
Simple Object Classification
Using Binary Data

Deanna Needell, Rayan Saab, Tina Woolf

Abstract

Binary, or one-bit, representations of data arise naturally in
many applications, and are appealing in both hardware imple-
mentations and algorithm design. In this work, we study the
problem of data classification from binary data and propose
a framework with low computation and resource costs. We
illustrate the utility of the proposed approach through styl-
ized and realistic numerical experiments, including military
classification problems like facial and object recognition. We
hope that our framework will serve as a foundation for study-
ing similar types of approaches.

DN acknowledges support from the Alfred P. Sloan Founda-
tion and NSF CAREER #1348721; RS from the NSF under
DMS-1517204.

1 Introduction

Our focus is on data classification problems in which only
a binary representation of the data is available or desired.
Such binary representations may arise under a variety of cir-
cumstances. In some cases, they may arise naturally due to
compressive acquisition. For example, distributed systems
may have bandwidth and energy constraints that necessitate
extremely coarse quantization of the measurements (Fang et
al. 2014). A binary data representation can also be partic-
ularly appealing in hardware implementations because it is
inexpensive to compute and promotes a fast hardware de-
vice (Jacques et al. 2013; Laska et al. 2011) and efficient
storage; such benefits have contributed to the success, for
example, of 1-bit Sigma-Delta converters (Aziz, Sorensen,
and Vn der Spiegel 1996; Candy and Temes 1962). Al-
ternatively, binary, heavily quantized, or compressed repre-
sentations may be part of the classification algorithm de-
sign in the interest of data compression and speed (see,
e.g., (Boufounos and Baraniuk 2008; Hunter et al. 2010;
Gupta, Nowak, and Recht 2010; Hahn, Rosenkranz, and
Zoubir 2014)). The goal of this paper is to present a frame-
work for performing learning inferences, such as classifica-
tion, from highly quantized data representations – we focus
on the extreme case of 1-bit (binary) representations. Let us
begin with the mathematical formulation of this problem.

Copyright c© 2017, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Problem Formulation. Let {xi}pi=1 ⊂ R
n be a point cloud

represented via a matrix
X = [x1 x2 · · · xp] ∈ R

n×p.

Moreover, let A : Rn → R
m be a linear map, and denote by

sign : R→ R the sign operator given by

sign(a) =

{
1 a ≥ 0

−1 a < 0.

Without risk of confusion, we overload the above notation
so the sign operator can apply to matrices (entrywise). In
particular, for an m by p matrix M , and (i, j) ∈ [m] × [p],
we define sign(M) as the m× p matrix with entries

(sign(M))i,j := sign(Mi,j).

We consider the setting where a classification algorithm
has access to training data of the form Q = sign(AX),
along with a vector of associated labels b = (b1, · · · , bp) ∈
{1, . . . , G}p, indicating the membership of each xi to ex-
actly one of G classes. Here, A is an m by n matrix. The
rows of A define hyperplanes in R

n and the binary sign in-
formation tells us which side of the hyperplane each data
point lies on. Throughout, we will take A to have indepen-
dent identically distributed standard Gaussian entries. Given
Q and b, we wish to train an algorithm that can be used to
classify new signals, available only in a similar binary form
via the matrix A, for which the label is unknown.

1.1 Contribution

Our contribution is a framework for classifying data into a
given number of classes using only a binary representation
of the data. This framework serves several purposes: (i) it
provides mathematical tools that can be used for classifi-
cation in applications where data is already captured in a
simple binary representation, (ii) demonstrates that for gen-
eral problems, classification can be done effectively using
low-dimensional measurements, (iii) suggests an approach
to use these measurements for classification using low com-
putation, (iv) provides a simple technique for classification
that can be mathematically analyzed. We believe this frame-
work can be extended and utilized to build novel algorith-
mic approaches for many types of learning problems. In this
work, we present one method for classification using train-
ing data, and illustrate its promise on synthetic and real data
including imaging recognition.

Deep Models and Artificial Intelligence for Military Applications:
AAAI Technical Report FS-17-03

218

1.2 Related Work

There is a large body of work on several areas related to
the subject of this paper, ranging from classification to com-
pressed sensing, hashing, quantization, and deep learning.
Due to the popularity and impact of these research areas,
any review of prior work here must necessarily be non-
exhaustive. Thus, here we very briefly discuss related prior
work, highlighting connections to our work but also stress-
ing the distinctions.

Support vector machines (SVM) (see, e.g., Christian-
ini and Shawe-Taylor [2000]; Hearst et al.[1998]; Andrew
[2000]; Joachims [1998]; Steinwart and Christmann [2008])
have become popular in machine learning, and are often
used for classification. Although related, the approach taken
in this paper is fundamentally different than in SVM. Instead
of searching for the optimal separating hyperplane, our pro-
posed algorithm uses many, randomly selected hyperplanes
(via the rows of the matrix A), and uses the relationship be-
tween these hyperplanes and the training data to construct
a classification procedure that operates on information be-
tween the same hyperplanes and the data to be classified.

The process of transforming high-dimensional data points
into low-dimensional spaces has been studied extensively
in related contexts. Since the original work of Johnson
and Lindenstrauss (Johnson and Lindenstrauss 1982), much
work on Johnson-Lindenstrauss embeddings has focused
on randomized embeddings where the matrix associated
with the linear embedding is drawn from an appropriate
random distribution (see, e.g., Ailon and Chazelle [2006];
Achlioptas [2003]; Dasgupta and Gupta [2003]; Krahmer
and Ward [2011]). Another important line of related work
is compressed sensing, in which it has been demonstrated
that far fewer linear measurements than dictated by tra-
ditional Nyquist sampling can be used to represent high-
dimensional data under the assumption of data sparsity
(Candès, Romberg, and Tao 2006b), (Candès, Romberg, and
Tao 2006a), (Donoho 2006).

To allow processing on digital computers, compressive
measurements must often be quantized, or mapped to dis-
crete values from some finite set. The extreme quantization
setting where only the sign bit is acquired is known as one-
bit compressed sensing (Plan and Vershynin 2013a; 2013b;
Gopi et al. 2013; Jacques et al. 2013; Yan, Yang, and Osher
2012; Jacques, Degraux, and De Vleeschouwer 2013) and
was introduced in (Boufounos and Baraniuk 2008). Since
then, related work has been done on the construction of
binary embeddings (embeddings into the binary cube, see
e.g.,[Plan and Vershynin [2014]; Yu et al. [2014]; Gong et
al. [2013]; Yi, Caravans, and Price [2015]; Choromanska et
al. [2016]; Dirksen and Stollenwerk [2016]). Although the
data we consider in this paper takes a similar one-bit form,
the overall goal is different; rather than signal reconstruction
and geometry preservation, our interest is data classification.

Deep Learning is an area of machine learning based on
learning data representations using multiple levels of ab-
straction, or layers. Algorithms for such deep neural net-
works have recently obtained state of the art results for clas-
sification see e.g., (Krizhevsky, Sutskever, and Hinton 2012;
Simonyan and Zisserman 2014; Szegedy et al. 2015; Rus-

sakovsky et al. 2015)). We consider deep learning and neu-
ral networks as motivation to our layered algorithm design.
However, we are not tuning nor optimizing parameters as
is typically done in deep learning, nor do our layers neces-
sarily possess the structure typical in deep learning “archi-
tectures”; this makes our approach potentially simpler and
easier to work with.

2 The Proposed Classification Algorithm

The training phase of our algorithm is detailed in Algorithm
1, where we suppose the training data Q = sign(AX) and
associated labels b are available. Indeed, the training algo-
rithm proceeds in L “layers”. In the �-th layer, m index sets
Λ�,i ⊂ [m], |Λ�,i| = �, i = 1, ...,m, are randomly selected,
so that all elements of Λ�,i are unique, and Λ�,i �= Λ�,j for
i �= j. This is achieved by selecting the multi-set of Λ�,i’s
uniformly at random from a set of cardinality

((m�)
m

)
. During

the i-th “iteration” of the �-th layer, the rows of Q indexed
by Λ�,i are used to form the �× p matrix QΛ�,i ∈ {±1}�×p,
and the unique sign patterns q ∈ {±1}� are extracted from
the columns of QΛ�,i . The number of unique sign patterns
(i.e., distinct columns) in QΛ�,i is given by T�,i ∈ N.

For example, at the first layer the possible unique sign
patterns are 1 and -1, describing which side of the selected
hyperplane the training data points lie on; at the second

layer the possible unique sign patters are
[
1
1

]
,
[
1
−1

]
,
[−1
1

]
,[−1

−1
]

, describing which side of the two selected hyperplanes

the training data points lie on, and so on for the subsequent
layers. For the t-th sign pattern and g-th class, a member-
ship index parameter r(�, i, t, g) that uses knowledge of the
number of training points in class g having the t-th sign pat-
tern, is calculated for every Λ�,i. Larger values of r(�, i, t, g)
suggest that the t-th sign pattern is more heavily dominated
by class g; thus, if a signal with unknown label corresponds
to the t-th sign pattern, we will be more likely to classify it
into the g-th class. In this paper, we use the following choice
for the membership index parameter r(�, i, t, g), which we
found to work well experimentally. Below, Pg|t denotes the
number of training points from the g-th class with the t-th
sign pattern at the i-th set selection in the �-th layer (i.e., the
t-th sign pattern determined from the set selection Λ�,i):

r(�, i, t, g) =
Pg|t∑G
j=1 Pj|t

∑G
j=1 |Pg|t − Pj|t|∑G

j=1 Pj|t
. (1)

Let us briefly explain the intuition for this formula. The first
fraction in (1) indicates the proportion of training points in
class g out of all points with sign pattern t. The second frac-
tion in (1) is a balancing term that gives more weight to
group g when that group is much different in size than the
others with the same sign pattern. If Pj|t is the same for all
classes j = 1, . . . , G, then r(�, i, t, g) = 0 for all g, and thus
no class is given extra weight for the given sign pattern, set
selection, and layer. If Pg|t is nonzero and Pj|t = 0 for all
other classes, then r(�, i, t, g) = G − 1 and r(�, i, t, j) = 0
for all j �= g, so that class g receives the largest weight.

219

Algorithm 1 Training
input: binary training data Q, training labels b, number of
classes G, number of layers L

for � from 1 to L, i from 1 to m do
select: Random Λ�,i ⊂ [m], |Λ�,i| = �
determine: T�,i ∈ N unique col. patterns in QΛ�,i

for t from 1 to T�,i, g from 1 to G do
compute: Compute r(�, i, t, g) by (1)

end for
end for

Once the algorithm has been trained, we can use it to clas-
sify new signals. Suppose x ∈ R

n is a new signal for which
the class is unknown, and we have available the quantized
measurements q = sign(Ax). Then Algorithm 2 is used for
the classification of x into one of the G classes. Notice that
the number of layers L, the learned membership index val-
ues r(�, i, t, g), the number of unique sign patterns T�,i, and
the set selections Λ�,i at each iteration of each layer are all
available from Algorithm 1. First, the decision vector r̃ is
initialized to the zero vector in R

G. Then for each layer �
and set selection i, the sign pattern qΛ�,i is determined and
the index t� ∈ [T�,i] is identified corresponding to the sign
patterns that were determined during training. For each class
g, r̃(g) is updated via r̃(g)← r̃(g) + r(�, i, t�, g). If it hap-
pens that the sign pattern for x does not match any sign pat-
tern determined during training, no update to r̃ is performed.
Finally, after scaling r̃ with respect to the number of layers
and measurements, the largest entry of r̃ identifies how the
estimated label b̂x of x is set. Note that this scaling does not
actually affect the outcome of classification, we use it simply
to ensure the quantity does not become unbounded.

Algorithm 2 Classification
input: binary data q, number of classes G, number of layers L,
learned parameters r(�, i, t, g), T�,i, and Λ�,i from Algorithm 1

initialize: r̃(g) = 0 for g = 1, . . . , G.
for � from 1 to L, i from 1 to m do

identify: Identify the pattern t� ∈ [T�,i]
to which qΛ�,i corresponds

for g from 1 to G do
update: r̃(g) = r̃(g) + r(�, i, t�, g)

end for
end for
scale: Set r̃(g) = r̃(g)

Lm
for g = 1, . . . , G

classify: ̂bx = argmaxg∈{1,...,G} r̃(g)

3 Experimental Results

In this section, we provide experimental results of Algo-
rithms 1 and 2 for synthetically generated datasets, hand-
written digit recognition using the MNIST dataset, and fa-
cial recognition using the extended YaleB database.

In all of the experiments, the matrix A is taken to have
i.i.d. standard Gaussian entries. Also, we assume the data is
centered. To ensure this, a pre-processing step on the raw

−10 −5 0 5 10
−10

−8

−6

−4

−2

0

2

4

6

8

10

Train: 1

Test: 1

Train: 2

Test: 2

Train: 3

Test: 3

5 10 15 20
0.95

0.955

0.96

0.965

0.97

0.975

0.98

0.985

0.99

0.995

1

Number of Measurements (m)

A
v
e
ra

g
e
 C

o
rr

e
c
t
C

la
s
s
if
ic

a
ti
o
n
 R

a
te

25 Training per Group

50 Training per Group

75 Training per Group

Figure 1: Synthetic classification experiment with three
Gaussian clouds (G = 3), L = 1, n = 2, 50 test points per
group, and 30 trials of randomly generating A. (Top) Exam-
ple training and testing data setup. (Bottom) Average correct
classification rate versus m and for the indicated number of
training points per class.

data is performed to account for the fact that the data may
not be centered around the origin. That is, given the orig-
inal training data matrix X , we calculate μ = 1

p

∑p
i=1 xi.

Then for each column xi of X , we set xi ← xi − μ. The
testing data is adjusted similarly by μ. Note that this as-
sumption can be overcome in future work by using dithers—
that is, hyperplane dither values may be learned so that
Q = sign(AX + τ), where τ ∈ R

m—or by allowing for
pre-processing of the data.

3.1 Classification of Synthetic Datasets

In our first stylized experiment, we consider three classes
of Gaussian clouds in R

2 (i.e., n = 2); see Figure 1 for
an example training and testing data setup. For each choice
of m ∈ {5, 7, 9, 11, 13, 15, 17, 19} and p ∈ {75, 150, 225}
with equally sized training data sets for each class (that is,
each class is tested with either 25, 50, or 75 training points),
we execute Algorithms 1 and 2 with a single layer and 30
trials of generating A. We perform classification of 50 test
points per group, and report the average correct classifica-
tion rate over all trials. The right plot of Figure 1 shows that
m ≥ 15 results in nearly perfect classification.

Next, we present experiments where we again construct
the classes as Gaussian clouds in R

2, but utilize a non-
uniformly alternating pattern around the origin with respect
to the classes. In each case, we set the number of train-
ing data points for each class to be 25, 50, and 75. In Fig-

220

−4 −3 −2 −1 0 1 2 3 4
−4

−3

−2

−1

0

1

2

3

4

Train: 1

Test: 1

Train: 2

Test: 2

20 40 60 80 100 120 140
0.95

0.955

0.96

0.965

0.97

0.975

0.98

0.985

0.99

0.995

1

Number of Measurements (m)

A
v
e
ra

g
e
 C

o
rr

e
c
t
C

la
s
s
if
ic

a
ti
o
n
 R

a
te

25 Training per Group

50 Training per Group

75 Training per Group

Figure 2: Synthetic classification experiment with six Gaus-
sian clouds and two classes (G = 2), L = 4, n = 2, 50
test points per group, and 30 trials of randomly generating
A. (Top) Example training and testing data setup. (Bottom)
Average correct classification rate versus m and for the in-
dicated number of training points per class.

Training Data

0 20 40 60 80 100 120
0.85

0.9

0.95

1

Number of Measurements (m)

A
v
e
ra

g
e
 C

o
rr

e
c
t
C

la
s
s
if
ic

a
ti
o
n
 R

a
te

25 Training per Group

50 Training per Group

75 Training per Group

Figure 3: Classification experiment using the handwritten
“0” and “1” digit images from the MNIST dataset, L = 1,
n = 28 × 28 = 784, 50 test points per group, and 30 trials
of randomly generating A. (Top) Training data images when
p = 50. (Bottom) Average correct classification rate versus
m and for the indicated number of training points per class.

ure 2, we have two classes forming a total of six Gaussian
clouds, and execute Algorithms 1 and 2 using four layers and
m ∈ {10, 30, 50, 70, 90, 110, 130}. The classification accu-
racy increases for larger m, with nearly perfect classification

Training Data

20 40 60 80 100
0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

Number of Measurements (m)

A
v
e
ra

g
e
 C

o
rr

e
c
t
C

la
s
s
if
ic

a
ti
o
n
 R

a
te

25 Training per Group

50 Training per Group

75 Training per Group

Figure 4: Classification experiment using the handwritten
“0” and “5” digit images from the MNIST dataset, L = 4,
n = 28 × 28 = 784, 50 test points per group, and 30 trials
of randomly generating A. (Top) Training data images when
p = 50. (Bottom) Average correct classification rate versus
m and for the indicated number of training points per class.

for the largest values of m selected.
In the next experiment, we display the classifica-

tion results of Algorithms 1 and 2 when using m ∈
{10, 30, 50, 70, 90} and one through four layers, and see that
adding layers can be beneficial for more complicated data
geometries. In Figure 5, we have four classes forming a total
of eight Gaussian clouds. From both L = 1 to L = 2 and
L = 2 to L = 3 we see large improvements in classifica-
tion accuracy, yet still better classification with L = 4. We
note here that in this case it also appears that more training
data does not improve the performance (and perhaps even
slightly decreases accuracy); this is of course unexpected in
practice, but we believe this happens here only because of
the construction of the Gaussian clouds – more training data
leads to more outliers in each cloud, making the sets harder
to separate.

3.2 Handwritten Digit Classification

In this section, we apply Algorithms 1 and 2 to the MNIST
(LeCun) dataset, which is a benchmark dataset of images
of handwritten digits, each with 28× 28 pixels. In total, the
dataset has 60, 000 training examples and 10, 000 testing ex-
amples.

First, we apply Algorithms 1 and 2 when considering
only two digit classes. Figure 3 shows the correct classi-
fication rate for the digits “0” versus “1”. We set m ∈
{10, 30, 50, 70, 90, 110}, p ∈ {50, 100, 150} with equally
sized training data sets for each class, and classify 50 im-
ages per digit class. Notice that the algorithm is performing
very well for small m in comparison to n = 28× 28 = 784
and only a single layer. Figure 3 shows the results of a sim-
ilar setup for the digits “0” and “5”. In this experiment, we
increased to four layers and achieve classification accuracy
around 90% at the high end of m values tested. This indi-
cates that the digits “0” and “5” are more likely to be mixed

221

−4 −3 −2 −1 0 1 2 3 4
−4

−3

−2

−1

0

1

2

3

4

Train: 1

Test: 1

Train: 2

Test: 2

Train: 3

Test: 3

Train: 4

Test: 4

10 20 30 40 50 60 70 80 90
0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

Number of Measurements (m)

A
v
e

ra
g

e
 C

o
rr

e
c
t

C
la

s
s
if
ic

a
ti
o

n
 R

a
te

25 Training per Group

50 Training per Group

75 Training per Group

(a) L = 2

10 20 30 40 50 60 70 80 90
0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

Number of Measurements (m)

A
v
e

ra
g

e
 C

o
rr

e
c
t

C
la

s
s
if
ic

a
ti
o

n
 R

a
te

25 Training per Group

50 Training per Group

75 Training per Group

(b) L = 4

Figure 5: Synthetic classification experiment with eight
Gaussian clouds and four classes (G = 4), n = 2, 50 test
points per group, and 30 trials of randomly generating A.
(Top) Example training and testing data setup. Average cor-
rect classification rate versus m and for the indicated num-
ber of training points per class for: (middle) L = 2, (bottom)
L = 4.

up than “0” and “1”, which is understandable due to the
more similar digit shape between “0” and “5”.

Next, we apply Algorithms 1 and 2 to the MNIST dataset
with all ten digits. We utilize 1, 000, 3, 000, and 5, 000 train-
ing points per digit class, and perform classification with 800
test images per class. The classification results using 18 lay-
ers and m ∈ {100, 200, 400, 600, 800} are shown in Fig-
ure 6, where it can be seen that with 5, 000 training points
per class, above 90% classification accuracy is achieved for
m ≥ 200. We also see that larger training sets result in
slightly improved classification.

3.3 Facial Recognition

Our next experiment considers facial recognition using the
extended YaleB dataset (Cai et al. 2007; Cai, He, and Han
2007; Cai et al. 2006; He et al. 2005). This dataset includes

100 200 300 400 500 600 700 800
0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

Number of Measurements (m)

C
o

rr
e

c
t

C
la

s
s
if
ic

a
ti
o

n
 R

a
te

1000 Training per Group

3000 Training per Group

5000 Training per Group

Figure 6: Correct classification rate versus m when using all
ten (0-9) handwritten digits from the MNIST dataset, L =
18, n = 28 × 28 = 784, 1,000, 3,000, and 5,000 training
points per group, 800 test points per group (8,000 total), and
a single instance of randomly generating A.

Training Data

0 50 100 150 200 250 300
0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

Number of Measurements (m)

A
v
e
ra

g
e
 C

o
rr

e
c
t
C

la
s
s
if
ic

a
ti
o
n
 R

a
te

10 Training per Group

20 Training per Group

30 Training per Group

Figure 7: Classification experiment using two individuals
from the extended YaleB dataset, L = 4, n = 32 × 32 =
1024, 30 test points per group, and 30 trials of randomly
generating A. (Top) Training data images when p = 20.
(Bottom) Average correct classification rate versus m and
for the indicated number of training points per class.

32 × 32 images of 38 individuals with roughly 64 near-
frontal images under different illuminations per individual.
We select two individuals from the dataset, and randomly
select images with different illuminations to be included in
the training and testing sets (note that the same illumination
was included for each individual in the training and testing
data). We execute Algorithms 1 and 2 using four layers with
m ∈ {10, 50, 100, 150, 200, 250, 300}, p ∈ {20, 40, 60}
with equally sized training data sets for each class, and clas-
sify 30 images per class. The results are displayed in Figure
7. Above 95% correct classification is achieved for m ≥ 150
for each training set size included.

3.4 Object Recognition

Our last experiment considers object recognition using the
Norb dataset (LeCun, Huang, and Bottou 2004). It contains
images (n = 96 × 96 = 9216)) of 50 toys categorized as

222

(a) L = 1

(b) L = 5

Figure 8: Classification experiment using two objects from
the Norb dataset, n = 96× 96 = 9216, and 30 trials of ran-
domly generating A. (Top) Example training data images.
Average correct classification rate versus m and for (mid-
dle) L = 1 and (bottom) L = 5 and the indicated number of
training points per class.

four-legged animals, human figures, airplanes, trucks, and
cars. The objects were taken by two cameras under 6 light-
ing conditions, 9 elevations, and 18 azimuths. We select two
categories from the dataset (human figure and truck), and
randomly select images from that category to be included in
the training and testing sets. We execute Algorithms 1 and 2
and display the results in Figure 8. Above 95% correct clas-
sification is again achieved for m ≥ 150 for each training
set size included.

4 Discussion and Conclusion

In this work, we have presented a supervised classification
algorithm that operates on binary, or one-bit, data. We be-
lieve our framework is relevant to analyzing similar, layered-
type algorithms. Future directions of this work include the
use of dithers for more complicated data geometries, as well
as a generalized theory for high dimensional data belong-
ing to many classes and utilizing multiple layers within the
algorithm.

References

Ailon, N., and Chazelle, B. 2006. Approximate nearest
neighbors and the fast johnson-lindenstrauss transform. In
Proceedings of the thirty-eighth annual ACM symposium on
Theory of computing, 557–563. ACM.
Aziz, P. M.; Sorensen, H. V.; and Vn der Spiegel, J. 1996. An
overview of sigma-delta converters. IEEE signal processing
magazine 13(1):61–84.
Boufounos, P., and Baraniuk, R. 2008. 1-bit compressive
sensing. In Proc. IEEE Conf. Inform. Science and Systems
(CISS).
Cai, D.; He, X.; Han, J.; and Zhang, H.-J. 2006. Orthogonal
laplacianfaces for face recognition. IEEE Transactions on
Image Processing 15(11):3608–3614.
Cai, D.; He, X.; Hu, Y.; Han, J.; and Huang, T. 2007. Learn-
ing a spatially smooth subspace for face recognition. In
Proc. IEEE Conf. Computer Vision and Pattern Recognition
Machine Learning (CVPR’07).
Cai, D.; He, X.; and Han, J. 2007. Spectral regression for
efficient regularized subspace learning. In Proc. Int. Conf.
Computer Vision (ICCV’07).
Candès, E.; Romberg, J.; and Tao, T. 2006a. Robust uncer-
tainty principles: Exact signal reconstruction from highly in-
complete frequency information. IEEE Trans. Inform. The-
ory 52(2):489–509.
Candès, E.; Romberg, J.; and Tao, T. 2006b. Stable sig-
nal recovery from incomplete and inaccurate measurements.
Comm. Pure Appl. Math. 59(8):1207–1223.
Candy, J. C., and Temes, G. C. 1962. Oversampling delta-
sigma data converters: theory, design, and simulation. Uni-
versity of Texas Press.
Choromanska, A.; Choromanski, K.; Bojarski, M.; Jebara,
T.; Kumar, S.; and LeCun, Y. 2016. Binary embeddings
with structured hashed projections. In Proceedings of The
33rd International Conference on Machine Learning, 344–
353.
Christianini, N., and Shawe-Taylor, J. 2000. An Introduction
to Support Vector Machines and Other Kernel-Based Learn-
ing Methods. Cambridge, England: Cambridge University
Press.
Donoho, D. 2006. Compressed sensing. IEEE Trans. In-
form. Theory 52(4):1289–1306.
Fang, J.; Shen, Y.; Li, H.; and Ren, Z. 2014. Sparse signal re-
covery from one-bit quantized data: An iterative reweighted
algorithm. Signal Processing 102:201–206.
Gong, Y.; Lazebnik, S.; Gordo, A.; and Perronnin, F. 2013.
Iterative quantization: A procrustean approach to learn-
ing binary codes for large-scale image retrieval. IEEE
Transactions on Pattern Analysis and Machine Intelligence
35(12):2916–2929.
Gopi, S.; Netrapalli, P.; Jain, P.; and Nori, A. V. 2013. One-
bit compressed sensing: Provable support and vector recov-
ery. In ICML (3), 154–162.
Gupta, A.; Nowak, R.; and Recht, B. 2010. Sample com-
plexity for 1-bit compressed sensing and sparse classifica-

223

tion. In Information Theory Proceedings (ISIT), 2010 IEEE
International Symposium on, 1553–1557. IEEE.
Hahn, J.; Rosenkranz, S.; and Zoubir, A. M. 2014. Adap-
tive compressed classification for hyperspectral imagery. In
Acoustics, Speech and Signal Processing (ICASSP), 2014
IEEE International Conference on, 1020–1024. IEEE.
He, X.; Yan, S.; Hu, Y.; Niyogi, P.; and Zhang, H.-J. 2005.
Face recognition using laplacianfaces. IEEE Trans. Pattern
Anal. Mach. Intelligence 27(3):328–340.
Hunter, B.; Strohmer, T.; Simos, T. E.; Psihoyios, G.; and
Tsitouras, C. 2010. Compressive spectral clustering. In AIP
Conference Proceedings, volume 1281, 1720–1722. AIP.
Jacques, L.; Laska, J.; Boufounos, P.; and Baraniuk, R.
2013. Robust 1-bit compressive sensing via binary stable
embeddings of sparse vectors. IEEE Trans. Inform. Theory
59(4):2082–2102.
Jacques, L.; Degraux, K.; and De Vleeschouwer, C. 2013.
Quantized iterative hard thresholding: Bridging 1-bit and
high-resolution quantized compressed sensing. arXiv
preprint arXiv:1305.1786.
Johnson, W., and Lindenstrauss, J. 1982. Extensions of Lip-
schitz mappings into a Hilbert space. In Proc. Conf. Modern
Anal. and Prob.
Krahmer, F., and Ward, R. 2011. New and improved
johnson–lindenstrauss embeddings via the restricted isom-
etry property. SIAM Journal on Mathematical Analysis
43(3):1269–1281.
Krizhevsky, A.; Sutskever, I.; and Hinton, G. E. 2012.
Imagenet classification with deep convolutional neural net-
works. In Advances in neural information processing sys-
tems, 1097–1105.
Laska, J. N.; Wen, Z.; Yin, W.; and Baraniuk, R. G. 2011.
Trust, but verify: Fast and accurate signal recovery from 1-
bit compressive measurements. IEEE Trans. Signal Process-
ing 59(11):5289–5301.
LeCun, Y.; Huang, F. J.; and Bottou, L. 2004. Learning
methods for generic object recognition with invariance to
pose and lighting. In Proc. IEEE Computer Society Con-
ference on Computer Vision and Pattern Recognition, vol-
ume 2, II–104. IEEE.
LeCun, Y. The mnist database of handwritten digits. http:
//yann.lecun.com/exdb/mnist/.
Plan, Y., and Vershynin, R. 2013a. One-bit compressed sens-
ing by linear programming. Communications on Pure and
Applied Mathematics 66(8):1275–1297.
Plan, Y., and Vershynin, R. 2013b. Robust 1-bit compressed
sensing and sparse logistic regression: A convex program-
ming approach. IEEE Trans. Inform. Theory 59(1):482–494.
Plan, Y., and Vershynin, R. 2014. Dimension reduction by
random hyperplane tessellations. Discrete & Computational
Geometry 51(2):438–461.
Russakovsky, O.; Deng, J.; Su, H.; Krause, J.; Satheesh,
S.; Ma, S.; Huang, Z.; Karpathy, A.; Khosla, A.; Bern-
stein, M.; et al. 2015. Imagenet large scale visual recog-
nition challenge. International Journal of Computer Vision
115(3):211–252.

Simonyan, K., and Zisserman, A. 2014. Very deep convo-
lutional networks for large-scale image recognition. arXiv
preprint arXiv:1409.1556.
Szegedy, C.; Liu, W.; Jia, Y.; Sermanet, P.; Reed, S.;
Anguelov, D.; Erhan, D.; Vanhoucke, V.; and Rabinovich,
A. 2015. Going deeper with convolutions. In Proceed-
ings of the IEEE Conference on Computer Vision and Pat-
tern Recognition, 1–9.
Yan, M.; Yang, Y.; and Osher, S. 2012. Robust 1-bit com-
pressive sensing using adaptive outlier pursuit. IEEE Trans.
Signal Processing 60(7):3868–3875.
Yi, X.; Caravans, C.; and Price, E. 2015. Binary embedding:
Fundamental limits and fast algorithm.
Yu, F. X.; Kumar, S.; Gong, Y.; and Chang, S.-F. 2014. Cir-
culant binary embedding. In International conference on
machine learning, volume 6, 7.

224

