second of audio data. The
window length was chosen such that it would not overlap
two separate DTMF symbols. The part of the waveform cor-
responding to a symbol is referred to as the mark, the other
part of the waveform is called the space. We have chosen
the lengths of the mark and space to each have durations of
100ms, so both take up 4,800 samples. Thus, the window
lies either completely in mark, completely in space, or some
combination of the two, but will never span the gap and in-
clude samples from unrelated symbols. Since the window
advances by half of its width after each step, we are guaran-
teed that at least one window will be completely filled with
samples from the mark.

The next step is to perform frequency analysis on the win-
dowed data. It would be sufficient to perform a Fast Fourier
Transform (FFT) on the sample window, but there are only
eight frequencies used in the messages. Therefore, it is more
efficient to use multiple passes of the Goertzel algorithm
(Goertzel 1958), one for each frequency. This leaves us with
a vector of magnitudes for the eight frequencies.

We keep a history of the last several seconds of magni-
tudes and also keep a record of the sum of the magnitudes
of each frequency over time. We use these frequency sums
in order to detect the presence of a message before using

h1 h2 h3 h4

l1 0 1 2 3
l2 4 5 6 7
l3 8 9 A B
l4 C D E F

Table 1: Frequency/Hexadecimal Encoding/Decoding Table
li and hi indicate the low and high frequency groups.
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Figure 2: Peaks corresponding to output of the comb filter

Figure 3: Illustration of the decoding process

the individual frequency magnitudes to decode the message.
A comb filter with width equal to the separation between
DTMF symbols and length equal to the number of symbols
per message is used to detect when a message is heard. This
is a filter that has the strongest response if the sum of the
magnitudes of the eight frequencies are high in exactly the
positions selected by the comb filter.

Since the comb filter accumulates the magnitudes of the
tones until the end of the message, when the comb filter be-
gins to discard older tones, the sums develop a triangular
pattern consisting of distinctive peaks in ascending and de-
scending magnitudes as in Fig. 2. The overall shape formed
by the peaks can be evaluated for symmetry. If one peak
exceeds a defined threshold and the surrounding peaks are
close enough to the triangular shape, the message is ac-
cepted.

The position of the maximum peak is exactly the end po-
sition of the message. We can find all measured frequency
magnitudes at the message marks at the corresponding po-
sitions in the buffer relative to the end of the message. The
appropriate magnitude vectors can be revisited and evalu-
ated for the maximum low and high frequencies to decode
the message.

Figure 4: Robot placement

4 Experiments & Results
We have conducted our experiments to determine the ef-
fectiveness of DTMF as a communication method between
robots that are different distances apart (Fig. 4), while also
measuring the effect of internal noise while the receiving
robot is walking. For each of the stationary experiments, 500
fixed length messages were sent, 7 bytes each. For the exper-
iments involving a walking robot, only 200 messages were
sent, due to limitations of battery and motor temperature. For
each of the distances separating the robots and the different
activities of the robots, two kinds of messages were tested.
The first method uses random blocks of data that span the
entire message length, and the second method uses a short
header, including a checksum of the message, the transmit-
ting robot’s ID, and the ID of the robot from which the trans-
mitter has last received, followed by random data.

For both block and packet messages, random data were
generated by the transmitting robot and sent via the robot’s
loudspeakers. The same data were then saved to a file for
later comparison. The receiving robot, upon receiving a
block message, records it in a file, however, upon receiving
a packet message, the packet is verified using its checksum.
If the packet is valid, only the data portion of the packet is
written to a file; otherwise the entire packet is discarded. Af-
ter each test, the message files are copied from the robots
for analysis. This experimental set-up is shown in Fig. 5.
The analysis commonly performed on communication chan-
nels is the Hamming distance between the sent data and the
received data. However, this metric is inappropriate in this
case; it does not account for errors involving insertions or
deletions, only substitutions. If the Hamming distance were
to be used, the data would become misaligned after the first
message drop, resulting in incorrect error rates. Besides that,
the Hamming distance is not defined for data of different
length. For these reasons we use the Levenshtein distance
(edit distance). This metric allows for measuring error due
to the insertion, deletion, and substitution of symbols, as it
counts the minimum number of such edits to transform one
string into the other.

For the first round of experiments, both robots were kept
inactive to prevent the internal noise of motors from interfer-
ing with the signals. The transmitting robot was placed in the
keeper’s position on the field (between the goal posts). The
receiving robot was then placed 0.5 meters (on the penalty
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Figure 5: Experimental setup

box) in front of the transmitting robot, so that the two robots
were facing each other. In this position, 500 fixed length ran-
domized messages were sent from the transmitting robot to
the receiving robot twice; once for the random block method
and once for the random packet method (note that for the
random packet method, the header is not randomized). The
above procedure was then repeated for distances of 3 meters
(midfield) and 5.5 meters (opponent’s penalty box) as shown
in figure 4. The results of these tests can be seen in table 2.

For the second round of experiments, in order to simulate
game-like conditions, the receiving robot was made to walk
in such a way that it’s average position remains at distance
d from the transmitting robot, while all other variables were
kept the same as in the above experiments. These results can
be seen in Table 3.

We had the opportunity to test our communication method
in a live game at RoboCup 2016 in Leipzig, Germany to ver-
ify that it could indeed handle the challenges that a noisy
competition environment poses for audio recognition. We
collected the transmitted and received messages from three
robots, and calculated the transmission accuracy for each
pair by comparing the number of correctly recieved mes-
sages to the number of messages which were sent by each
robot. Table 4 shows the ratio of correctly received messages
per message sent between each pair of robots, where Ti and
Ri are the transmitting and receiving robots.

5 Discussion
While the DTMF communication method seems to work rel-
atively well between short range, quiet robots, the perfor-
mance deteriorates drastically as the distance between the
robots is increased. That said, we should expect that the er-
ror rates would be proportional to the inverse-square of the

Set Distance Mode Bits Sent Error Bits Error Rate
1 0.5 block 28,000 2,392 0.0854
2 0.5 packet 20,000 880 0.0440
3 3.0 block 28,392 5,948 0.2094
4 3.0 packet 20,000 10,200 0.5100
5 5.5 block 28,000 5,759 0.2056
6 5.5 packet 20,000 2,338 0.1169

Table 2: Results for Silent Robots

Set Distance Mode Bits Sent Error Bits Error Rate
7 0.5 block 11,200 6,440 0.5750
8 0.5 packet 8,080 4,680 0.5792
9 3.0 block 11,200 7,056 0.6300

10 3.0 packet 8,000 5,080 0.6350
11 5.5 block 11,200 6,552 0.5850
12 5.5 packet 8,000 4,400 0.5500

Table 3: Results for Walking Robots
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Figure 6: Bits of error per bits sent vs. transmission distance
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Figure 7: Corrupted messages per message sent vs. trans-
mission distance

distance between the robots. Our best explanation for this
is room reverberation. The experiments were performed in
a room with hard, parallel walls, resulting in a significant
echo. As these reverberations propagate and reflect about
the room, the waves undergo constructive and destructive
interference, contributing to the non-uniformity of the error
curve.

Another factor which seemed to adversely affect the com-
munication performance was the robot’s walking. The actua-
tion of motors within the body of the robot contribute greatly
to the internal noise level of the robot, much of which is in-
audible to an observer. Other physical sources of noise on
the robot stem from the creaking of the plastic covers as they
deform as a result of movement and stress. These sources of
noise are far from random, and it is certainly possible that

R1 R2 R3

T1 - 0.425 0.297
T2 0.145 - 0.473
T3 0.370 0.352 -

Table 4: Transmission Rates from a Live RoboCup Game
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these internal noises interfere with one or more of the cho-
sen DTMF frequencies. One possible way to improve this
method is to automate the selection of frequencies for a par-
ticular environment with the robot actively moving, in order
to choose the frequencies with least interference.

In Fig. 6, the bit error rate is relatively high for all but
the short range, silent transmission experiments, but this can
be misleading. Particularly in the domain of robotic soccer,
message accuracy takes priority over reliable transmission.
In fact it is for this reason that we do not bother to retransmit
missed messages; it is simply better to wait for the next mes-
sage from that robot. Most of the error bits are bits that have
been dropped due to either failure to recognize a message,
or due to packet rejection because the checksum failed. As
shown in Fig. 7, all of the received messages contained no
bit corruption errors. We consider a message corrupted if as
little as one bit of that message has been flipped.

Some of our previous work has shown excellent recogni-
tion of whistle signals, which used a logistic regression clas-
sifier on the result of an FFT, however, this method is not
suitable for this application because it is too computation-
ally expensive. For this system to work properly, the receiver
must be able to demodulate the signal just as fast as the
transmitter can generate it. Furthermore, the mentioned ap-
proach is less appropriate for detecting/recognizing DTMF
tones because it takes advantage of the presence of the many
harmonic components of whistle-like signals, whereas for
DTMF we specifically choose frequencies to mitigate har-
monics for the reduction of interference between frequen-
cies.

6 Conclusion
We have presented an approach for audio based broadcast
communication between robots, using different states of ac-
tivity and different message styles over multiple distances.
The approach is based on fixed length DTMF messages. The
results show that for short ranges, and robots with low activ-
ity levels, the method works well; however, with increased
separation or activity levels, the message reliability rapidly
deteriorates. Automatic frequency configuration may im-
prove these results. Message corruption rates seem to stay
relatively low, especially for the packet mode of operation,
where the corruption rate is virtually zero. It is suspected that
in the case of increased distance, the performance decline is
more closely related to room reverberation; in a larger room,
or outside, the method is expected to perform better.
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