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Abstract 
Sigma was one of the three architectures explicitly factored 
into the recent development of the standard model of the 
mind.  Here we dig deeper into the mapping of Sigma onto 
the standard model begun there to explore three lessons that 
illustrate outstanding “issues” with the current standard 
model while providing food for thought for its future devel-
opment. 

Introduction 
The standard model of the mind is an attempt to develop a 
consensus across the international research community 
concerning the structure and functioning of human-like 
minds (Laird, Lebiere & Rosenbloom, 2017).  As opposed 
to a cognitive architecture (Langley, Laird & Rogers, 
2009), which is a concrete implementable model of the 
fixed structure that defines a mind, the standard model is 
an abstraction over cognitive architectures that is to include 
only those aspects for which a consensus exists.  The ori-
gins of the standard model were in a summary presentation 
at the AAAI 2013 Fall Symposium on Integrated Cogni-
tion, but this then inspired a more detailed dialectic among, 
and attempt to synthesize across, three particular cognitive 
architectures – ACT-R (Anderson et al., 2004), Sigma 
(Rosenbloom, Demski & Ustun, 2016a) and Soar (Laird, 
2012) – in an attempt to build further on the initial consen-
sus. 

While taking a number of important steps, the standard 
model that resulted (1) was admittedly incomplete, (2) de-
signedly reflected a consensus rather than unanimity, and 
(3) included initial discussion of topics that ultimately need 
more depth and clarity.  Although each of these “issues” 
reflects appropriate choices in the development of the 
standard model, rather than mistakes per se, each also re-
flects a concern worth further attention.  Incompleteness 
provides an opportunity, and in fact a necessity, of consid-
ering what else should be in the standard model.  Consen-

sus raises the specter that the minority rather than the ma-
jority will ultimately be proven correct.  Initial discussions 
of complex/subtle topics demand more detailed follow up. 

Here, after a brief introduction to Sigma, three selected 
lessons from digging deeper into the mapping of Sigma 
onto the standard model – concerned with (1) self-
monitoring, (2) memory/learning, and (3) symbols – are 
introduced, each of which illustrates the correspondingly 
numbered “issue” while hopefully also providing useful 
food for thought for the future development of the standard 
model. 

Sigma 
Sigma is a cognitive architecture that has been under de-
velopment since 2008 at the USC Institute for Creative 
Technologies.  Research on it is driven by four desiderata: 
grand unification, with the goal of incorporating not only 
all of the requisite cognitive capabilities but also the key 
sub-cognitive ones, such as perception, motor control, and 
affect; generic cognition, with the goal of supporting both 
useful artificial systems – starting with virtual humans, but 
ultimately also to include intelligent agents and robots – 
and models of human thought (at some appropriate level of 
abstraction); functional elegance, with the goal of provid-
ing the diversity of requisite intelligent capability and be-
havior from the interactions among small numbers of very 
general mechanisms, rather than from a large number of 
more specialized modules; and sufficient efficiency, with 
the goal of executing fast enough for both useful artificial 
systems and large-scale cognitive models. 
 Sigma’s overall approach to achieving these desiderata 
is based on the graphical architecture hypothesis, that the 
best approach at this time involves blending what has been 
learned from over three decades of independent work on 
cognitive architectures, such as ACT-R and Soar, and 
graphical models (Koller & Friedman, 2009).   Graphical 
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models are a general technology for computing over com-
plex multivariate functions by leveraging forms of inde-
pendence to decompose them into products of factors rep-
resenting simpler functions, mapping this decomposition 
onto graphs, and solving them for values of the function’s 
variables, typically either via some form of sampling or 
message passing.  They potentially support grand unifica-
tion by enabling mixed (symbolic + probabilistic) hybrid 
(discrete + continuous) representation and processing; 
functional elegance by doing this via a general yet simple 
and theoretically elegant base; and sufficient efficiency by 
subsuming state-of-the-art algorithms across this span.   
 Sigma approaches this blending by stratifying the over-
all architecture into two layers – the graphical architecture 
and the cognitive architecture – with the former sitting 
below the latter and implementing it.  These two architec-
tures combine to instantiate a cognitive cycle that involves 
a single round of input, perception, memory access, rea-
soning, decision-making, learning, affect, attention, and 
output, and which is ultimately intended to run at ~50 ms. 
to enable real-time systems and models at human time 
scales.  As in Soar, reflection occurs in Sigma when an 
impasse – i.e., the inability to select the next action to exe-
cute – occurs in decision-making.  How the graphical ar-
chitecture, through graph solution and modification, im-
plements the cognitive architecture provides one of the 
major sources of functional elegance in Sigma.  However, 
another is how the cognitive architecture then serves to 
implement a broad range of cognitive capabilities above it 
in terms of particular forms of skills and knowledge. 

Self-Monitoring 
One key aspect missing from the current standard model is 
architectural self-monitoring – how a cognitive architec-
ture monitors its own status and makes the results available 
for architectural and/or cognitive (i.e., knowledge/skills-
driven) response.  Functionally, this is critical for robust 
autonomy.  Psychologically, it is critical for affective ap-
praisal (Moors et al., 2013) and quite possibly other cogni-
tive capabilities.  It may be conceived of as a distinct mod-
ule on its own, or be implemented in a distributed fashion. 

Robust autonomy in general requires reflection, com-
prising monitoring and correcting of both the architecture 
and the knowledge and skills implemented on top of it.  
The processing involved in monitoring and correcting can 
likewise itself be due to the architecture, to knowledge and 
skills, or to some mixture of the two.  Here, however, the 
focus is specifically on monitoring of the architecture by 
the architecture.  This is not intended to deny the im-
portance of the other aspects, but simply to focus on the 
aspect that has the clearest implications at this time for the 
standard model.  Achieving consensus on the extent to 

which this broader notion of reflection should be incorpo-
rated, and how it should be done, remains for future work. 

In Sigma, architectural self-monitoring has primarily 
been investigated in the context of affective appraisal; that 
is, in the initial stage of emotional processing that captures 
emotionally and behaviorally relevant assessments of situa-
tions in terms of a small set of variables, such as relevance, 
desirability, likelihood, expectedness, causal attribution, 
controllability and changeability (Marsella & Gratch, 
2009).  Appraisal can be fast and automatic, or slow and 
deliberate.  Knowledge and reasoning are clearly implicat-
ed in the latter, and may conceivably also play a role in the 
former.  However, in either case there must be an architec-
tural aspect of the appraisal process if emotions are to 
modify how the architecture supports thought and behav-
ior, whether via parameter setting or other means; and even 
more fundamentally to connect it to other essential aspects 
of emotion, such as the physiological ones that contribute 
to making emotions “hot”. 

Sigma currently supports several appraisals via architec-
tural self-monitoring.  For example, desirability automati-
cally compares goals with states to estimate how close the 
states are to the goals, and unexpectedness/surprise auto-
matically compares distributions in long-term memory 
from just before and just after learning to estimate how 
poorly the current situation was anticipated by what was 
already known (Rosenbloom, Gratch & Ustun, 2015).  
More recent work in Sigma has expanded this to additional 
appraisals as well, including a measure of correctness that 
has proven central to implementing learning by backprop-
agation (Rosenbloom, Demski & Ustun, 2017). 

Beyond appraisal, there are also other critical forms of 
architectural self-monitoring, such as how both Soar and 
Sigma monitor the decision-making process to determine 
when an impasse has occurred and thus when more general 
knowledge-driven reflective processing is necessary.  Per-
haps such impasse detection should simply be considered 
as yet another form of appraisal.  But, either way, it is a 
potentially critical form of architectural self-monitoring. 

The central question then raised by this first lesson is 
whether the standard model should be extended to include 
some form of architectural self-monitoring, in support of 
appraisal and robust autonomy. 

Memory/Learning 
As revealed by the initial mapping of Sigma onto the 
standard model in (Laird, Lebiere & Rosenbloom, 2017), 
the biggest disconnect at present between the two is in how 
they view memory and learning.  A part of this is simply 
that Sigma is behind the other two more mature architec-
tures in implementing some key cognitive capabilities.  For 
example, it does not yet include a mechanism for acquiring 
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new procedural knowledge via procedural composition, 
and thus does not yet have a means for learning all of its 
forms of long-term memory content; and it has not yet 
been sufficiently optimized so as to run within ~50 ms. per 
cognitive cycle on complex tasks, as is required for real-
time human performance.  However, such shortcomings 
are all areas of active endeavor in Sigma. 

What is of broader interest though is the disagreement 
between Sigma and the standard model over how much of 
the diversity of memory and learning capabilities that char-
acterizes the standard model corresponds to architectural 
modules versus a combination of a few smaller yet more 
general architectural mechanisms plus appropriate 
knowledge/skills on top of the architecture.  As mentioned 
earlier, one of the four desiderata driving the development 
of Sigma is functional elegance, where the wide range of 
intelligent capabilities are to arise out of the interactions 
among a small number of very general mechanisms.  Sci-
entifically, functional elegance can be viewed as a form of 
Occam’s razor, favoring simpler explanations for the same 
phenomena, but it also seeks what Deutsch (2011) charac-
terized as explanations with reach; that is, models – or, in 
this case, mechanisms – that are general enough to explain 
a broad range of phenomena.  This is what underlies the 
power of, for example, both Newton’s laws of motion and 
Maxwell’s equations of electromagnetism in physics, and 
also the periodic table of the elements in chemistry. 

The boundaries of the functional elegance achievable in 
any scientific endeavor are determined by a combination of 
the generality of the laws/mechanisms that can be invent-
ed/developed by the scientist/modeler and the constraints 
imposed by the data to be modeled.  Cognitive scientists 
often follow the biological notion that evolution is a tink-
erer that more often than not yields an arbitrarily messy 
outcome; yet, even in biology, evolution itself provides an 
explanation with enormous reach. 

So, what is the story with respect to functionally elegant 
memory and learning in Sigma, and what implications 
might this have for the standard model?  With respect to 
memory, Sigma’s cognitive architecture distinguishes only 
between long-term and working memory; and even this 
distinction disappears in the graphical architecture, where 
both merely comprise distinct regions of a single unified 
graph (along with further distinct regions for perceptual 
memories, which don’t show up explicitly in the cognitive 
architecture). The distinction between declarative and pro-
cedural memories that is found in the standard model arises 
in Sigma from using different combinations of microvaria-
tions within the cognitive (and graphical) architecture plus 
different forms of knowledge structures on top of the cog-
nitive architecture (Rosenbloom, 2010). 

Additional microvariations and knowledge differences 
then also yield a distinction between semantic and episodic 
declarative long-term memories that is not (yet?) found in 

the standard model.  Along with Sigma’s hybrid nature, 
which provides continuous as well as discrete representa-
tions, this overall approach in addition enables distinct 
regions for imagery long-term (and working) memory 
(Rosenbloom, 2011a).  With a mixture of microvariations 
and forms of knowledge/skill it further enables implement-
ing long-term memories that blend traditional procedural 
and declarative varieties, such as the trellis graphs that 
underlie HMMs for perception and POMDPs for action 
(Rosenbloom, Demski & Ustun, 2016a). 

With respect to learning, there is a similar story.  Sig-
ma’s single native learning mechanism is a form of gradi-
ent descent on the functions stored at factor nodes in the 
graphical architecture (driven by the messages sent during 
graph solution).  Yet this has proven sufficient, given the 
appropriate knowledge and skills, to implement classifica-
tion, categorization, reinforcement and inverse reinforce-
ment learning, episodic learning, perception and map 
learning, and action modeling/learning (Rosenbloom et al., 
2013; Rosenbloom, Demski & Ustun, 2016a). 

This is possible because of a combination of the particu-
lar decision and learning mechanisms that operate in paral-
lel across Sigma’s graph each cycle plus the expressivity of 
the parallel language for knowledge and skills that the ar-
chitecture provides (Rosenbloom, 2015).  In essence, Sig-
ma produces these memory and learning behaviors from a 
combination of the cognitive architecture and what can be 
called reactive memory and learning idioms that can oper-
ate in parallel during a single cycle.  Together these enable 
exhibiting multiple forms of memory and learning simulta-
neously within a single cycle, making it challenging to 
distinguish this approach behaviorally from the standard 
model’s approach of a purely architectural implementation 
that is composed of multiple distinct memory and learning 
modules that operate in parallel. 

One major implication of this is that it remains open to 
debate and to further evidence whether the standard mod-
el’s distinct procedural and declarative memories, along 
with their associated learning mechanisms, must be based 
on distinct architectural modules.  There are, however, two 
qualifiers that need to be kept in mind with respect to this 
claim.  First, as already discussed, Sigma does not at pre-
sent exhibit all of the requisite forms of learning.  Second, 
the knowledge/skills that enable its existing diverse forms 
of memory and learning must ultimately either be learnable 
or be part of the system’s innate knowledge.  If the latter, it 
becomes a rather fine distinction as to whether the requisite 
knowledge/skills should themselves just be considered part 
of the defining structure of an architectural module.  

A second, less obvious, implication is that the memory 
and learning capabilities characteristic of human-like cog-
nition may be more diverse and flexible than is stated in 
the standard model.  This might involve blended forms of 
memory, such as the HMMs used for speech understanding 
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in Sigma (Joshi, Rosenbloom & Ustun, 2014), or it could 
involve broader notions of what may be contained within 
the current memories.  For example, procedural memory is 
at its heart about action and control.  The standard model 
describes this as typically occurring via rules that provide 
pattern-directed action invocation – as is in both ACT-R 
and Soar – but Sigma can combine actions not only with 
traditional rule conditions but also with other forms of re-
active-and-contextual conditional processing that still is 
abstractly best described as pattern directed.  Neural net-
works, and bounded forms of both POMDPs and analogy, 
for example, can fit this bill.  All three of these have been 
demonstrated in Sigma (Rosenbloom, Demski & Ustun, 
2016b; Chen et al., 2011; Ustun et al., 2014), but the les-
son here is clearly not just limited to Sigma and its map-
ping onto the standard model, necessarily applying also to 
other architectures with similar capabilities. 

Symbols 
The standard model backed off from a strict interpretation 
of the classical physical symbol systems hypothesis, that “A 
physical symbol system has the necessary and sufficient 
means for general intelligent action.” (Newell & Simon 
1976), by acknowledging that although a symbol system is 
logically sufficient for intelligence, it is insufficient as a 
basis for building a cognitive architecture that is to have a 
human-like cycle time of ~50 ms.  In other words, although 
numeric processing can be constructed on top of a pure 
symbol system, as is done all of the time with digital com-
puters, human-like cognition requires numeric processing 
be available with symbolic processing in the architecture. 

The numeric data used in the architecture may take the 
form of quantitative task information, whether representing 
simple task quantities, such as height or weight, or more 
complex multi-dimensional task quantities, such as spatial 
extent.  Or it may take the form of quantitative metadata 
that represents values such as probabilities, utilities, fre-
quencies, and activations over symbolic data in the system. 

The standard model also backed off, at least for now, on 
the full set of requirements assumed for traditional symbol 
systems, focusing instead more narrowly on just the ability 
to compose symbols into arbitrarily complex structures, 
while glossing over issues of designation, grounding, and 
the lack of symbol substructure. 

Sigma embodies a particularly broad perspective on 
symbol systems and their relationship to quantitative data 
that, although it already has partially influenced the formu-
lation of the standard model’s approach to symbols, is 
worth getting out in its full form to understand how the 
initial discussion in the standard model paper could even-
tually be fleshed out.  A number of these points have al-
ready been discussed and debated in one form or another in 

the literature (see, e.g., Touretzky & Pomerleau, 1994; 
Vera & Simon, 1994; Nilsson, 2007), but for simplicity we 
will start afresh here.  

Let’s start with the notion of primitive elements with (at 
least) one quantity associated with each.  In the standard 
model, these primitive elements are referred to as symbols, 
but here we will hold off on such labeling for now.  Primi-
tive elements can be classical substructure-free symbols 
(with a numeric value of 0 denoting absence and 1 pres-
ence); however, they can also be, for example, such things 
as the units of neural networks, with numeric values denot-
ing their activation levels (Rosenbloom, Demski & Ustun, 
2016b).  There is no assumption in Sigma that primitive 
elements must represent, in the sense of designating some-
thing else.  In other words, these are syntactic elements that 
may or may not have a clear semantics.  Their meaning 
arises from their use, implying a form of procedural or 
inferential role semantics, the only form that really appears 
to make sense for an evolving/developing/learning system 
such as a cognitive architecture. 

Next, the inclusion of relations over primitive elements 
enables combining them into (possibly complex) structures 
and yields composite elements that represent instances of 
these relations.  Quantities associated with such composite 
elements can denote, for example, their truth-values, or 
their probabilities or frequencies (Rosenbloom, 2011b).  
These relations can be fully symbolic, such as isa or 
member; however, as with primitive elements, relations 
are in their essence syntactic structures, with any meaning 
deriving from their use.  For example, the links in neural 
networks are specified in Sigma via instances of a binary 
relation between pairs of units in adjacent layers, with their 
associated quantities denoting the weights on the links. 

Allowing organizations among the primitive elements 
expands the overall expressive power even further.  Sigma 
supports three different forms of organization.  The first 
form involves simple grouping, which enables multiple 
individual primitive elements to be treated as if they were 
one compound element; for example, representing sets of 
symbols or segments of the real number line. 

The second form is an ordering among a set of primitive 
elements to define vectors over them, with associated vec-
tors of quantities, that can for example represent the dis-
tributed vectors and word/concept embeddings that play 
such important roles at this point in machine learning (see, 
e.g., Mikolov et al., 2013; Mnih & Kavukcuoglu, 2013) 
and cognitive science (see, e.g., Gayler, 2003; Jones & 
Mewhort, 2007).  Such capabilities have been demonstrat-
ed in Sigma (Ustun et al., 2014); and, when joined with the 
combinatorics of relations, can also yield tensors, as in 
(Smolensky & Legendre, 2006). 

The third form of organization involves metric aspects, 
which enable representing, for example, 2D regions of vis-
ual images and 3D regions of physical space.  A metric 
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organization is central, for example, to defining the long-
term and working memories mentioned earlier for mental 
imagery. They may also potentially represent such things 
as metric organizations among the units of a single layer of 
a neural network, should such organizations prove useful. 

Both relations and organizations provide structures over 
multiple primitive elements, but they are quite different in 
nature.  The latter provides an implicit structuring across a 
set of elements that may add to the architecturally inter-
pretable semantics across them, whether this involves word 
embeddings or the representation of mental images.  In 
contrast, the former induces a cross product of two or more 
such sets, creating new elements for their combinations, 
and thus providing both the combinatorics required in 
symbol systems and a solution to the binding problem 
(Treisman, 1996) in cognitive science and neural networks 
that aligns well with the tensor approach mentioned above. 

The standard model refers to primitive elements as sym-
bols, while remaining agnostic as to the exact nature of 
these symbols.  It also includes relations over primitive 
elements that generate composite structures, plus quantita-
tive metadata over both primitive elements and composite 
structures.  In Sigma, only a subset of the primitive ele-
ments – those without organization – are normally consid-
ered symbols, as they come closest to the traditional notion 
of bare substructure-free elements that can be used in arbi-
trary ways.  However, Sigma does include all of the capa-
bilities discussed in this section in some form.  In the cog-
nitive architecture, this involves types that determine the 
forms of organization that exist, and which implement the 
hybrid nature mentioned earlier, plus predicates over typed 
arguments that define relations among elements.  These all 
compile uniformly into piecewise linear functions in the 
graphical architecture (Rosenbloom, 2011b), with the line-
arity stemming from going beyond assigning individual 
numbers to elements to assigning linear functions over 
groupings/segments of metric elements. 

Let’s now return to the other aspects of symbol systems 
mentioned earlier.  As discussed above, designation in 
Sigma is a function of use; in particular, via conditionals in 
the cognitive architecture that provide a deep blending of 
concepts from rule systems and probabilistic networks, and 
which compile down to graphical models in the graphical 
architecture.  In this manner, meaning can be assigned to 
individual elements, to composite elements that are in-
stances of relations, and to organizations over elements; 
implying that meaning may accrue to individual elements – 
whether primitive or composite and whether discrete or 
continuous – as well as to both patterns of numbers over 
vectors of elements and the multidimensional combinations 
of metric organizations found in 2D and 3D environments. 

The full determination of meaning in Sigma involves in-
ternal designation, of the form just discussed, plus the use, 
or grounding, of elements in interactions with the external 

world.  The long-term goal with Sigma is to incorporate 
the complete arc from perception through cognition to mo-
tor control within the architecture, ensuring full grounding 
of symbols.  One partial such exploration included a con-
nection, for example, from spectral labels to word recogni-
tion via conditionals (Joshi, Rosenbloom & Ustun, 2014). 

With respect to the lack of symbol substructure, every-
thing depends on what is called a symbol, which itself is 
more a matter of definition than of science, as discussed 
for example in (Vera & Simon, 1994) and elsewhere.  Is it 
just primitive elements, or are composite elements and/or 
patterns of element organizations also included?  If only 
primitive elements, then they indeed have no substructure; 
however, either of the latter involve significant substruc-
ture, with composites being of the type discussed by Vera 
& Simon and organizations being of the types found in 
neural networks, distributed vectors, vector symbolic archi-
tectures, and mental imagery. 

One hope for the future of the standard model is that 
more detailed discussions such as the one here can help it 
move beyond agnosticism with respect to the form of the 
symbols that participate in relations – which was itself a 
step forward from just bare elements – to a more systemat-
ic understanding of the space of (necessary?) possibilities. 

A second hope is that this can break down a barrier be-
tween how the cognitive system is characterized versus the 
perception and motor components (and any imagery com-
ponent that may be coming).  Rather than thinking of the 
former as symbols (defined as those elements over which 
relations can be defined) plus symbol structures and quan-
titative metadata, versus the latter as being purely numer-
ic/subsymbolic, both can be seen at a minimum as com-
prising primitive elements with quantitative metadata. 

Do relations and organizations then also make sense 
over both symbolic and subsymbolic elements?  The most 
obvious answer would be that relations exist (just) in sym-
bolic cognition and organizations (just) in the subsymbolic 
periphery; however, this need not be the case.  For exam-
ple, to the extent that either word embeddings or mental 
imagery are centrally implicated in cognition, then some 
form of organization is required there as well.  Similarly, if 
the dimensional cross-product central to perception and 
motor control arises from relations, then they are required 
in the periphery as well.  Thus, it may be that it all is primi-
tive elements with relations, organizations and metadata. 

A third hope is that by viewing things in this manner 
some of the confusion about the different possible applica-
tions of the term “symbol” in the context of the standard 
model and more broadly may be alleviated.  Combinatorics 
applies to elements, via relations.  Substructure arises from 
organizations (and relations).  Quantities exist as metadata 
and metric organizations.  Designation and grounding arise 
from how all of this is (learned to be) used, including usage 
in perception and motor control. 
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Conclusion 
Digging deeper into the mapping from Sigma onto the 
standard model yields a number of lessons that both illus-
trate “issues” with the standard model and hopefully pro-
vide useful food for thought in its further development. In 
this article three issues and illustrative lessons have been 
explored, but more remains to be mined, such as extending 
from architectural self-monitoring to full reflection.  Such 
mining across the full panoply of today’s leading architec-
tures, followed up with interactions across the broader in-
ternational research community concerning what is re-
vealed, would appear to be one of the essential foundations 
of the continued development of the community consensus 
that must form the core of the standard model. 
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