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Abstract

If a robot can predict crowds in parts of its environment
that are inaccessible to its sensors, then it can plan to avoid
them. This paper proposes a fast, online algorithm that learns
average crowd densities in different areas. It also describes
how these densities can be incorporated into existing navi-
gation architectures. In simulation across multiple challeng-
ing crowd scenarios, the robot reaches its target faster, travels
less, and risks fewer collisions than if it were to plan with the
traditional A* algorithm.

Introduction

Robots increasingly serve in environments shared with peo-
ple, as museum tour guides (Thrun et al. 1999), telepres-
ence robots (Tsui et al. 2011), and assistants in hospitals and
offices (Veloso et al. 2015). When these environments are
crowded, autonomous navigation (the ability to move about
without human intervention) becomes challenging. Because
the robot can detect people only in its vicinity, it is restricted
to local rather than global crowd data. Moreover, because
crowds move, path planners that assume a static world may
generate infeasible or inefficient plans. In addition to travel
distance and time, in the presence of crowds, other crite-
ria become important, including safety, comfort, and social
mores (Kruse et al. 2013). The thesis of our work is that
a robot can meet the challenges of a crowded environment
when it learns to predict global crowd behavior and to plan
with that knowledge. We call this crowd-sensitive planning.

Ideally, a robot familiar with its environment should be
able to predict crowded areas and simply avoid them. This
would reduce travel time, travel distance, and the likelihood
of collision. A robot that could detect crowds only within
its sensor range might generate the plan shown in Figure 1
as a solid line. As a result, the robot would repeatedly cor-
rect this plan (plan repair) or make a new one (replan), and
pause often until it had an opportunity to move. In contrast,
a crowd-sensitive plan, shown as a dashed line in Figure 1,
might entirely avoid areas likely to be crowded.

A crowd density map is an observed, cumulative, global
record of the crowd in an environment. A robot can use a
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Figure 1: Example to demonstrate the usefulness of a crowd-
sensitive plan

crowd density map to predict where people are likely to ap-
pear. Our approach learns a crowd density map for a two-
dimensional space as a robot moves in it from one location
(coordinates (x,y) with respect to an allocentric origin) to
another.

The contributions of this paper are threefold. First, it in-
troduces a fast, online algorithm that learns a crowd density
map from only local sensor information, with no assump-
tions about the size or behavior of the crowd. Second, it de-
scribes how crowd density maps can be incorporated into
existing navigation architectures to generate crowd-sensitive
plans. Finally, it demonstrates empirically, through exten-
sive simulation, the benefits of crowd-sensitive planning. In
particular, it shows statistically significant improvements in
both efficiency and safety over a traditional A* planner.

The next section provides background and describes re-
lated work. Subsequent sections list the assumptions behind
our approach, describe how to learn a crowd density map,
and explain how to generate crowd-sensitive plans to im-
prove both navigation and safety. These are followed by the
experimental design, results, and a discussion.

Background and Related Work

Early research in autonomous navigation for crowded envi-
ronments simply detected local obstacles and then sought to
avoid them; it did not predict their future motion. One such
approach used a dynamic window (Fox, Burgard, and Thrun
1997). Search for commands to control the robot was done
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in velocity space, the set of all velocities (vectors that indi-
cate the speed and direction of motion) that can be sent to the
robot as motion commands. Velocity space was pruned to re-
flect the physical constraints of the particular robot. Among
the remaining velocities, one that maximized the objective
function was chosen. Such approaches, that either replan or
make local changes to a plan only after they detect local ob-
stacles, can be severely hampered by crowds.

The robot’s actuators (which convert electrical energy
into physical movement) and sensors (which convert mea-
surements of the environment into electrical signals) are im-
perfect, noisy, and can deteriorate over time. As a result, the
robot might not detect a person, or might move too much
or too little. Moreover, people, particularly children, do not
always maintain a safe distance from the robot (Nomura et
al. 2015). One way to address such uncertainty is to specify
a large minimum distance to people that is considered safe.
While this might reduce the risk of collision, it also increases
navigation time because the robot must wait longer, move
more slowly, or take longer paths to avoid people. In con-
trast, our approach creates plans that improve safety without
sacrificing travel time or distance.

To improve collision avoidance, many methods have
made local, short-term predictions about the future trajecto-
ries of moving obstacles with, for example, Gaussian pro-
cesses (Trautman and Krause 2010) or neural networks
(Alahi et al. 2016). Biomechanical turn indicators have been
used to predict short-term trajectories and then plan around
them (Unhelkar et al. 2015). Another planning approach was
cooperative, where people and robots gave way for one an-
other (Trautman et al. 2013). A local path planner learned
cost functions on data from human experts who controlled
the robot (Kim and Pineau 2016). Yet another approach used
pedestrian trajectory datasets to learn a model that jointly
predicted the trajectories of both a robot and nearby pedes-
trians, and then generated socially compliant paths (Kret-
zschmar et al. 2016). Although these approaches improved
collision avoidance and moved more safely near people,
their robots could still generate global path plans through
crowded areas, because they predict trajectories only when
the robot senses pedestrians in its vicinity. Our work, in con-
trast, addresses the complementary problem of how to learn
a global crowd behavior model in a given environment and
use it to improve global path planning.

Many other approaches have made global, long-term pre-
dictions about the behavior of a crowd, and adapted their
navigation behavior accordingly. One approach treated a sin-
gle trajectory as a Markov decision process, and learned a
distribution over trajectories (Ziebart et al. 2009). With in-
verse reinforcement learning, it learned the reward function
that best fit the trajectories, and used it to predict new ones.
Another trajectory predictor created human ego graphs that
could be queried efficiently for future trajectories (Chung
and Huang 2010). A model based on Gaussian processes
learned the global distribution of the crowd, and then used
inverse reinforcement learning to make the robot’s behavior
more human-like (Henry et al. 2010). End-to-end pedestrian
trajectory data from the simulator is used to calculate initial
estimates of mean crowd densities in unobserved areas of

the grid, and then local sensor data are used to update these
densities. Such work, however, requires a dataset of com-
plete pedestrian trajectories, which is unavailable to a robot
that can sense only locally. Our work, in contrast, assumes
only local sensor data. It does not require trajectory data or
separate phases for learning and testing. Instead, it learns
online as it completes its task.

Approach

This work makes several assumptions, as follows. The robot
has a two-dimensional map of the static features in its envi-
ronment, and has laser range sensors mounted at a uniform
level near the floor. The robot localizes itself from this in-
formation, that is, at any point the robot knows its pose (lo-
cation and orientation) with respect to an allocentric coordi-
nate system. The robot also detects only local crowd data,
the location and direction of motion of each person within
its sensor range (Leigh et al. 2015).

The robot’s task is to begin from an initial pose and
move through a crowded environment to visit a sequence
of locations (targets). To do so, the robot executes a se-
quence of control cycles. Each control cycle is a four-phase
sense-learn-decide-act loop: the robot senses its environ-
ment, learns from its sensed data, selects an action with a
decision-making algorithm, and then executes it. Possible
actions from which to choose are a discretized set of forward
moves and rotations. The execution phase sends the chosen
action to the actuators to move the robot.

Learning crowd density maps

To predict where people are likely to appear in the environ-
ment, the robot learns online, as it travels. Local crowd data
from the sense phase is forwarded to a learning module that
updates the values in the crowd density map. The robot can
use this observed, cumulative, global record of the crowd to
predict where crowds are likely to obstruct its passage.

Our work represents a crowd density map as an r× c grid
superimposed on the two-dimensional footprint of the en-
vironment. Each cell has a density, the running average of

Figure 2: A crowd density map
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the number of people the robot has observed within that cell
over time. When the robot enters the sense-learn-decide-act
loop at time t, it converts the range data from its sensors
into local crowd data Lt, the locations of all people detected
within sensory range. For p people detected at time t

Lt = {(x, y)1t , ...(x, y)pt }
For each grid cell in row i and column j, the map maintains
three values that summarize the robot’s experience: kij , the
number of times the robot has collected information about
the cell; tij , the number of people the robot has detected in
the cell; and the crowd density dij = tij/kij .

Algorithm 1 is a fast update algorithm that performs on-
line computation of the crowd density map. For each Lt, the
first loop produces a temporary count currij of the num-
ber of people currently detected in the ijth cell. The second
loop iterates over the crowd density map to update tij , kij
and dij . As it updates, it also ages the values of the previous
observations tij and kij with discount factor α ∈ (0, 1]. It
increments kij by 1, increments tij by currij , and recom-
putes dij based on the new values. Algorithm 1 has com-
plexity O(r · c + P ), linear in the number of grid cells and
the maximum number of people P permitted in the environ-
ment. An example of a learned crowd density map is shown
in Figure 2, where darker cells have higher dij values.

Algorithm 1: Crowd density map update
Input: tij , kij , Lt

Output: dij
currij = 0, ∀(i, j) ∈ {1, ..r} × {1, ..c} for
(x, y) ∈ Lt do

(i, j) = convertToGridIndex(x, y)
currij = currij + 1

end
for (i, j) ∈ {1, ..r} × {1, ..c} do

tij = (tij ∗ α) + currij kij = kij ∗ α if
isGridV isible(i, j) then

kij = kij + 1
end
dij = tij/kij

end

SemaFORR-based navigation

In this work, the robot’s decision algorithm is SemaFORR, a
controller for autonomous navigation (Epstein et al. 2015).
SemaFORR is implemented in ROS, the state-of-the-art
Robot Operating System (Quigley et al. 2009). To do crowd-
sensitive planning, we introduce a crowd density map into
SemaFORR.

SemaFORR is a cognitively-based hybrid architecture
that involves both reactive and deliberative reasoning. The
deliberative reasoning component generates a plan that is a
sequence of intermediate locations (waypoints) on the way
to the target. As in Figure 3, SemaFORR’s input includes
the actions available to the robot, its pose and current target,

Figure 3: SemaFORR’s decision cycle. The crowd density
map is the new addition described here

the current laser scan data, and the crowd density map. Be-
cause SemaFORR is based on the FORR cognitive architec-
ture (Epstein 1994), it uses a combination of heuristic pro-
cedures called Advisors to choose an action. SemaFORR’s
Advisors form a three-tier hierarchy.

Tier-1 Advisors are reactive decision-making rules that
assume perfect knowledge. As a result, they are fast and cor-
rect. Each Advisor can either choose an action to execute or
eliminate actions from further consideration. VICTORY is a
tier-1 Advisor; it chooses the action that gets the robot clos-
est to the target when it is within sensory range and no ob-
stacles block the robot’s path. If there is such an action, it
is executed and the cycle ends. Otherwise, AVOIDOBSTA-
CLES, another tier-1 Advisor; uses the laser range scan data
to eliminate actions that would cause a collision or bring
it too close to static or dynamic obstacles. If only one ac-
tion remains, it is returned. Finally, if the robot has a plan
to reach the target, at least one unvisited waypoint is within
sensory range, and no obstacles block the robot’s path to it,
ENFORCER selects the action that best approaches the way-
point closest to the target. If there is such an action, it is
returned. Otherwise, SemaFORR proceeds to tier 2.

Tier-2 Advisors are deliberative planners. If there is a cur-
rent plan, tier 2 forwards the remaining actions to tier 3.
Otherwise, in this implementation, there are two planners,
only one of which is active in any given experiment: A* and
CSA* (Crowd-Sensitive A*, described below). If there is no
current plan, the planner creates one, SemaFORR stores it,
and the cycle ends.

Tier-3 Advisors make heuristic recommendations that
may or may not be correct, but are based on a single ra-
tionale. Given the current plan, tier-3 Advisors treat the next
waypoint as the target. For example, GREEDY prefers ac-
tions that move the robot closer to that waypoint, and EX-
PLORER prefers actions that move the robot away from pre-
viously visited areas. Each tier-3 Advisor expresses its pref-
erences as a numerical value for each of the actions that
remained after tier 1. A voting mechanism aggregates the
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(a) (b) (c)

Figure 4: The map of a simple, cubicle-like, 48m × 36m office environment with interior walls as heavy lines. (a) Traditional
A* plan for the robot from start S to end E (b) Crowd density map and CSA* plan for the same task (c) Zig-zag crowd behavior
for 90 people in MengeROS, with a black box that indicates the robot’s initial position in the experiments reported here

preferences of all tier-3 Advisors and returns the most pre-
ferred action. After the execution of a returned action, the
decision cycle ends, and the sense-learn-decide-act loop re-
sumes with updated input. Further details on SemaFORR are
available in (Epstein et al. 2015).

Avoiding crowded areas

A* is the traditional, optimal, search-based path planner for
static maps (Hart, Nilsson, and Raphael 1968). In this imple-
mentation, A* reasons over a graph based on a discretized
version of the world, the cells of a grid superimposed over
its footprint. Each node in the graph represents a grid cell,
and is connected to at most eight cells that adjoin it in the
grid. (There will be fewer than eight if the cell lies on the
border of the grid or a wall intervenes.) The weight of edge
emn that connects nodes m and n is the Euclidean distance
between their centers.

To avoid crowded areas, CSA* adapts A* to plan with
a crowd density map. Given a new target, CSA* queries the
learning module for the current crowd density map, and uses
it to update the edge weights of the A* graph. This effec-
tively imposes a penalty on travel to crowded areas, so that
the resultant CSA* plan moves through less-crowded areas.
At the beginning of a task, when the robot receives its first
target, CSA* generates a plan based only on travel distance,
similar to the solid line in Figure 1. As the robot navigates
through its environment, it updates the crowd density map,

Figure 5: ROS node interactions

and CSA* plans increasingly avoid crowded areas, similar
to the dashed line in Figure 1.

Before planning, tier-2 retrieves the latest crowd density
map. The crowd density variables dij are normalized over
the full grid to range between 0 (least crowded) and 1 (most
crowded). The normalized crowd density variables Dij are
then used to compute new edge weights for the graph, as
follows:

enewmn = eoldmn ∗ (Dij + 1) ∗ (Dkl + 1)

where (i, j) and (k, l) are the grid-cell indices of nodes m
and n respectively.

When crowd density values at both nodes incident on an
edge are 0, the edge weight is unchanged. When they are
both 1, the new edge weight is 4 times the old edge weight.
Edge-weight increments are a strong influence away from
crowded areas. For a sample task that moves the robot from
S to E, Figure 4 compares a traditional A* plan in (a) to a
CSA* plan informed by the crowd density map in (b). A* ig-
nores the likely delays from the crowd. The crowd-sensitive
plan is longer but passes through less crowded areas.

Implementation
Our system is implemented as three interacting ROS nodes,
as shown in Figure 5.

MengeROS. To simulate crowding and the robot in a
single environment, we use MengeROS (Aroor, Epstein,
and Korpan 2017), a ROS extension of the open-source
crowd simulator Menge (Curtis, Best, and Manocha 2016).
MengeROS requires a map of the environment, a robot, and
crowd specifications.

SemaFORR. The SemaFORR controller node is ini-
tialized with a sequence of target points. It receives the
simulated robot’s position and laser scan data from the
MengeROS node, and returns to the MengeROS node the
actuator commands chosen by SemaFORR. The MengeROS
node then simulates that action on the robot.

Crowd Learner. The Crowd Learner is a standalone ROS
node; it too receives the robot’s position and laser scan data
as messages from MengeROS. The Crowd Learner uses Al-
gorithm 1 to update the crowd density map, and forwards
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the revised crowd density map to the SemaFORR node. This
modular implementation is important because it allows the
learner node to be used with any other ROS-compatible sim-
ulator or any other ROS-compatible robot controller.

Experimental Design

In these experiments, MengeROS simulates the footprint
and sensor readings of Freight, an affordable standard plat-
form for mobile service robots (Wise et al. 2016). Freight
has a 2-D laser range scanner with a range of 25m and a 220◦
field of view, a 15Hz update rate, and an angular resolution
of 1

3

◦. Each experiment sets a task for Freight, controlled by
SemaFORR, in an environment that it shares with a crowd
controlled by MengeROS.

MengeROS defines crowd behavior by the initial posi-
tions of its members, a state transition diagram for each
person that specifies how to select her next target, and a
uniform decision mechanism to select moves. These exper-
iments use two crowd behaviors: random and zig-zag. Both
begin with the robot in the position shown in Figure 4(c),
and the crowd in the lower left corner. Under random crowd
behavior, each person’s next destination is chosen randomly
from among six prespecified locations (one in each corner
of the map and two evenly spaced in the center), and each
person follows an A* plan to her own target. Such a crowd
moves as if it were in a complex subway station with mul-
tiple destinations. Under zig-zag crowd behavior, the crowd
moves within the pattern shown in Figure 4(c). Each person
chooses one of three random points in the upper left corner,
moves to it with an A* plan, then chooses one of three ran-
dom points in the lower left corner and moves to it under
A*. This process continues, so that the crowd loops though
upper left, lower left, upper right, lower right, and back to
the upper left corner again, as if it were parading in a fig-
ure eight with some slight internal variation. Such a crowd
presents a less even challenge that intensifies along its route.

MengeROS also requires a uniform collision avoidance
strategy that all its members use to avoid one another and
the robot. These experiments use two collision avoidance
strategies: ORCA (van den Berg et al. 2011) and PedVO
(Curtis and Manocha 2012). Both strategies are based on
velocity obstacles. The velocity obstacle (VO) of a person
is the set of all velocity vectors that will result in collision.
Collision-free motion requires that every agent have a ve-
locity vector outside its VO. ORCA has each agent address
this problem equally to produce an optimal solution. PedVO
adapts ORCA to behave more similarly to people; it intro-
duces such human behaviors as aggression, social priority,
authority, and right of way.

We use 12 possible MengeROS crowd scenarios, each de-
fined by its crowd size (here, 30, 60, or 90 people), collision
avoidance strategy (PedVO or ORCA), and crowd behavior
(random or zig-zag). An experiment configuration specifies
a crowd scenario, one of two target sets for the robot (A or B,
each a list of 15 randomly chosen locations), and whether the
Crowd Learner node is on or off. When it is off, tier 2 uses
the traditional A* planner that minimizes distance; when it is
on, tier 2 computes crowd-sensitive plans with CSA*. Thus

there are 12 · 2 · 2 = 48 experiment configurations in all.
For all experiments reported here with CSA*, the discount
factor α was set to 1.

Given an experiment configuration, an experiment exe-
cutes decisions from SemaFORR on the simulated robot un-
til the robot reaches (comes within ε of) each of its targets
in the prespecified order. Each configuration was executed
5 times on an 8-core, 1.2 GHz workstation. Evaluation met-
rics are the total time the robot took to reach the targets, the
total distance it travelled, the number of the robot’s risky ac-
tions (ones that placed it less than 0.5 meters from a person
or a wall), and clearance, the average minimum distance the
robot maintained from all obstacles. Clearance and risky ac-
tions recognize important concerns that arise when people
crowd an environment.

Results

Crowd-sensitive planning (Table 1) had a statistically sig-
nificant effect on every metric, that is, with crowd-sensitive
planning, time was faster (t = 8.57, p < .001), distance
was shorter (t = 7.99, p < .001), clearance was larger
(t = 5.28, p < .001), and risky actions were fewer (t =
5.65, p < .001). The effect of crowd-sensitive planning
is particularly noteworthy because the space was relatively
sparsely populated; even 90 people in a 48m × 36m space
amount to only about 1.3 people in a 5m × 5m room. Sim-
ilarly, the crowd size had a statistically significant effect on
every metric. As one would expect, the presence of more
people delays the robot (R2 = 0.24, p < .001), and makes
it travel further (R2 = 0.18, p < .001) and come closer to
people and to walls (R2 = 0.16, p < .001), so that travel is
generally less safe (R2 = 0.14, p < .001).

The randomly-generated target lists also had an effect on
the performance. Inspection revealed that target set A was
an easier task than B, that is, without crowds, the optimal
distance to visit A is simply less than the optimal distance
to visit B. Thus travel to the A set was faster (t = 2.12, p =
.05) and covered less distance (t = 2.28, p = .05). There
were also significant effects from crowd flow. Under zig-
zag the robot was faster (t = 2.28, p = .05), maintained
greater clearance (t = 6.27, p < .001), and took fewer
risky actions (t = 3.94, p < .001) than it did under the
less predictable random crowd flow. The collision avoidance
method, however, had no significant effects. This was be-
cause both ORCA and PedVO are local methods and there-
fore do not impact the overall crowd distribution in the en-
vironment.

A multi-factor ANOVA determines the effects of indepen-

A* CSA* % change

time (sec.) 905.51 618.03 -31.7%***
distance (m.) 843.81 624.38 -26.0%***
clearance (m.) 1.82 2.02 11.50%**
risky actions 366.06 169.50 -53.7%***

Table 1: Impact of CSA* vs A* on performance, with im-
provements. *** denotes p < .001; ** denotes p = .05.
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Figure 6: Total time, total distance, clearance and risky actions averaged over all CSA* runs vs all A* runs

dent variables on a continuous dependent variable. The in-
dependent variables were crowd-sensitive planning (CSA*
or A*), collision avoidance strategy (ORCA or PedVO), the
robot’s target list (A or B), the crowd size (30, 60 or 90),
and the crowd behavior (random or zig-zag). The dependent
variable was each of the metrics in turn: total time to com-
plete the target set, distance traveled, clearance, or number
of risky actions. Analysis showed significant effects on time
(F(6, 233) = 50.32, p < .001), distance (F(6, 233) = 35.96,
p < .001), clearance (F(6, 233) = 31.27, p < .001) and risky
actions (F(6, 233) = 20.08, p < .001).

An interaction term was also included in the ANOVA to
detect any interaction between crowd size and CSA*. The
results, shown in Figure 6, indicate significant interaction
effects between crowd size and CSA* for time (F(6, 233) =
52.10, p < .001) and distance (F(6, 233) = 35.58, p < .001).
This implies that as the environment becomes more crowded
CSA* will provide larger improvements in time and distance
than A*.

To confirm the magnitude of the changes in Table 1, we
also measured effect size with Cohen’s d statistic (Cohen
1962). This statistic is typically used on social or biological
data. It identifies a clear effect if d exceeds the threshold 0.2
and a “large effect” if it exceeds 0.8. When we paired CSA*
and A* experiments and compared them, CSA* had an ef-
fect on 90% of them (threshold 0.2) and a large effect on
75%. CSA* performed as much as 55% faster than A* (tar-
get set B, PedVO, crowd size 90), traveled 51% less far (tar-
get set B, PedVO, crowd size 90), had a 50% higher clear-
ance (target set A, ORCA, crowd size 90) and took 78%
fewer risky actions (target set B, ORCA, crowd size 60).
Moreover, only 9% of such comparisons showed any deteri-
oration in performance.

Discussion

Crowd-sensitive planning is current work. Experiments un-
derway explore the breadth of its effect in other (larger,
more complex) maps, with crowd flow behaviors other than
random and zig-zag, and with crowds whose destinations
change over time (and thereby make it more difficult to pre-
dict their presence). We expect further improvements as we
learn not only about the number of people likely to be in a
grid cell, but also about the directions in which they move.

In these experiments, a robot that used A* repaired its
plan when obstacles interfered with it. We will also explore
comparisons to planners that replan and benefit from pre-
vious planning knowledge, such as D* Lite and MPGAA*

(Koenig and Likhachev 2002; Hernández, Ası́n, and Baier
2015).

The granularity (i.e., cell dimension) of the crowd density
map here was 3 meters, determined by inspection. A finer
crowd density map would provide more detail but require
more data to produce an accurate representation and in-
crease the computation time, while a coarser grid would pro-
vide less specific guidance. Moving objects were assumed
in most of the work cited here to be pedestrians. Our work,
however, should be equally applicable to any moving obsta-
cles, including other robots and people in wheelchairs.

Several challenges are yet to be addressed by this model
of the crowd. We fixed α at 1 to indicated that crowd behav-
ior persisted and the robot did not forget, but smaller values
would allow the model to adapt to changing crowd behavior
over time. Other considerations include doors that open and
close, changes in the map, different shapes for robots and
moving obstacles, and obstacles that vary their speed.

Thus far we have not considered how a nearby robot might
cause people to move differently, although it known to have
a significant effect on local trajectory prediction (Trautman
et al. 2013). CSA* does not consider that people might make
way for the robot; in that case a simple A* plan might take
less time than a CSA* plan. Another important factor is
the spatial and temporal variance in the behavior of peo-
ple around robots. For example, in a shopping mall, an area
where seniors congregate should be treated differently from
an area that attracts children, and areas that attract people
from different cultures should also be treated differently. We
intend to refine CSA* to learn how difficult it is to navi-
gate in an area, rather than merely how crowded it is. Thus a
crowded area where people give way to the robot would be
treated differently from one where a similarly dense crowd
is more obstructive.

Crowd density maps are more broadly applicable than
these experiments suggest. A museum-guide robot could use
them to travel to the most crowded places, rather than away
from them. A telepresence robot at a conference could use
them to plan a path that allows the most interaction with con-
ference attendees. Crowd density maps could also be used
to guide active learning, that is, to direct the robot to areas
where it can further observe movement (low kij or tij cells)
to confirm low densities.

In summary, this paper presents a fast method that learns
a crowd density map online, without the need for pedes-
trian trajectory datasets. This representation of global crowd
behavior supports an agent’s ability to generate crowd-
sensitive plans. Our results demonstrate that crowd-sensitive
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planning reliably improves safety while it also reduces travel
time and travel distance.

Acknowledgements

This work was supported in part by NSF #1625843.

References

Alahi, A.; Goel, K.; Ramanathan, V.; Robicquet, A.; Fei-Fei,
L.; and Savarese, S. 2016. Social LSTM: Human Trajectory
Prediction in Crowded Spaces. In 2016 IEEE Conference
on Computer Vision and Pattern Recognition (CVPR), 961–
971.
Aroor, A.; Epstein, S.; and Korpan, R. 2017. MengeROS: A
Crowd Simulation Tool for Autonomous Robot Navigation.
In Proceedings of the AAAI Fall 2017 Symposium on AI for
HRI.
Chung, S. Y., and Huang, H.-P. 2010. A Mobile Robot That
Understands Pedestrian Spatial Behaviors. 2010 IEEE/RSJ
International Conference on Intelligent Robots and Systems
5861–5866.
Cohen, J. 1962. The Statistical Power of Abnormal-Social
Psychological Research: A Review. The Journal of Abnor-
mal and Social Psychology 65(3):145.
Curtis, S., and Manocha, D. 2012. Pedestrian Simulation
Using Geometric Reasoning in Velocity Space. In Weid-
mann, U.; Kirsch, U.; and Schreckenberg, M., eds., Pedes-
trian and Evacuation Dynamics 2012. Cham: Springer In-
ternational Publishing. 875–890.
Curtis, S.; Best, A.; and Manocha, D. 2016. Menge: A Mod-
ular Framework For Simulating Crowd Movement. Collec-
tive Dynamics 1:1–40.
Epstein, S. L.; Aroor, A.; Evanusa, M.; Sklar, E. I.; and Par-
sons, S. 2015. Learning Spatial Models for Navigation. In
Proceedings of the 12th International Conference on Spatial
Information Theory - Volume 9368, COSIT 2015, 403–425.
New York, NY, USA: Springer-Verlag New York, Inc.
Epstein, S. L. 1994. For The Right Reasons: The FORR
Architecture For Learning In A Skill Domain. Cognitive
Science 18(3):479–511.
Fox, D.; Burgard, W.; and Thrun, S. 1997. The Dynamic
Window Approach To Collision Avoidance. IEEE Robotics
& Automation Magazine 4(1):23–33.
Hart, P. E.; Nilsson, N. J.; and Raphael, B. 1968. A For-
mal Basis for the Heuristic Determination of Minimum Cost
Paths. IEEE Transactions on Systems Science and Cyber-
netics 4(2):100–107.
Henry, P.; Vollmer, C.; Ferris, B.; and Fox, D. 2010. Learn-
ing To Navigate Through Crowded Environments. In 2010
IEEE International Conference on Robotics and Automa-
tion, 981–986.
Hernández, C.; Ası́n, R.; and Baier, J. A. 2015. Reusing Pre-
viously Found A* Paths for Fast Goal-directed Navigation in
Dynamic Terrain. In Proceedings of the Twenty-Ninth AAAI
Conference on Artificial Intelligence, AAAI’15, 1158–1164.
AAAI Press.

Kim, B., and Pineau, J. 2016. Socially Adaptive Path Plan-
ning in Human Environments Using Inverse Reinforcement
Learning. International Journal of Social Robotics 8(1):51–
66.
Koenig, S., and Likhachev, M. 2002. D*Lite. In Eigh-
teenth National Conference on Artificial Intelligence, 476–
483. Menlo Park, CA, USA: American Association for Ar-
tificial Intelligence.
Kretzschmar, H.; Spies, M.; Sprunk, C.; and Burgard, W.
2016. Socially Compliant Mobile Robot Navigation via In-
verse Reinforcement Learning. The International Journal of
Robotics Research 35(11):1289–1307.
Kruse, T.; Pandey, A. K.; Alami, R.; and Kirsch, A. 2013.
Human-aware Robot Navigation: A Survey. Robotics and
Autonomous Systems 61(12):1726–1743.
Leigh, A.; Pineau, J.; Olmedo, N.; and Zhang, H. 2015. Per-
son Tracking and Following with 2D Laser Scanners. In
2015 IEEE International Conference on Robotics and Au-
tomation (ICRA), 726–733.
Nomura, T.; Uratani, T.; Kanda, T.; Matsumoto, K.; Ki-
dokoro, H.; Suehiro, Y.; and Yamada, S. 2015. Why Do
Children Abuse Robots? In Proceedings of the Tenth Annual
ACM/IEEE International Conference on Human-Robot In-
teraction Extended Abstracts, HRI’15 Extended Abstracts,
63–64. New York, NY, USA: ACM.
Quigley, M.; Conley, K.; Gerkey, B.; Faust, J.; Foote, T.;
Leibs, J.; Wheeler, R.; and Ng, A. Y. 2009. ROS: An Open-
Source Robot Operating System. In ICRA workshop on open
source software, 5. ICRA.
Thrun, S.; Bennewitz, M.; Burgard, W.; Cremers, A. B.;
Dellaert, F.; Fox, D.; Hahnel, D.; Rosenberg, C.; Roy, N.;
Schulte, J.; et al. 1999. MINERVA: A Second-Generation
Museum Tour-Guide Robot. In Robotics and automation,
1999. Proceedings. 1999 IEEE international conference on,
volume 3. IEEE.
Trautman, P., and Krause, A. 2010. Unfreezing The Robot:
Navigation In Dense, Interacting Crowds. In Intelligent
Robots and Systems (IROS), 2010 IEEE/RSJ International
Conference on, 797–803. IEEE.
Trautman, P.; Ma, J.; Murray, R. M.; and Krause, A. 2013.
Robot Navigation In Dense Human Crowds: The Case For
Cooperation. In Robotics and Automation (ICRA), 2013
IEEE International Conference on, 2153–2160. IEEE.
Tsui, K. M.; Desai, M.; Yanco, H. A.; and Uhlik, C. 2011.
Exploring Use Cases for Telepresence Robots. In Proceed-
ings of the 6th International Conference on Human-robot
Interaction, HRI ’11, 11–18.
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