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Abstract 
This paper outlines a proposal to add emotion to the Stand-
ard Model.  Part 1 describes how emotional factors impact 
decision-making and Part 2 outlines a way to augment the 
standard model to include these factors. 

Introduction   
The standard model is a model of deliberate action, or 
choice, occurring in the 50 to 100 millisecond range of 
human cognition. To incorporate emotion into the standard 
model we need an understanding of how emotion partici-
pates in this type of choice. However, there is no agreed 
upon standard for emotion. Instead, there is a lot of diverse 
research and differing frameworks for interpreting the re-
sults. This has led to a diversity of computational models 
of emotion (see Lin et al, 2012, for a review of cognitive 
models incorporating emotion). The position taken in this 
paper is to look for major points of intersection between 
emotion and deliberate actions, and to interpret them in 
terms of the standard model. That is, to develop a theory of 
emotion as it relates to the standard model.  

Part 1 of this paper outlines the major points of inter-
section and how they can be interpreted in terms of the 
standard model. Part 2 describes how these areas of inter-
section can be formally incorporated into the standard 
model. This research is based on modelling emotion in 
ACT-R so the discussion will be mainly informed by ACT-
R, but it is applicable to the standard model. Neurological-
ly, the focus will be on the amygdala as the nexus for emo-
tional participation in symbol driven choice. However, no 
strong neurological claims are made, except for the fact 
that the amygdala is a reliable neural correlate for this type 
of processing. 

Part 1: Points of Interaction 

Neural and Symbolic 
Anderson’s concept of symbolic and sub symbolic struc-
tures is particularly important for understanding the 
boundary between the neural and cognitive levels (see An-
derson and Lebiere 1998). Symbolic structures in ACT-R, 
such as chunks and productions, are composed of symbolic 
information combined with associated magnitude infor-
mation related to sub symbolic processing. For example, 
productions are associated with a utility value and chunks 
are associated with an activation value. The division be-
tween the symbolic and sub symbolic is strict, symbols 
cannot access their own sub symbolic values. This strict 
divide makes sense if sub symbolic values represent the 
neural process underlying the symbolic representation. 

Emotional processes at the neural level can be described 
through their effect on sub symbolic algorithms and values. 
One way of architecturally conceptualizing  this is in terms 
of an overlay, which adjusts sub symbolic processing to 
account for factors such as fatigue or stress (see Ritter et al. 
2006) for review and discussion).  This is a good approach 
for understanding how state wide emotional factors influ-
ence the performance of tasks, but it is limited in terms of 
accounting for the role of emotion in symbol based deci-
sion making.  

Involving emotions in deliberative decision making min-
imally requires (1) that the symbol system can access a 
representation of the agent’s emotional state, and (2) that 
the emotional system can understand the symbolic repre-
sentations of the current state in working memory. 

To access state wide effects modelled with overlays 
(e.g., stress, fatigue) the symbol system can infer the emo-
tional state by observing its own reactions and behaviors 
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(as in the Two Factor theory of emotion, Schachter and 
Singer 1962). For example, this method has been used in 
ACT-R to model how people estimate their confidence in a 
judgement by equating longer decision times with lack of 
confidence (Drewitz and Thuring 2009). This mechanism 
would allow a limited type of emotional decision making 
(e.g., I am stressed so I choose to quit). 

However, it is also important to account for the fact that 
emotions occur in response to symbolic information, for 
example, numerical rewards or a letter informing you of a 
tax audit, etc. Corresponding to this, there is evidence that 
the amygdala responds to symbolic information (e.g. Jeni-
son et al. 2011). There is also evidence that the amygdala 
can communicate alarm judgements to the symbolic sys-
tem (e.g. Fox et al. 2015), that it is sensitive to reward 
amounts (e.g. Gospic et al. 2014), and that it is capable of 
learning (e.g. Damasio 1994). This is different from what 
can be modelled with an overlay. To incorporate this type 
of emotional activity, a separate module is needed and the 
relative contributions of symbolic and sub symbolic pro-
cessing need to be considered. 

Rewards and Punishments 
Problem space search is an important component of the 
standard model. In ACT-R, Time Delayed (TD) learning is 
used to learn pathways through problem spaces by adjust-
ing the utility of productions in procedural memory (see 
also Kelly and West 2013, for a holographic mechanism). 
However, regardless of the mechanism, the amount of the 
rewards must be set by the modeler. Having different 
award amounts reflects the obvious fact that some rewards 
are higher than others. Also, humans can value the same 
rewards differently, even when they are numerically iden-
tical (West and Ward 1998). Research shows that the 
mechanism for this valuation of rewards involves the 
amygdala (e.g. Gospic et al. 2014). However, to model this 
we need to know what the evaluation is based on. This is 
covered below in the section in values. 

Somatic Markers 
Damasio, in his book, Descartes Error (1994), elucidated 
the relationship between emotion and rational thought by 
showing that emotional learning plays a role in rational 
decision making. He did this by demonstrating that people 
with brain damage blocking communication between the 
amygdala and frontal cortex could not learn the Iowa 
Gambling Task (IGT), although they could learn other 
types of rational tasks (Damasio 1994). The IGT involves 
selecting cards from four decks to reveal rewards and pun-
ishments. Two of the decks are “bad” decks that will lead 
to loosing in the long term, and two of the decks are 
“good” decks that will lead to winning in the long term. 
Initially, people tend to choose the bad decks but over time 

they slowly switch to the good decks, but people with 
damage to the connections between the amygdala and the 
frontal cortex seem unable to learn this. Damasio’s (1994) 
interpretation of this result was that rational thinking in the 
frontal cortex initially leads people to perform poorly in 
the IGT, but this is overcome by emotional learning occur-
ring in the amygdala. 

Damasio explains the IGT results using his theory of 
somatic markers. Somatic markers are emotional tags at-
tached to the representation of an object or person, indicat-
ing overall desirability. In theory, somatic markers are 
blocked by damage to the connections between the amyg-
dala and the frontal cortex. Damasio has insisted that emo-
tional learning and somatic markers do not involve the use 
of symbols. However, this is widely disputed as it has been 
shown that IGT players are aware of the knowledge that 
they need to win (Maia and McClellan 2004).  

ACT-R has already been successfully used to model so-
matic markers and paradigms related to the IGT. In fact, 
there are at several different ways to get ACT-R to mimic 
this type of learning. Lebiere (1999) created blending, 
which can operate in ACT-R or independently (Gonzalaz 
et al. 2003), and Rutledge-Taylor et al. (2004, 2015) pro-
posed varying the number of memory saves to reflect the 
amount of reward. Similar to the proposal in this paper, 
Stocco et al (2005) and Juvina et al (2017) have proposed 
adding a module to ACT-R to model these effects. All of 
these operate by somehow encoding reward amounts into 
an instance based memory model. 

Alarm 
In addition to being involved with somatic markers, there 
is wide agreement that the amygdala plays an important 
role in our ability to detect threats (Andrew et al. 2015). 
This is important because threat detection, arguably, repre-
sents a computational shortcoming in the standard model. 
Both ACT-R and the standard model have a serial bottle-
neck in the action cycle. In ACT-R, the bottleneck is pro-
duced because only one production can fire at a time. 
Computationally, the bottleneck is important because it 
functions as a control system, but it also limits flexibility in 
the face of unexpected interruptions.  

This is best illustrated with an example. Consider a 
technician executing a series of well-practiced actions to 
fix an elevator. The series of actions would be executed by 
a chain of productions, each one changing the buffer condi-
tions so that the right production will fire next. If the fire 
alarm rings, this series of productions will continue to fire 
unless there is a higher utility production that fires if the 
fire alarm is ringing. This approach assumes that our abil-
ity to be interrupted by perceived threat is based on a set of 
high utility productions in procedural memory. However, 
there are several reasons why this approach is problematic. 
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Humans are sophisticated in their response to alarms. 
Consider the elevator technician’s response to the alarm. If 
they are in the middle of an important operation they might 
finish it first if the consequence of not doing so is serious 
(e.g., the elevator falls). Or, they might know that the fire 
alarm is not working properly and choose to ignore it. Al-
ternatively, their knowledge that there is a large amount of 
dynamite stored in the building could cause them to drop 
everything and run.  

Humans are able to intelligently modify their response 
based on the alarm type and the context. Humans are also 
able to resume their task later without difficulty. High utili-
ty productions can fire at any time, which means that the 
buffer states can be altered at any point. To produce human 
like abilities under these conditions would require a system 
for buffering the response, understanding the context, 
choosing the right response, and remembering where the 
interruption occurred so the task can be resumed. Putting 
all of this through the procedural memory bottleneck 
would cause relatively large time delays compared to hu-
man responses, which can be quite fast in experts.  

The standard model is not committed to the ACT-R pro-
duction utility mechanism so this problem could potential-
ly be dealt with by using a more complex production selec-
tion mechanism. However, the neural evidence indicates 
that the human brain solves this problem by using the 
amygdala as a parallel threat-screening mechanism. As 
proposed below, this provides a simple, flexible solution to 
this problem for the standard model. 

Emotional Knowledge 
Emotional Intelligence (EQ) is a collection of different 
emotional skills, many of which can be explicitly learned. 
Likewise, Cognitive Behavioral Therapy (CBT) has 
demonstrated that emotional disorders such as depression, 
anxiety, and anger management, can be effectively treated 
by teaching people to replace poor emotional skills with 
more effective emotional skills. What this tells us is that 
knowledge, in terms of cognitive routines, plays a key role 
in how emotions are processed. This type of knowledge 
can be modelled directly in the standard model using pro-
cedural and declarative memory, but there needs to be a 
source of emotional information. 

Values 
The standard model is driven by goals. Each time the sys-
tem moves to a new state in the task the working memory 
representation is updated by the procedural memory sys-
tem. Thus a goal hierarchy is implicit in the procedural 
memory representations that alter working memory. More 
globally, the procedural and declarative representations in 
the model can be considered to embody a rational analysis 
of how to achieve the goal. However, as the pragmatists 

have pointed out, a rational analysis is only possible in the 
context of knowing the goal (James 1907). Without a pre-
determined goal we run into the naturalistic fallacy (Moore 
1903), which states that we cannot rationally go from what 
is, to what we ought to do. The consequence of this is that 
you cannot use rationality to choose the top goal for a 
model.  

Top goals are ultimately based on values. Rationality 
can be used to create better medicine or better weapons, or 
it can be completely ignored. It depends on one’s values. In 
the standard model values are arguably connected to re-
ward amounts, the more a goal is valued, the higher the 
reward when it’s achieved. To understand the relationship 
between values, goals, and rationality consider Asimov’s 
three laws of robotics: 

A robot may not injure a human being or, through in-
action, allow a human being to come to harm. A robot 
must obey orders given it by human beings except 
where such orders would conflict with the First Law. 
A robot must protect its own existence as long as such 
protection does not conflict with the First or Second 
Law. 
Given a task, the robot uses rational analysis to create a 

goal structure that will not violate these three laws. The 
laws function as the values of the robot. Although the val-
ues can be treated as high level goals, they were not creat-
ed by rational analysis. Instead the values were placed 
there by humans. Likewise, in humans, a fixed set of val-
ues is often provided by society. However, unlike Asi-
mov’s robots, humans can change their values.  

The top diagram in Figure 1 illustrates how the standard 
model currently works. Goals produce results and the re-
sults feedback to update the goals. The reward amounts as 
well as the choice of goals are hand coded by the pro-
grammers. Once the goals and associated rewards are set, 
learning algorithms can be used to work out, or learn, effi-
cient pathways through the problem space to the goal. The 
bottom diagram shows how the standard model would 
work if it had values; the agent uses its values to set its 
own goals and rewards, and updates its values based on 
feedback.  

Values don't appear out of nowhere, you need a starting 
point. Initial values are provided to us by society and pos-
sibly by evolution. The process of selecting goals (i.e., 
thinking about what one ought to do) has a strong 
knowledge component. The process could involve quite 
extensive deliberation or it could be heuristically based. 
This distinction can be mapped to Kahneman’s (2011) fast 
and slow thinking theory. In either case, the standard mod-
el could process it (Thomson et al. 2015). Triggering goal 
selection can be accomplished by a high utility production 
of the type - if a top goal has been achieved, set a goal to 
choose the next goal based on the context. Values represent 
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the values of goals, and can change due to feedback from 
results. 
 

 

Figure 1. Values are needed to choose goals. 

Neural imaging indicates that values are processed 
through the amygdala (Gospic et al. 2014). There is evi-
dence (Kanai 2011) that different value sets (conservatism 
versus liberal) are correlated with relative size differences 
in the amygdala and the anterior cingulate cortex, which is 
associated with control and executive processes. Conserva-
tives have a relatively larger right amygdala and liberals 
have a relatively larger anterior cingulate cortex. In terms 
of the model described in this paper, this would indicate 
that processing conservative values depends more on in-
formation stored or processed through the amygdala, while 
processing liberal values relies more on top down execu-
tive control. The standard model should be able to model 
this difference. 

Part 2: An Emotional Architecture 
Our proposal for adding emotion to the standard model is 
based on defining how emotion participates in the creation 
of deliberate actions at the cognitive level. It is not a neural 
model nor does it involve speculation on the fundamental 
structures or representations underlying emotion. However, 
it is broadly consistent with research on these topics.  

The standard model derives its rational intelligence from 
the procedural and declarative memory systems. The pro-
cedural system is based on choosing what to do next given 
the current context. The declarative system provides fur-
ther information relevant to the context, when requested by 
the procedural system. The goals in designing the emotion-
al system were (1) to incorporate it into the standard model 
in the simplest possible way, (2) deliver the functionality 
described in Part 1, and (3) not to break existing, non emo-

tional models. This system has been partially constructed 
and tested in ACT-R but will be described here in more 
general terms, suitable to the standard model. 

The Emotional Module 
The proposal for an emotional module is based on research 
on the amygdala. However, the proposed emotional mod-
ule is not meant as a model of the amygdala. Rather, the 
claim is that the amygdala functions as the nexus of a con-
trol structure for mediating the relationship between emo-
tions and rational, symbol-based decision-making. Other 
brain areas are certainly involved in the sub symbolic pro-
cesses related to the emotional module (e.g., see Juvina et 
al, 2017). 

Computationally, the emotion module is similar to the 
procedural module, in that it reacts to the contents of the 
working memory buffers. However, rather than producing 
actions, the emotional module produces emotional evalua-
tions, both symbolic and sub symbolic. The buffer struc-
ture is shown in figure 2. The emotional module reacts to 
the same buffers as the procedural module but it is limited 
in its responses to a single buffer, called the emotional 
buffer. This limitation prevents the emotion module from 
changing the buffer conditions unexpectedly, in a way that 
could confuse the procedural module, which relies on sta-
ble buffer conditions for chaining actions together. At the 
same time, though, the contents of the emotional buffer are 
available to the procedural module and can alter its behav-
ior. An example is provided below. 

In terms of its interactions with other modules, the emo-
tion module produces a parallel emotional evaluation of the 
current buffer contents that is used by both the procedural 
and declarative modules. This is illustrated in Figure 3. 
The input to the declarative module is for managing somat-
ic markers. One expedient way to do this is to create a 
chunk representing all of the buffer conditions and store it 
in declarative memory along with the emotional evalua-
tion. As noted above there are a number of ways to imple-
ment somatic markers, anyone of them could work.  

In terms of the procedural module the evaluation from 
the emotional module is used as the amount of reward or 
punishment for supervised learning. Feed back to the pro-
duction system already exists in a number of architectures 
that fit the standard model, however, the reward amounts 
must be specified. Using the emotional module to set the 
reward amounts extends the standard model to cover mod-
els of how we derive our internal rewards. 

Emotional Knowledge 
For this system to work there needs to be a fair amount of 
emotional knowledge in procedural memory. Although this 
is not what ACT-R is typically programmed with, research 
on EQ skills and on CBT clearly shows that people have 
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different levels of expertise in dealing with their emotions 
and the emotions of others. To research this we have been 
looking at how this type of expert knowledge interacts with 
more traditional forms of expert knowledge. 
 

 
 

Figure 2. Emotion module buffer configuration. 

If each different area of expertise (e.g., nurse, parent, 
hockey coach, martial artist, camper, video game player) is 
organized differently then each one requires a customized 
set of emotional productions to interact with them. While 
this is theoretically possible, it seems unlikely and ineffi-
cient. Instead, we assume that all expert knowledge is or-
ganized according to SGOMS (West et al. 2007, 2009, 
2015), which is a version of GOMS (Card, Moran, and 
Newell 1983). Thus each activity is organized according to 
operators, methods, unit tasks, and, in the case of SGOMS, 
planning units. By assuming this as a generic structure we 
can make use of generic emotional knowledge. Imagine 
that someone is afraid of spiders. This fear will not change 
during different activities, but the response could. For ex-
ample, while camping one might immediately attempt to 
deal with a spider but during an emergency hospital proce-
dure one might ignore it. This can be modelled as follows - 
in both cases the amygdala recognizes the spider and plac-
es a medium threat chunk in the emotion buffer. In the 
camping case this is enough to trigger an interruption to the 
roast marshmallow planning unit, but in the medical case it 
is not enough to interrupt the evaluate emergency room 
patient planning unit. 

As part of the SGOMS model, each operator, method, 
unit task, and planning unit contains expert knowledge of 
how important it is and thus what level of threat is needed 
to interrupt it. For example, a nurse might complete the 
unit task for measuring blood pressure but then briefly in-
terrupt the planning unit for processing the patient to stomp 

on the spider. However, if a lion charged through the door 
the nurse would likely drop everything and try to escape. 
The important thing to note is that the expert system for 
nursing does not need to know anything about spiders or 
lions, that knowledge is processed in parallel in the amyg-
dala and communicated as a threat level. 

We have found that this approach allows ACT-R to 
model the sort of quick but intelligent interruption abilities 
displayed by human experts. We have used it to model 
interruptions in first person shooter video game play and 
expert mediation in training scenarios with actors (Mac-
Dougal et al. 2014). This approach separates task expertise 
and threat evaluation into parallel threads, which is argua-
bly more efficient and scalable. 
 

 

Figure 3. The same sub symbolic values from the emotion 
module are used in the procedural and declarative modules. 

Implementation 
To implement the emotional module, we created it as a 
second production system in Python ACT-R. However, 
this is not a parallel production system. The emotional 
module cannot send instructions to other modules and it 
can only alter the contents of the emotional buffer. It is 
more of a shadow production system that offers emotional 
commentary on the ongoing activity. The serial production 
bottleneck still controls activity. Implementing it in this 
way allows the emotional module to react to the buffer 
conditions, and it can model emotional learning through 
production utility. We are currently using this system to 
model how individuals change, or fail to change their val-
ues when exposed to different information. 

Conclusion 
The emotional module provides a simple, direct method for 
modelling a variety of emotional effects that is consistent 
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with research on the amygdala and the architectural as-
sumptions of the standard model. Moreover, having a 
module devoted to emotional processing creates a clear, 
unambiguous way of exploring different ways to model the 
effects of emotion as they apply to the standard model. 
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