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Abstract

We present analysis of existing memory models, examining
how models represent knowledge, structure memory, learn,
make decisions, and predict reaction times. On the basis of
this analysis, we propose a theoretical framework that char-
acterizes memory modelling in terms of six key decisions:
(1) choice of knowledge representation scheme, (2) choice
of data structure, (3) choice of associative architecture, (4)
choice of learning rule, (5) choice of time variant process, and
(6) choice of response decision criteria. This framework is
both descriptive and proscriptive: we intend to both describe
the state of the literature and outline what we believe is the
most fruitful space of possibilities for the development of fu-
ture memory models.

Introduction
Imagine that memory is a cardboard box filled to the brim
with things that are important to you. In fact, imagine that
it has Important stuff! scribbled on the side of it in black
marker, triple underlined. But at any particular moment, only
one thing in the box is important to you: the thing you need
right now. How do you find it?

Some early models postulated that finding something in
memory was a serial search process (Tulving 1976). When
you need to find something in the box, you go through the
contents of the box one item at a time until you find the
thing you need. If the thing you are looking for is not in the
box, you will have to search the entire box to find that out.
However, people make judgements that a test item isn’t in a
study set too quickly for an exhaustive serial search model
to be correct (Atkinson and Juola 1974).

Other early models suggested that items in memory can
be accessed directly (Kintsch 1970). If the things in the box
are carefully organized, you can just grab the item you need
without searching. However, direct access models have trou-
ble accounting for the effects of other items on the recogni-
tion of a given item (Clark and Gronlund 1996).

In global matching models, memory retrieves an aggre-
gate across all experiences. To find something in the box,
you turn the box upside down, dump its contents on the floor,
and rifle through the jumbled mess for the thing you need.
Global matching models are able to account for the speed of
retrieval, like direct access models, but also the influence of
other items on retrieval, like serial search models.

Mathematical analysis of the global matching models
(Clark and Gronlund 1996; Hintzman 1990; Humphreys
et al. 1989; Kahana, Rizzuto, and Schneider 2005; Kelly,
Mewhort, and West 2017) found strong similarities be-
tween models, including MINERVA 2 (Hintzman 1984),
CHARM (Eich 1982), TODAM (Murdock 1993), the Matrix
model (Humphreys et al. 1989), and SAM (Raaijmakers and
Shiffrin 1981). While different models describe the struc-
ture and dynamics of human memory using different terms,
similarities in the underlying mathematics of these models
provide evidence of an emerging consensus.

With the goal of advancing toward a unified theory of hu-
man memory, we propose a theoretical framework for char-
acterizing computational memory models. This framework
asserts the key assumptions of global matching models, as
set out by Hintzman (1986, p. 411):

1. only episode traces are stored in memory,

2. repetition produces multiple traces of an item,

3. a retrieval cue contacts all traces simultaneously,

4. each trace is activated according to similarity to the cue,

5. all traces respond in parallel, retrieved information re-
flects their summed output.

Hintzman’s key assumptions loosely describe the be-
haviour of an associative neural network (Kelly, Mewhort,
and West 2017). That said, not all models that realize Hintz-
man’s framework are neural networks, including Hintzman’s
own MINERVA 2 (Hintzman 1984).

Some models that seem to violate these assumptions, such
as the many-to-many models (Jones and Mewhort 2007;
Kelly, Kwok, and West 2015; Rutledge-Taylor et al. 2014)
and REM (Shiffrin and Steyvers 1997) can be understood as
higher level descriptions that can be translated into a model
within this framework (Kelly, Mewhort, and West 2017).
The declarative memory of the ACT-R cognitive architec-
ture (ACT-R DM; Anderson and Lebiere 1998) also has
strong mathematical similarities to global matching models
(Dimov 2016) and many-to-many models (Kelly, Kwok, and
West 2015). As such, ACT-R DM can also be understood as
a higher level description of a model within this framework.

Thus we take Hintzman’s assumptions as a description of
a largely unspoken mathematical consensus across computa-
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tional models of human memory: Namely, that human mem-
ory behaves like a type of associative neural network.

However, this framework of assumptions describes a vast
space of possible memory models. In particular, current
models in the literature differ on six dimensions:

1. Choice of representation scheme: How representations
are constructed and combined.

2. Choice of data structure: many-to-one, one-to-one, or
many-to-many model.

3. Choice of association: Hetero- or auto-association.

4. Choice of learning rule: Error-less Hebbian learning, or
prediction error-driven learning.

5. Choice of time variant process: Is it the echo or the probe
that determines time?

6. Choice of response decision criteria: When does the
model respond?

Some of these choices are largely a matter of implementa-
tion with little consequence for theory, whereas others are
grey areas where more theoretical work needs to be done.
We discuss each of these six choices in what follows.

Choice of representation scheme
The symbol processing models are the earliest mechanistic
models of cognition. The LISP (list processing) language,
developed in 1958, became popular in the budding fields
of artificial intelligence and cognitive modelling. LISP pro-
grams operate on lists of discrete symbols. LISP heavily in-
fluenced the nature of early cognitive models, such as the
cognitive architecture ACT-R (Anderson and Lebiere 1998).
A number of memory models, such as SAM (Raaijmakers
and Shiffrin 1981) and ACT-R DM are described in terms of
the storage and retrieval of discrete symbols.

Symbolic models are systems most appropriately de-
scribed at the level of expressions of symbols and the ma-
nipulation of those symbols (Clark 2001). Symbolic mod-
els take inspiration from linguistics and logic. Typically, in
a symbolic architecture, the atomic units of the model are
concepts (e.g., dog, glowing, noun, or anger) and complex
units arise from characterizing the relations between those
concepts. Arguably, Locke (1690) proposed one of the first
symbolic architectures, well before there were computers,
analyzing the mind in terms of a set of processes that ma-
nipulate expressions of elementary ideas.

With the advent of parallel distributed processing in the
1980s, neurally-inspired connectionist models became a
popular alternative to traditional symbolic models. By con-
trast to symbolic models, the atomic units of a connectionist
system are artificial neurons or simple neuron-like nodes,
whereas a concept will have a complex implementation as a
pattern of activation across those units. Connectionist mod-
els transform vectors of activation values using matrices
of connection weights. While the patterns of activation at
the input or output of a connectionist model may be inter-
pretable as a known concept, the patterns of activation on
the hidden layers of neurons or nodes between the input and
output are often difficult to interpret.

To achieve a full, theoretical understanding of a cognitive
process and how it relates to the physical world, explana-
tions of the process need to be provided at both symbolic
(i.e., representational) and sub-symbolic levels of descrip-
tion. The classic symbolic approaches to modelling do not
account for how the symbol manipulations described in the
model could arise from neural tissue, or account for how
the symbols themselves come into existence. Classic con-
nectionist approaches are more concerned with neural plau-
sibility, but are notoriously opaque, doing little to aid our
understanding of the cognitive processes modelled.

By contrast, what is known as the vector-symbolic
(Gayler 2003; Plate 1995) or conceptual spaces (Lieto,
Chella, and Frixione 2017) approach to modelling explic-
itly provides an account at both symbolic and sub-symbolic
levels of description. In computational, vector-based mod-
els of memory, a to-be-remembered item is represented as
a vector. Vector representation allows items to be treated as
complex entities with internal features and also allows for
errors and fuzzy composites of items to be constructed. Vec-
tors are also amenable to implementation in neural models.
Thus, there are good reasons to prefer to use vectors as a
means of representing items in memory.

In vector symbolic architectures, the vectors represent
symbolic information. These vectors, or symbols, can be
combined and manipulated using a small number of math-
ematical operations (e.g., convolution, multiplication, ad-
dition, permutation), which can be understood as sub-
symbolic processes (see Kelly, Blostein, and Mewhort 2013
for review). However, the information processing models
built from these operations are best characterized at a sym-
bolic level of description (Kelly and West 2012). Impor-
tantly, the modelling decisions made at the sub-symbolic
level are to some degree independent of those made at the
symbolic level (i.e., decisions about cognitive processes).

At the symbolic level, we have to choose how these vec-
tors are combined to create more complex representations
(e.g., how is a percept or concept structured?). The repre-
sentation scheme used greatly influences the behaviour of
the model. Unfortunately, there is a great deal of variability
in the representations across models, indicating a lack of a
consistent theory of representation.

The HEM (Jamieson and Mewhort 2011) and BEAGLE
(Jones and Mewhort 2007) models differ in that HEM
uses an instance-based memory whereas BEAGLE uses a
concept-based memory, as discussed in the next section.
However, HEM and BEAGLE use the same basic encod-
ing scheme: Given a set of co-occurring items within a con-
text, add to memory all combinations of them (all n-grams
or skip-grams) or a random subset of all combinations to
model degraded performance.

Of course, the relationships that humans learn and remem-
ber are not a random subset of all relationships observed in
the environment. Integration with an attention model would
allow memory models to better capture which associations
between items are attended to and retained by the mind.

Vectors representing items are typically randomly gener-
ated by the models, but ought to be generated according to
semantic (Kelly, Reitter, and West 2017) or perceptual (Cox

377



et al. 2011; Kelly, Blostein, and Mewhort 2013) features,
which would require integrating memory and perception.

Choice of data structure
Kelly, Kwok, and West (2015) classified vector-based mem-
ory models in the literature as belonging to one of three
classes: many-to-one, one-to-one, and many-to-many. In
many-to-one models, the memory model stores all experi-
ences as a composite, superimposed on a single data struc-
ture in a fully distributed manner. In one-to-one models, the
memory model stores each experience individually, as if it
were a box on a shelf in a giant warehouse. In many-to-many
models, experiences are decomposed into relationships be-
tween concepts. Concepts are stored individually and can be
understood as points on a hyper-sphere, shifting on the sur-
face of a globe of memory and meaning, moving closer or
further from the other concepts on the basis of experience.

To give example applications of each model, a many-
to-one model can be used as working memory buffer, a
one-to-one model can be used as an episodic memory, and
a many-to-many model can be used as semantic memory.
However, working, episodic, and semantic memory are the-
oretical constructs, whereas these three classes of model are
data structures with varying theoretical interpretation.

Given demonstrations of equivalence between many-to-
one, one-to-one, and many-to-many models (Kelly, Me-
whort, and West 2017), the choice of data structure for a
memory model is not a theoretical distinction but rather a
pragmatic one dependent on the scale of the model.

A many-to-one model stores all memories in a single
fully distributed data structure (Franklin and Mewhort 2015;
Humphreys et al. 1989; Murdock 1993). As such, the model
is invariant in scale with respect to the number of instances
of experiences or concepts stored by the model. These mod-
els are easily amenable to neural implementation (Eliasmith
2013) and are likely the ground truth of human memory.

Many-to-one models work best when only a small num-
ber of instances are stored in the memory system, as these
models compress all memories into a single data structure
of invariant scale. Conversely, if the data structure is made
larger, it can accommodate more memories but becomes un-
wieldy to compute on a serial computer - though neuromor-
phic computers may make this possible in the future.

One-to-one models store one vector per instance of an ex-
perience, allowing memories to be stored and retrieved with
fidelity. One-to-one models such as MINERVA 2 (Hintz-
man 1984) approximate the behavior of a large many-to-one
model (Kelly, Mewhort, and West 2017). One-to-one mod-
els scale with the number of experiences and thus become
unwieldy for simulating a lifetime of experiences, making
them unsuitable for tasks such as language processing.

Many-to-many models, commonly known as distribu-
tional semantics models (Jones and Mewhort 2007; Mikolov
et al. 2013), store one vector per distinct concept. These
models can be understood as a higher-level description of
a one-to-one model, as concepts can be understood as useful
aggregates of individual experiences (Hintzman 1986). The
advantage of these models is that they grow only with the

addition of new concepts, and as such, are suitable for lan-
guage processing (Jones and Mewhort 2007) and big data
(Rutledge-Taylor, Vellino, and West 2008).

The difference between a many-to-many model and a
many-to-one or one-to-one model is also one of emphasis.
A many-to-many model is a concept-based memory system
designed to learn about items and the relationship between
items. Conversely, an instance-based memory system is de-
signed to record and retrieve experiences.

Choice of association

In a hetero-associative memory (Franklin and Mewhort
2015; Humphreys et al. 1989; Kelly, Kwok, and West 2015;
Murdock 1993; Raaijmakers and Shiffrin 1981), associa-
tions are formed between two different items. A cue can
retrieve completely dissimilar memories that have become
associated with that cue through experience.

In an auto-associative memory (Farrell and
Lewandowsky 2002; Hintzman 1984; Anderson and
Lebiere 1998), an item forms associations with itself. A
cue always retrieves a similar memory, or combination
of similar memories, and new information is a matter of
remembering more detail.

For recall, the distinction between hetero- and auto-
associative makes little difference. Given a pair of items to
remember, x and y, and then cued with the item x, an auto-
associative model retrieves a completion, an echo of both x
and y. A hetero-associative memory given x just retrieves y.

However, modeling a recognition task with an auto-
associative memory is more straightforward than with a
hetero-associative memory. To test if an auto-associative
memory system has studied a pair x y, one presents the
auto-associative memory with the cue x y, and if that pair
is present in memory, the model will retrieve x y.

How a hetero-associative architecture performs a recog-
nition task is less well defined than for an auto-associative
architecture. This is because recognition is fundamentally a
task of giving the model a cue and seeing if you get some-
thing like that cue back again.

The choice between a hetero-associative model and an
auto-associative model is a false one. The correct answer
is both hetero-associations and auto-associations are useful
tools for constructing a memory model.

At the level of representation, both auto- and hetero-
associations can be encoded in a vector using linear algebra
operations (concatenation, convolution, etc.). Both forms of
association can and should be used to represent a stimulus
as appropriate for the task.

At the level of the architecture of the model, a hetero-
associative architecture is a set of connections between two
neural groups that translates a signal into another signal.
As such, hetero-associative architectures are pervasive in the
brain, though they are arguably not memory but translation
systems. Conversely, an auto-associative architecture is a re-
current neural loop that acts as an error-correcting buffer for
holding a standing pattern of neural activation.

378



Choice of learning rule
In error-less learning, a vector representing an experience, x,
is simply added to memory when the model has that experi-
ence. In error-driven (or reinforcement) learning, the mem-
ory system is only updated when something surprising hap-
pens. Memory makes a prediction e on the basis of the cur-
rent situation, and memory is updated by the difference x - e
between the prediction and the actual experience x.

Do these two kinds of learning necessitate separate mem-
ory systems? For example, ACT-R (Anderson and Lebiere
1998) has two types of memory, declarative and procedural,
which respectively use error-less and error-driven learning.

Conversely, MINERVA-AL is a variant of MINERVA that
uses reinforcement learning. MINERVA-AL makes and cor-
rects predictions to capture numerous associative learning
phenomena from both the animal and human learning litera-
ture (Jamieson, Crump, and Hannah 2012). MINERVA-AL
demonstrates that error-driven learning does not require a
distinct memory architecture, as aside from how it learns,
MINERVA-AL is otherwise a standard MINERVA model.

Can human memory be modelled using error-driven learn-
ing alone? Recent research has found that even in one-shot
declarative learning, human learning is modulated by pre-
diction error (Greve et al. 2017), which suggests that only
error-driven learning is necessary to model human memory.

Choice of time variant process
Cognitive models live and die by their ability to model and
predict human experimental data. Much of the experimental
data collected is reaction time data. How long does it take
the model to recall something? How long does it take for the
model to decide if a cue is familiar or unfamiliar?

One possibility is that retrieval occurs over a series of it-
erations as the echo is used as a new cue, which in turn,
retrieves a clearer echo (Farrell and Lewandowsky 2002).

Time to clean up the echo is not the only candidate for the
time variant process that accounts for variability in response
time in memory tasks. The Iterative Resonance Model (Me-
whort and Johns 2005) suggests sharpening, a process of
incrementally increasing the precision of memory retrieval.
However, there is no clear neural implementation for sharp-
ening, and it seems counter-intuitive to suggest that memory
has a sharpness dial that can be adjusted at will. Why would
the dial ever be set at less than perfectly sharp?

Cox and Shiffrin (2012), who use a variant of the REM
(Shiffrin and Steyvers 1997), suggest sampling of features
from the probe as the time variant process. Again, this seems
counter-intuitive, as it suggests that we are slow to recall
some things because we are slow to perceive them correctly.
For these reasons, we prefer time to clean up the echo as
the time variant process. Determining what the time variant
process is in human memory is a matter for further research.

Choice of response decision criteria
At some point, a decision needs to be made on the basis of
retrieved information and the model produces a response.
In an actual brain, this decision to act is made by whatever
part of the brain needs to use the retrieved information. In

a memory model, the only part of the brain modelled is the
memory system itself. As such, the decision is made by a set
of criteria that act as a stand-in for those other systems. As a
result, these criteria are a somewhat artificial imposition on
the model, magic parameters that turn a theory of memory
into a system that produces reaction time data.

In principle, integration into a larger cognitive system
could help absolve memory models of their need for some-
what arbitrary criteria. Unfortunately, the ACT-R architec-
ture (Anderson and Lebiere 1998) treats time to retrieve in-
formation from memory as internal to the memory model,
rather than arising from the interaction between the memory
retrieval process and an external decision process.

In a recognition task, the decision that a cue is familiar
can be modelled by measuring the similarity between the cue
and the echo retrieved in response to the cue. The decision
that a cue is unfamiliar has, however, proven more difficult
to model. Mewhort and Johns (2005) argue that decisions to
reject a cue as unfamiliar is dependent not on similarity but
on contradiction. Both Mewhort and Johns’s IRM model and
Johns, Jones, and Mewhort’s (2012) RSS model use contra-
diction to reject foils, though the two models do not agree
on how contradiction ought to be measured.

Criterion setting remains a black art in memory modelling
because response times are influenced by the particulars of
the task and the strategy that a participant uses to complete
the task. Rutledge-Taylor et al. (2014) make an analogy be-
tween rejecting foils and cooking popcorn. When cooking
popcorn, you learn roughly how much time passes between
one kernel popping and the next. If more than the expected
amount of time has passed since the last pop, you may judge
that the popcorn is finished. Likewise, participants may learn
how long it usually takes for them to recollect something in a
memory task. If they have failed to recollect the cue in about
that period of time, they may judge that the cue is a foil.

In short, response times in a memory model are a Gordian
knot that tangles together participant strategy, the passage of
time, and the quantity and quality of the information being
retrieved from memory. By necessity, this aspect of memory
models may remain ad hoc for some time.

Discussion
Here we summarize each of the six key decisions for con-
structing a memory model in our framework, and the extent
to which each of these decisions reflect theory-neutral im-
plementation details (1, 2, 3), emerging theoretical consen-
sus (3, 4), or areas in need of future research (1, 4, 5, 6).

1. Vector-symbolic architectures (Gayler 2003) and concep-
tual spaces (Lieto, Chella, and Frixione 2017) prove that
symbolic systems, such as ACT-R (Anderson and Lebiere
1998), can arise from distributed connectionist networks.
As such, the choice of symbolic, vector symbolic, or con-
nectionist is a matter of a model’s level of description,
rather than a theoretical claim.
However, a theory of human memory ought to describe
the structure of the representations stored in memory. In-
tegrating memory with perception and attention is neces-
sary if research is to develop a coherent theory of rep-
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resentation. This integration is more easily accomplished
using a vector-symbolic or connectionist model as the ex-
ternal world is not inherently carved up into symbols.

2. The choice of data structure is not a theoretical distinction
but a pragmatic one dependent on the scale of the model.

3. A memory model may be a hybrid of both hetero- and
auto-associative representations and architectures.

4. The ACT-R cognitive architecture postulates two types of
memory, declarative and procedural, which correspond to
two types of learning, error-less and error-driven. While
there is considerable evidence that prediction error can
drive learning in both humans and animals (Jamieson,
Crump, and Hannah 2012), the evidence for pure, error-
less learning is scant. Even in one-shot declarative learn-
ing, prediction error has an effect on human learning
(Greve et al. 2017). While more research may need to be
done on this question, we advocate that future memory
models and cognitive architectures explore using predic-
tion error in all memory encoding.

5. Why are people faster to remember somethings and
slower to remember other things? Memory retrieval is a
time variant process. But what is taking up all that time?
There are three candidates in the literature: time to clean
up the echo (Farrell and Lewandowsky 2002), sharpen-
ing the echo (Mewhort and Johns 2005), and sampling
features from the probe (Cox and Shiffrin 2012). More
research is needed to settle this question.

6. Response decision criteria are an artifact of modelling
memory separate from other cognitive functions. Re-
sponse times are emergent from the interactions of mem-
ory with perception, action, and participant strategy. Bet-
ter integration of memory models with cognitive architec-
tures is necessary to escape from ad hoc criterion setting.

We note that developing better memory models requires
integration with models of perception, attention, action, and
meta-cognitive strategy, in order to arrive at clear answers to
fundamental questions about the nature of representations in
memory and the time course of memory retrieval.

Conclusion
We propose a theoretical framework for current and future
models of memory. The framework consists of Hintzman’s
(1986) key assumptions and a set of six key decisions. On
the basis of this framework, we sketch a course of develop-
ment for future memory models.

The theoretical framework we propose allows for mem-
ory to be modelled at multiple levels of analysis, from the
level of individual, biological neurons and messages passed
between groups of those neurons (many-to-one models), to
the level of the events processed by memory (one-to-one
models), to the level of the concepts which emerge as ag-
gregates across those events (many-to-many models), and on
up, to the arbitrarily abstract concepts that emerge from ag-
gregating across concepts (Kelly, Reitter, and West 2017).
Furthermore, estimates of Bayesian probability arise from
the vector algebra of many-to-many models (Kelly, Kwok,

and West 2015). Thus, models based on Bayesian probabil-
ity, such as the ACT-R declarative memory (Anderson and
Reder 1999), can be understood as higher-level descriptions
within this theoretical framework.

Simon (1969) famously argued that to account for the
complexity of human behaviour we need to account for the
influence of two environments: the external environment of
the world and the internal environment of memory. Thus we
feel that the memory framework we propose is an important
step towards a working model of the human mind.
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