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Abstract

Assessment in intelligent tutoring system (ITS) on concept
maps (CM) matches an expert CM to a learner CM. Feed-
backs are provided to the learner as semantic comments and
visual corrections. In this paper, quality of feedbacks is im-
proved by using an ontological semantic for matching, for-
malized as a correlation feedback. Matchings are selected
based on an overall assignment solution providing a subop-
timal set of correlation feedbacks to the learner.

1 Introduction

Since the early 1970s, Intelligent Tutoring System (ITS) has
been investigating computer-aided-instruction. In particular,
the tutoring model is a branch centered on assessing the
learner knowledge to provide appropriate feedbacks within a
tutoring strategy. Assessment is based on comparing the ex-
pert knowledge as domain model with the learner’s knowl-
edge as student model. Within the range of ITS, this paper
focuses on providing feedbacks on Concept Map (CM) (No-
vak and Gowin 1984), a representation language for both
domain and student models. CM corresponds to directed
multigraph composed of node set and arc set labeled re-
spectively by CM entities as concepts and relations. CM
knowledge is centered on propositions corresponding to the
meaningful sentence of each arc and composed of a triple
< concept, relation, concept >.

CM assessment checks if a student’s learning was mean-
ingful by comparing expert and learner CMs and compute
feedbacks for the learner relatively to the expert CM. Feed-
backs can take the form of scoring (based on similarity mea-
sures (Strautmane 2012)), visual representations (e.g color-
ing) or textual comments. Feedbacks focus on two criteria:
CM local content and overall structure. Concerning local
content analysis, literature describes mostly similarity mea-
sures to match a pair of entities or propositions; for exam-
ple (Harrison et al. 2004) uses syntactic synonyms based
on WordNet, (Gouli et al. 2005) defines categories of er-
rors (partially correct and superfluous or missing proposi-
tion/concept from the learner CM) and (Cline, Brewster,
and Fell 2010) adds a manually created semantic to enti-
ties. Concerning overall structure analysis, works focus on
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studying CM as a whole and analysing structure patterns :
(Novak and Gowin 1984) scores tree-like levels of hierar-
chy, (McClure, Sonak, and Suen 1999) computes holistic
score, (Limongelli et al. 2016) defines a set of seven mea-
sures to compare CMs and (Soika and Reiska 2014) de-
fines disciplinary topics. There are also papers describing
systems or softwares mixing both criterias: (Schwendimann
2011) defines a multi-level system (KIS), (Marshall, Chen,
and Madhusudan 2006) presents a similarity flooding algo-
rithm on neighbor nodes to provide learner a set of feed-
backs (Alves da Silva et al. 2012) uses ontology alignment
as an assessment tool, (De Souza et al. 2008) uses graph iso-
morphism problem technique and (Gouli et al. 2005) com-
putes quantitatively proposition assignments. On local con-
tent, as said in (Kharatmal and Nagarjuna 2006), ambigu-
ity caused by CM free semantics limits range and quality of
feedbacks provided by assessment. Most papers add exter-
nal semantics to improve matchings of entities or proposi-
tions, whether it be by an ontology, a thesaurus like word-
net or any external semantic informations. However, they do
not adapt external semantic measures to CM features. Using
ontologies, either they transform CM in ontology and base
assessment on alignment methods (Park and Calvo 2008;
Alves da Silva et al. 2012; Graudina, Grundspenkis, and
Milasevica 2012) or multiply expert CM representations to
have different comparison views (Da Rocha, Favero, and
Da Costa Junior 2008). On overall structure, as noted by
(Canas, Novak, and Reiska 2015), an excellent CM de-
scribes a topic in a clear fashion, selecting especially a set of
key topic propositions. Few papers focus on selecting a sub-
optimal set of matchings to provide feedbacks to the learner.
In particular, (De Souza et al. 2008) assesses overall struc-
ture of a CM using a graph isomorphism problem, however
their algorithm is only for equal sized CMs.

Our contributions focus on improving feedbacks on lo-
cal content by formalizing a correlation feedback for en-
tity and proposition matchings, then on overall structure
by selecting a suboptimal set of correlation feedbacks pro-
vided to the learner. Firstly, CM is defined as an Ontologi-
cal Concept Map (OCM). A taxonomic and logical seman-
tic repository based on a subset of OWL-lite ontology1 de-
fines entity semantics. The semantics is computed as corre-

1http://www.w3.org/TR/owl-ref/
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lation feedbacks to match concepts or propositions. Corre-
lation feedbacks are divided between visual representations
on the learner OCM and semantic symbols converted into
textual corrective comments visible on focus. Secondly, the
set of correlation feedbacks provided to the learner is cho-
sen through an overall assignment from the expert OCM to
the learner OCM. A local search algorithm looks through all
assignment solutions a suboptimal set of entity and propo-
sition correlations. The quality of an assignment solution
is computed by an objective function, based on entity and
proposition similarities.

This paper is organized as follows. Section 2 formal-
izes expert and learner CMs as Ontological Concept Maps
(OCM). Section 3 presents how the assessment, correspond-
ing to an overall assignment of concepts and propositions
from the expert OCM to the learner OCM, can be provided
as a set of correlation feedbacks to the learner. Section 4 de-
scribes in detail correlation feedbacks respectively for entity
and proposition matchings. Finally in section 5, the imple-
mentation of concept and proposition overall assignment is
described as a local search algorithm using similarity mea-
sures to find a suboptimal set of correlation feedbacks.

2 Ontological Concept Map

CM is formalized as an Ontological Concept Map (OCM),
based on an external ontology as a subset of OWL-lite lan-
guage. The ontology specifies a constrained vocabulary on
the CM topic and a description language. They are used to
refine feedbacks with semantic correlations over CM con-
cepts and relations. The language is formed by subsume hi-
erarchy trees of classes and properties.
Definition 1 (ontology). Let Cl be a set of Classes, let Pr
be a set of Properties. An ontology is a triple (Cl, Pr,Os),
such as Os = Ostax ∪ Oscomp with Ostax (resp. Oscomp)
the set of taxonomy (resp. comparison) statements:
• Ostax ⊆ (Cl×{subsume}×Cl)∪ (Pr×{subsume}×Pr)

• Oscomp ⊆ (Cl × {equivalent} × Cl) ∪ (Pr ×
{equivalent, inverse} × Pr)

Definition 2 (statement). Let O = (Cl, Pr,Os) be an on-
tology. A statement is an element of Os.

Note that classes pf Cl and properties of Pr are orga-
nized in subsume hierarchy trees by Ostax, starting from
root node �. Moreover, equivalent and inverse statements
in Oscomp are considered only between nodes of the same
depth in Ostax.
Example 2.1. Examples are from an applicative learning
course on Oriented Object Programming (OOP). Fig. 1 rep-
resents a part of taxonomy Ostax and comparison Oscomp

statements (e.g (Class, subsume, SubClass), ...).
The OCM is based on the combination of ontological se-

mantic and CM representation. Ontology semantics is trans-
formed into CM by associating classes and their instances to
concepts and properties to relations.
Definition 3 (Ontological Concept Map, proposition,
starter and target concepts). Let O = (Cl, Pr,Os) be an
ontology, an Ontological Concept Map defined on O is an
oriented labeled multigraph M = (V,A, fC , fR), such as:

Figure 1: Part of the ontology on OOP

• V the set of vertices
• A ⊆ V × V the multiset of arcs
• fC : V → Cl is the concept injective function
• fR : A→ Pr is the relation function

Let an arc a between vertices vs, vt (vs, vt ∈ V ). We call:

• < fC(vs), fR(a), fC(vt) > a proposition of M
• fC(vs) (resp. fC(vt)) the starter (resp. target) concept

The set of propositions included within M is noted PM .

Example 2.2. Fig. 2 shows a simplified version of the expert
OCM on OOP. It contains a set of 12 vertices (labeled by
concepts, e.g. inheritance, ...) and a set of 15 arcs (labeled
by relations, e.g. instanceOf , ...) viewed as 15 propositions
(e.g. < subClass, specializationOf, class >, ...)

Figure 2: expert concept map on OOP

During course, the learner is asked to answer a focus
question by creating its learner OCM. The ontology can be
taken from ontology repositories or created specifically for
the course. Learners have access to a restricted set of labels
selected by the expert from the entities of the ontology (i.e
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classes and properties). The set of labels can contain distrac-
tors next to the question topic. In Fig. 1, classes and proper-
ties in bold are the labels given to the learner with ones in
italic being distractors.

3 From assessment to correlation feedbacks

ITS produces feedbacks based on the assessment of a learner
OCM. Feedbacks consist of visual elements drawn on the
learner OCM and semantic corrective comments. The as-
sessment is built on the assignment of concepts and propo-
sitions from the expert OCM with ones of the learner OCM.
Each assignment is associated to a correlation feedback for-
malized as visual and semantic correlation feedbacks.

In this paper, assignment is limited to unique matchings
such as each expert (resp. learner) concept or proposition
is assigned to at most one learner (resp. expert) concept or
proposition (def 4: A). Forcing unique assignment prevents
missing or overnumbered feedbacks.
Definition 4 (overall assignment). Let an expert OCM
ME = (VE , AE , fCE

, fRE
) and a learner OCM ML =

(VL, AL, fCL
, fRL

) both defined on an ontology O. An
overall assignment A = (πc, πp) is a couple of assign-
ment functions πc and πp assigning respectively concepts
and propositions from ME to ML, such as πc : fCE

(VE)→
fCL

(VL) and πp : PME
→ PML

with πc, πp partial injective
functions.

Each assignment of concepts πc and propositions πp is
provided to the learner as a correlation feedback. It takes the
form of a visual representation on the OCM learner and a
symbol convertible to a corrective comment (visible on fo-
cus).
Definition 5 (correlation feedback cor). Let an overall
assignment A = (πc, πp) from an expert OCM ME to a
learner OCM ML. The correlation feedback cor(a) = (τ, ν)
is the feedback provided to the learner for an assignment pair
a ∈ A, with τ the visual correlation and ν the semantic cor-
relation.

The visual correlation τ is directly drawn on the learner
OCM. Firstly, τ corresponds to the coloring of concept
(resp. relation) labels from correct (in blue tone), partially
correct (in gray tone) and wrong (in black tone) matchings.
Arc arrows can be correct (in a straight line), partially cor-
rect (in a dotted line with gray tone) and wrong (in a dotted
line with black tone). Second, τ can add a cross X on an ar-
rowhead (resp. ”INV” close to a relation label) to indicate
that a learner arc is in the wrong direction (resp. the seman-
tic inverse) in comparison to its assigned expert arc. Note
that unassigned concepts and relations of learner and expert
OCMs are also represented.

The semantic correlation ν is presented to the learner
when he focuses on a vertex (resp. arc) of its OCM. ν is
formalized as a symbol and presented as a corrective com-
ment in association to the highlight of the assigned expert
vertex (resp. arc).
Example 3.1. Fig. 3 represents visual correlations τ pro-
duced on a learner OCM. They are based on an overall as-
signment of the expert OCM (Fig. 2) on the learner OCM

(Fig. 3). Following examples focus on the assignments a1
and a2 presented respectively in the gray frames [1] and [2].
a1 : πc(method) = function matches learner concept
function with expert concept method. ν comments that
function is too specific ((method, subsume, function) in
Fig. 1) and τ colors function in orange.
a2 : πp(PL) = PE matches learner proposition PL =<
class, redefinitionOf , prototype > and expert propo-
sition PE =< object, instanceOf , class >. ν indicates
that learner arc is in the wrong direction (τ adds a cross on
the arrownode). Moreover, ν indicates that learner has mis-
taken redefinitionOf with instanceOf (τ colors relation
in gray) and prototype with object which are both related
to DataType (τ colors arrow in gray and as a dotted line)

Figure 3: visual correlations on a learner concept map

Section 4 describes more precisely the range of correla-
tion feedbacks that can be provided to the learner thanks to
the ontological semantics.

4 Specifications of correlation feedbacks

Correlation feedbacks are divided between entity and propo-
sition correlations. The entity correlation core matches pairs
of concepts or relations respectively from expert OCM and
learner OCM, based on the external ontology. The proposi-
tion correlation corp matches pairs of propositions respec-
tively from expert OCM and learner OCM, based on match-
ings of member pairs and the arc position.

Entity correlation feedback

The entity correlation feedback is defined as a couple core =
(τe, νe). νe is a semantic symbol converted to a corrective
comment. τe is a visual correlation changing the color of
concept or relation labels.

Semantic νe and visual τe correlations indicate in the four
simpler cases if an entity is similar (def 6: A) or equivalent
(def 6: B) or subsumer (def 6: C) or subsumed (def 6: D)
by an other entity. If the matching does not belong to these
cases, νe provides their least common subsumer LCS (def
6: F). Note that if the LCS(x, y) corresponds to the top node
�, x and y are considered semantically different (def 6: E).

Definition 6 (entity semantic correlation νe). Let an on-
tology O = (Cl, Pr,Ostax ∪ Oscomp), let x, y ∈ (Cl ×
Cl)∪ (Pr×Pr) be a pair of entities. The entity correlation
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νe(x, y) is defined as:

(A) x = y if x = y
(B) x ≡ y if (x, equivalent, y) ∈ Oscomp

(C) x � y if [(x, subsume..., y)] ∈ Ostax
(D) x 	 y if [(y, subsume..., x)] ∈ Ostax
(E) x 
= y if LCS(x, y) = �
(F) LCS(x, y) otherwise

Semantic symbols νe are converted into seman-
tic comment using the following treatment: ”Your
[concept|relation] y is {equivalent (A,B), too specific
(C), too general (D), should be replaced (E), is related
by LCS(x, y) (F)} [by|in comparison to] the expert
[concept|relation] x”.
Example 4.1. In fig. 3, the learner is provided with vi-
sual and semantic feedbacks. For [1], the visual correlation
νe(function, method) is colored in gray tone and the se-
mantic comment ”Your concept function is too specific in
comparison to the expert concept method” (translated from
the symbol function � method) appears on learner’s fo-
cus.

Proposition correlation feedback

CM representation is composed of a set of propositions, each
one describing an unique knowledge sentence. Proposition
correlation is based on the matchings of member pairs and
the position type in which the relation is considered: normal
or reversed. The normal position matches starter to starter
and target to target concepts whereas the reversed position
matches starter (resp. target) concepts from a proposition to
target (resp. starter) concepts of the other proposition.

The proposition correlation corp is provided as feedback
and is divided in three types: direct corpdir

with a normal po-
sition, wrong direction corpwd

and inverse relation corpinv

with reversed positions. First, the direct correlation corpdir

corresponds to the simplest matching case, where proposi-
tions are semantically close. Second, the wrong direction
correlation corpwd

focuses on propositions that are seman-
tically close but where the learner has written the relation
in the opposite direction. Third, the inverse relation correla-
tion corpinv considers a pair of propositions with in oppo-
site direction of arrow and relations which are inverse. The
proposition correlation corp = (τp, νp) is divided between
the semantic correlation νp and the visual correlation τp.

The semantic correlation νp corresponds to a quadruplet
of semantic symbols. νp indicates which correlation type
corresponds the most to the proposition matching and each
entity semantic correlation between proposition members,
depending of the matching position (i.e normal or reversed).
Definition 7 (proposition semantic correlation νp). Let
pE =< cE , rE , c

′
E > (resp. pL =< cL, rL, c

′
L >) be a pair

of propositions within expert OCM (resp. learner OCM).
The proposition semantic correlation νp between pL and pE
is a quadruplet defined on normal matching position:

(corpdir
, νe(cL, cE), νe(rL, rE), νe(c

′
L, c

′
E))

or reversed matching position:

({corpwd
, corpinv

}, νe(cL, c′E), νe(rL, rE), νe(c′L, cE))

Semantic symbols νp are converted into semantic com-
ments using the following treatment. The first line de-
scribes the correlation type: ”Your proposition pL {is di-
rectly matched, has its arrow in the wrong direction, is se-
mantically the inverse} in comparison to the expert proposi-
tion pE”. The three other lines convert semantic symbols νe
from member matchings (cf. section 4).

The visual correlation τp colors in a first phase the relation
label and the arc arrow. Relation label coloring is based on
τe. Arc arrow coloring depends of both matchings between
concept members: dashed line with black tone if at least one
is a wrong matching (νe equals to 
=), otherwise dashed line
with gray tone if at least one is a partially correct matching
(νe ∈ {�,	, LCS}) and otherwise straight line with black
tone when matchings are equivalent or equal (νe ∈ {=,≡}).
In a second phase for reversed position matchings, a cross
X is drawn on the arrowhead for wrong direction matching
(corpwa ) whereas an ”INV” label is written close to the re-
lation label for inverse relation matching (corpinv ).

Figure 4: correlation feedback for proposition matching

Example 4.2. Between the expert proposition PE and the
learner proposition PL in Fig. 4, the visual correlation
νp(PE , PL) can be considered as direct, wrong direction or
inverse relation correlations (Fig. 4). The matching corre-
sponds to the wrong direction correlation corpwd

translated
into the following corrective comment. ”Your proposition
pL has its arrow in the wrong direction in comparison to
the expert proposition pE . Your relation redefinitionOf
should be replaced by the expert relation instanceOf . Your
concept prototype is related by dataType to the expert con-
cept object”.

Finally section 5 gives details on how feedbacks are com-
puted and assigned from expert OCM to learner OCM.

5 Overall assignment of correlation feedback

In CM ITS, the assessment consists of maximizing the qual-
ity of concept and proposition assignments between the ex-
pert CM and the learner CM. Similarity measures formalize
the matching distance between a pair of entities (as entity
similarity δe) or propositions (as proposition similarity δp).
Similarities are numeric values between [0, 1] with 0 the best
matching.

Thus, the assessment can be related to an assignment
problem searching the overall assignment solution of min-
imum similarity cost. This cost is computed by an objective
function and can be presented as the learner score. Since ex-
pert and learner CMs can have different sizes of concept or
proposition sets, the assessment corresponds to a NP hard
problem and therefore this paper searches an approximate
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assignment solution as suboptimal set of correlation feed-
backs.

Entity similarity

The entity similarity δe is computed based on ontological
semantic measures. This paper adapts an information theo-
retic measure (Al-Mubaid and Nguyen 2006) by defining the
similarity correlation of an entity pair based on:

• their knowledge closeness (i.e distance of the minimum
statement path minP separating them in the ontology)

• the correlation informativity (i.e the common specificity
Cspec corresponding to the depth of their least common
subsumer (LCS) in the subsume hierarchy tree)

This paper adds refinments to δe based on CM features. First,
entity pairs having for LCS the top node � are different (i.e
δe = 1). Moreover, minP can contain at most one inverse
statement (relations will be inverse) and if minP contains
only an equivalent statement, the entity pair is equivalent
(i.e δe = 0).

Proposition similarity

The proposition similarity δp measures the closeness of a
pair of propositions by summing values of each similarity
computed between pairs of proposition members. Similar-
ities δe for pairs of members are based on the correlation
type (cf. section 4) in which the relation is considered (i.e
direct, wrong direction and inverse relation). The similar-
ity δp corresponds to the correlation type maximizing the
feedback quality (i.e minimizing deltap). In case of several
best correlation types, δp is chosen based on following order:
δpdir

> δpwd
> δpinv

.

Definition 8 (proposition similarity δp). Let pE =<
cE , rE , c

′
E > (resp. pL =< cL, rL, c

′
L >) be a pair of propo-

sitions within expert OCM (resp. learner OCM). Proposition
similarities for direct matching δpdir

, wrong direction δpwd

and inverse relation δpinv are defined as:

δpdir
= α. δe(cE , cL) + β. rel(rL, rE) + γ. δe(c

′
E , c

′
L)

δpwd
= α. δe(c

′
E , cL) + β. θ(rel(rL, rE)) + γ. δe(cE , c

′
L)

δpinv
= α. δe(c

′
E , cL) + β. relinv(rL, rE) + γ. δe(cE , c

′
L)

with:

• α, β, γ ∈]0, 1[ normalizing constants, α+ β + γ = 1

• θ : [0, 1]→ [0, 1] the malus function such as θ(x) ≥ x2

• rel(rL, rE) (resp relinv(rL, rE)) relation functions
equals to
– 1 if the minimum path minP (rL, rE) contains (resp.

does not contain) an inverse statement
– δe(rL, rE) otherwise

The proposition similarity δp between pL, pE is defined as:

min{δpdir
(pL, pE), δpwd

(pL, pE), δpinv
(pL, pE)}

Example 5.1. In Fig. 5, the learner proposition pL and the
expert proposition pE are matched. The minimum similarity
of the three matching types is δpwd

= 0
3 + 1

3 + 0.3
3 = 0.43.

So δp(pL, pE) = δpwd
= 0.43

Figure 5: Similarity types for proposition matching

The overall assignment is based on similarities δe between
concepts and δp between propositions, precomputed to be
used during the assessment.

Overall assignment

First, the objective function fit is defined to measure the
quality of an assignment solution A = (πc, πp) of concepts
and propositions. fit sums similarities of each assigned con-
cept δe (def 9: A) and assigned proposition δp (def 9: B).
These sums are divided by the number of concepts (resp.
propositions) within the expert OCM. Then malus are added
to the objective function as the ratio of number of unassigned
concepts (def 9: C) and propositions (def 9: D) on the total
number of concepts (resp. propositions) within both expert
OCM and learner OCM.

Definition 9 (objective function fit). Let πp, πc an assign-
ment of an expert OCM ME = (VE , AE , fCE

, fRE
) on

a learner OCM ML = (VL, AL, fCL
, fRL

). The objective
function fit(πc, πp) is defined such as:

(A) Υ ∗
∑

ci∈fCE
(VE) δe(ci,πc(ci))

|VE |

(B) + Ω ∗
∑

pi∈PME
δp(pi,πp(pi))

|PME
|

(C) + Ψ ∗ |VL|+|VE |−2∗|πc|
|VL|+|VE |

(D) + Φ ∗ |PML
|+|PME

|−2∗|πp|
|PML

|+|PME
|

with Υ,Ω,Ψ,Φ ∈]0, 1[ be normalizing constants, such as
Υ+Ω+Ψ+Φ = 1

Second, finding a suboptimal approximate assignment so-
lution is based on an iterated local search algorithm divided
into a repeated two-phase process. The hill climber permu-
tates assignment of two expert concepts at each move, fol-
lowed by a random relaunch when search stops into a local
optimum. Note that to prevent approximative assignments to
take the place of exact assignments, pair of concepts (resp.
propositions) having the same labels are always assigned to-
gether. During first phase, the hill climber (HC) algorithm

2we chose α = β = γ = 1/3 and θ(x) =
√
x
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searches through assignment solutions a suboptimal assign-
ment solution. HC is a Local Search technique, i.e an itera-
tive search procedure called intensification which starts from
an initial solution and progressively improves it by apply-
ing a series of local moves. In this paper, at each iteration,
the HC reaches an one-move neighbor solution by permut-
ing assignment of two expert concepts3. The HC stops when
it encounters a local optimum, a solution which has no im-
proving neighbors. The second phase starts when the search
is blocked in a local optimum. Therefore, a random relaunch
diversifies solution pool by starting at a new random initial
solution.

Discussion

ITS assessment has been used in CM softwares such as
CMapTools, IKAS or COMPASS. In relation to this paper,
a new ITS software called IOCMap (Intelligent Ontological
Concept Map) has been created and used by thirty sopho-
more college students learning the computer science. Stu-
dents had access to this software during practical work and
they created their own CM representing their knowledge on
object oriented programming, based on a set of concept and
relation labels. Learners received a complete set of correla-
tion feedbacks (as presented in this paper).

The set of computed feedbacks has been compared with
manual feedbacks assessed on the learner CMs. The im-
plementation assigns consistantly correlation feedbacks for
learner CMs. Feedbacks are not partial, indeed there are nei-
ther any missing nor overnumbered expert assignment(s) for
each learner concept and proposition. It is due to the unique-
ness of concept and proposition assignments between expert
and learner CMs. However, our algorithm has been limited
by the size of the external ontology. Indeed OOP is centered
around key terms that are defined in a strict and limited se-
mantics, thus corrective comments are mostly assessing cor-
rectness or wrongness whereas rarely explaining partially
correct answers of the learner.

In CM ITS, few papers use AI techniques to compute au-
tomatically an overall score of a learner CM. Not any pa-
per at our knowledge focused on finding a set of feedbacks
based on graph matching techniques. Lack of formalism in
cognitive science papers and the flexibility in CM semantics
seem to create an unlikely marriage between these fields.
This work is intended to show that both communities could
benefit from combining their knowledge. Assessment can
benefit from the overall assignment of feedbacks between
expert and learner CMs. The need for measures to match en-
tities and propositions based on an external semantics does
not imply mandatory losses in CM flexibility. Indeed, exter-
nal semantics can be used only as a disembiguation process.
One could imagine systems based on wider external seman-

3proposition assignments are computed by the Munkres algo-
rithm. It selects unique proposition matchings (i.e unique matching
assigned by row and column) such as the sum of proposition simi-
larities is the lowest. It is refined so that matchings which cannot be
assigned depending of concept assignments (i.e learner proposition
having starter and target concepts assigned to the ones of the expert
proposition) will not be selected at first

tics (e.g wordnet), taking into account incomplete semantics
within their computation.
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