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Abstract 
Although it might be too early for a standard model of the 
mind (SMM), comparison between current cognitive archi-
tectures is a useful exercise. This article highlights some of 
the likely difficulties facing the development of a SMM – 
both empirical and theoretical. In particular, it follows New-
ell (1990) by arguing that a viable model of the mind must be 
constructed taking advantage of experimental constraints, 
based on comparisons of the model with (human or animal) 
data.  We then describe our proposed methodology for ensur-
ing a tight link between psychological data and a cognitive 
architecture.  We also discuss CHREST, a cognitive model 
with a particular emphasis on modelling psychological re-
sults.  CHREST has been applied in several domains, such as 
language acquisition and expertise.  The article concludes by 
highlighting some of the features that distinguish CHREST 
from architectures such as Soar and ACT-R. Some of these 
differences are significant, creating challenges for a SMM.  

 Cognitive Architectures and Standard Model 
Understanding how the mind works is one of the central and 
most challenging questions in science. Numerous are the 
challenges that such an enterprise faces. But numerous are 
the benefits should this succeed. 
 In order to provide sufficient rigour to this endeavour, 
cognitive scientists have proposed to replace the kind of ver-
bal theories typically used by psychologists and neuroscien-
tists by cognitive architectures, where structures and mech-
anisms are embodied in a set of computer programs. Re-
cently, Laird, Lebiere and Rosenbloom (in press) have pro-
posed to develop a standard model of mind (SMM), which 
summarizes our knowledge of how the mind works, using 
the level of abstraction provided by cognitive architectures. 
While an SMM is not an architecture itself, it is a summary 
of the structures and mechanisms agreed – by consensus, 
and not necessarily unanimously – by the community to op-
erate in the mind. 
 Laird et al. (in press) focus on human-like minds, accept-
ing architectures that function in ways similar to humans, 
but not exactly so, thus including AI and robotics systems 
that are not meant to be theories of human cognition, but that 
might share important commonalities. 

 In this paper, we will narrow the focus, and concentrate 
on a “strict” SMM (SSMM): a standard model of mind that 
provides a theory of how the human mind works. We take 
this stance because we believe that the main means of de-
veloping a cognitive architecture or an SMM is to use sim-
ulations of empirical data to constrain the space of possible 
architectures (or SMMs). In our view, with the broader def-
inition adopted by Laird et al., there are too many degrees 
of freedom for converging to a correct solution. By doing 
this, we use the strategy eloquently defended by Newell in 
his book Unified Theories of Cognition (Newell, 1990).  
 This stance is also motivated by the fact that developing 
cognitive architectures and standard models would be of 
great help to (cognitive) psychology in its efforts to under-
stand the human mind. In particular, an SSMM would help 
develop the kind of sufficiently powerful formal theories 
that are currently lacking in psychology.  
 We first comment on the concept of cognitive architec-
tures and discuss whether we need a standard model, high-
lighting advantages and disadvantages of this approach. Em-
pirical data are essential for developing an SSMM, and we 
discuss ways to select these data. Similarly, developing cog-
nitive architectures and SSMMs requires a sophisticated 
methodology, and we present a recent proposal, centred on 
the use of empirical data for validating an architecture, 
which offers considerable benefits. Finally, we discuss 
CHREST, a cognitive architecture that shares some com-
monalities with the cognitive architectures examined by 
Laird et al., but that also differs in important ways. Implica-
tions for the development of SSMMs will be drawn. 

 Cognitive Architectures 
 As was lamented many years ago by Newell (1973), psy-
chology is characterized by piecemeal research that ad-
dresses specific questions but lacks a unifying theory. As a 
way to remedy this, Newell (1990) proposed to develop uni-
fied theories of cognition (or cognitive architectures), theo-
ries implemented as computer programs that would account 
for as many empirical phenomena as possible. As a possible 
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candidate, Newell chose Soar (Laird, 2012; Laird, Newell, 
& Rosenbloom, 1987). 
 Nearly 45 years after Newell’s chapter, not much has 
changed in psychology (Gobet, 2017). Despite the consider-
able amount of data that have been collected, refined meth-
odologies, great advances in neuroscience, there is still no 
unifying framework in psychology, and in fact most theories 
are rather local, in that they are developed to account for a 
specific experimental paradigm. Moreover, most theories in 
psychology are verbal and therefore imprecise and often 
self-contradictory. 
 The presence of a few cognitive architectures (e.g., 
ACT-R, CHREST, Soar; see Samsonovich, 2010 for a sur-
vey) does not change this judgement much, as the number 
of phenomena simulated is still limited, and experimental 
psychology has paid little attention to these cognitive archi-
tectures. However, it is now a great time for reminding psy-
chologists of the failings of their discipline and how cogni-
tive architectures might help improve the quality of science. 
In addition to the obvious fact that unification is a goal in 
science, as it allows summarizing large numbers of data into 
central mechanisms, scientific psychology currently faces a 
serious crisis. This crisis is caused by the difficulty in repli-
cating many studies and also by the occurrence of isolated 
but high-profiles cases of scientific fraud, where for exam-
ple data were fabricated (Gobet, 2016a; 2017). Many of the 
non-replicable findings are surprising but also unlikely (e.g., 
the claim that very brief exposure to the American flag 
would affect participants’ political views many months af-
ter). Having a cognitive architecture or a standard model 
covering many different subfields of psychology would 
make it possible to make a priori predictions, and thus call 
attention to predictions that are so unlikely that they require 
further scrutiny.  

Do We Need a Standard Model? 
Clearly, comparison between architectures is useful, and 

is not carried out as often as it could (but for examples, see 
Lloyd-Kelly, Gobet & Lane, 2015a; Johnson, 1997; Jones et 
al., 2007). But Laird et al.’s idea is more ambitious: it is to 
extract a meta-architecture, so to speak, from the current ar-
chitectures. An SMM would identify and put together the 
common features of the best available cognitive architec-
tures and would thus be the best description of the human 
cognitive system based on our current knowledge. 

An insight into the most likely candidate subcomponents 
would certainly be useful. Amongst the several benefits of 
an SMM highlighted by Laird et al., an agreement – even a 
partial one – between researchers about the basic component 
of an SMM would be a sign that the field is heading towards 
the right direction. 

 However, this enterprise seems difficult. To begin with, 
how to decide which architectures to use? Presumably, the 
aim is to focus on those that are successful. But how is this 
defined? This difficulty is compounded by the fact that 
SMMs concern human-like minds. As noted above, this 
loses a main source of constraint: empirical data. Focusing 
on SSMMs and architectures that simulate human data, as 
advocated in this paper, lessens this problem, as at least we 
have a metric for success. Nevertheless, evaluating the 
goodness of fit of a simulation, and in particular comparing 
one or several models or architectures is fraught with diffi-
culties (e.g., number of free parameters, overfitting, etc.), as 
is well known in the literature (e.g., Ritter, 1991). (We’ll 
take up this point below, with a methodology addressing 
many of these problems.) 

Another difficulty is that architectures differ in funda-
mental ways (e.g., whether they are symbolic or non-sym-
bolic, or whether they are embodied or not).  This difficulty 
lies in part on the kind of behaviours we expect the architec-
ture to exhibit, and what we wish to analyse.  Fine details of 
mistakes made during a memory task may require different 
techniques to a problem-solving exercise. 

 What data should an SMM explain? Presumably, phe-
nomena that psychologists find important. However, there 
is much disagreement in the field, unlike in physics.  What 
looks like gold to some experimenters is seen as pyrite to 
their neighbours. In addition, as noted above, there are is-
sues with measurement and replication of phenomena. One 
possibility is to look at a number of textbooks, and identify 
the phenomena that are discussed in most of them. We shall 
say more about this option below. 

A further issue relates to the difficulty of separating struc-
ture from function. Many experiments in memory research 
have tried to estimate the capacity of short-term memory. 
However, recent empirical and computational research has 
shown that many estimates are incorrect, because they un-
derestimate the amount of information that is already 
chunked in long-term memory, making it difficult to esti-
mate STM capacity (Jones, Gobet & Pine, 2008). Difficul-
ties also exist in distinguishing between architectural mech-
anisms and strategies, which can be influenced by instruc-
tions. For example, in concept formation experiments, par-
ticipants’ strategies can make their behaviour consistent 
with classical, exemplar, or prototype theories of categori-
zation (Gobet, Richman, Staszewski, & Simon, 1997). But 
these theories are assumed to address fundamental mecha-
nisms of categorization – the kind of mechanism that would 
be incorporated in an SMM.  

A final issue is the role of neuroscience. At the moment, 
neuroscience does not provide the kind of constraints that 
were expected for developing cognitive architectures (Go-
bet, 2014). Just like psychology, difficulties of replication 
are endemic in neuroscience. In addition, there is the issue 
of what level of analysis/data would be useful for cognitive 
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architectures. So far, the cognitive architectures that have 
included information about neuroscience have used data 
from a fairly high level of analysis – e.g., ACT-R refers to 
brain regions such as the anterior cingulate cortex and the 
basal ganglia – a level at which there is still much uncer-
tainty. However, there is vast disagreement in neuroscience 
about the “correct” level, if any, at which cognition should 
be studied (Uttal, 2011). 

CLASSIC MARBLE 
If one starts from a given architecture to decide on the 

phenomena that should be simulated, one faces the problem 
that only a (biased) small subset of cognitive phenomena 
will be considered. There is also the issue that the focus will 
be on phenomena that naturally flow from the architecture 
(e.g., power law of learning with Soar). It is important of 
course to test the predictions of an architecture, but there is 
still a risk of confirmation bias.  

In practice, researchers have simulated data in a rather ad 
hoc fashion, focusing attention to phenomena they happened 
to be interested in for other reasons (for example, in the case 
of CHREST, chess).  

A practical, bottom-up approach is to use, for selecting 
the phenomena that an architecture should account for, the 
type of results typically talked about in cognitive psychol-
ogy textbooks. There is high consistency about the main top-
ics they discuss. Typically, they start with perception, then 
move to learning, memory, before dealing with more com-
plex behaviours such as problem solving, decision making, 
concept formation and language. Many include even more 
complex questions such as creativity, expertise and con-
sciousness. 

There is also considerable agreement about many key ex-
periments in cognitive psychology.  For example, Tversky 
and Kahneman’s (1974) experiments on decision making, or 
Chase and Simon’s (1973) experiments on experts’ memory 
can be found in nearly all textbooks.  Textbooks also tend to 
report the standard explanations for these phenomena. How-
ever, beyond textbooks, there is sometimes little assent 
about the mechanisms explaining these phenomena. For ex-
ample, the literature on memory is replete with alternative 
explanations for Murdock’s (1962) classic results. 

In Foundations of Cognitive Psychology, an introductory 
textbook co-authored by one of us (Gobet, Chassy, & Bila-
lić, 2011), the final chapter highlights the key mechanisms 
and related empirical results that were discussed in the book. 
They were captured by the acronym CLASSIC MARBLE: 
Cognition is Limited Attention, Selective Search, Infor-
mation-processing, Chunking, Memory, Adaptation, 
Recognition, Bounded rationaLity and Emotion.  

This list is only indicative and informal. It would be in-
teresting to create a database of key, well-replicated results 

in psychology, with description of the experimental proto-
cols, and links to replications of the original experiments. 
This would be a great boost for developing, testing and com-
paring architectures.   

How to Develop Architectures? 

We have argued for the importance of psychological data to 
provide constraints on an SMM. Our own proposal for in-
corporating such constraints into the SMM development 
process is the robust-testing methodology (Lane & Gobet, 
2012a). Throughout we assume that the SMM is imple-
mented as computer code in the form of a cognitive archi-
tecture: this is a weak assumption as a feasible SMM must 
be formalised, mathematically or in code, or else we return 
to the problem of verbal theories discussed above. Our main 
interest is in constraints from experiments on humans (an 
SSMM), but similar considerations apply for data from any 
natural human-like mind.   
 At the heart of our proposal is the definition of an exper-
imental constraint. This definition links the constraints de-
scribed by Newell and the computational development of 
the cognitive architecture and its associated models of indi-
vidual results. Lane and Gobet (2003) proposed that the fol-
lowing four items make up a single constraint: 
 

1.� the performance of human participants in the ex-
periment; 

2.� the stimuli used in the experiment;  
3.� the protocol for running the experiment and as-

sessing the performance of the participant or 
model; and 

4.� the procedure for comparing the performance of 
the model and the participants. 

 
For example, in a chess recall experiment, the target per-

formance may be an average accuracy of different levels of 
player; the stimuli would be the chess positions used; the 
protocol would capture the order and timing of presentation 
of the pieces; and the comparison would look at the differ-
ence between the model’s average accuracy and those of the 
human players.  Ideally, a database of key, well-replicated 
results in psychology, as mentioned at the end of the previ-
ous section, would be a source of constraints. 
 Each experimental constraint can be written, in computer 
code, as a test to be applied and run, or included in a suite of 
constraints which can be checked automatically; we call 
such constraints canonical results, as they define the con-
firmed behaviour of the model. As an architecture is used, a 
suite of such canonical results will be created, covering a 
range of confirmed behaviours.  
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Creating such a suite of canonical results, and ensuring 
that the results hold as the architecture evolves, provides a 
number of methodological benefits. First, there is a signifi-
cant advantage in documentation. Each canonical result is a 
concrete example of the architecture used in an experimental 
study, which can be examined and analysed to enhance our 
understanding of the architecture and its application.  
 Second, a challenging issue with a number of models is 
the role of under-determined parameters within the model: 
in some cases, different values can dramatically alter the 
quality of fit. With the support of canonical results, param-
eters can be systematically altered using some form of opti-
misation process, and the range of viable parameter values 
explored. In Lane and Gobet (2013), we show how genetic 
algorithms can locate sets of parameters which define high 
quality models in the 5-4 task. 
 Third, the development of individual models is currently 
a laborious, and potentially error-prone, process of writing 
computer code and checking performance. A canonical re-
sult defines an acceptance test for the computer model; the 
model is a computer program written to meet the formal 
specification given by the canonical result. In certain do-
mains, it is possible to automate the process of building the 
model. We have performed some pilot studies in this area 
(Frias-Martinez & Gobet, 2007; Lane et al., 2016), where 
computer models for tasks such as the Delayed Match to 
Sample are evolved using a genetic programming algorithm.  
 The fourth and final benefit, which may be one of the 
most important scientifically, is that our proposed method-
ology makes explicit many of the important properties of the 
developed model. This helps support and encourage replica-
tion and validation of results by other researchers. For ex-
ample, an independent implementation could be written and 
run against the canonical results, to verify that the descrip-
tion of an architecture adequately defines the process of 
finding quantitative results (by leading to computer imple-
mentations with the same behaviour).  

 As an aside, the methodology we are proposing is, at 
heart, an adaptation of the agile development techniques 
currently popular in software engineering to the demands of 
an extended scientific project. These techniques rely on au-
tomated testing, constant rewriting of code (refactoring) to 
alter the program’s design to include new features, regres-
sion testing to preserve behaviour over time, and continual 
interactions with the customer to ensure the program meets 
their (changing) requirements. For more on this correspond-
ence, see Lane and Gobet (2003; 2012a).  

CHREST 
CHREST is a symbolic cognitive architecture, developed 
over 20 years to explore how experience affects how we re-
member, categorise and think about the world.  CHREST's 
pattern of development is based on the principles we de-
scribed above: trying to form a close fit to data taken from 
psychological experiments on humans.  The general theory 
behind CHREST is the template theory (Gobet & Simon, 
1996), and most of its mechanisms also embody Herbert Si-
mon’s theory of bounded rationality (e.g., Gobet, 2016b; Si-
mon, 1982).  Each principal result is compared against the 
performance of humans, as studied by psychologists. 
 A distinctive feature of CHREST is its discrimination net-
work, used to retrieve information from LTM.  CHREST 
models typically begin by training from naturalistic data to 
construct this network and associated long-term memories. 
 There are four main components to CHREST (see Figure 
1).  First, the input/output unit, which can handle visual or 
verbal information.  Second, an STM, limited to holding a 
fixed number of items.  Third, the LTM itself, and fourth the 
discrimination network, which forms an index into LTM. 
 The input mechanisms of CHREST are particularly so-
phisticated.  In particular, the human eye is carefully simu-
lated to capture data in expertise.  This includes where the 

Figure 1: Overview of the CHREST architecture 
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eye is fixating, various heuristics controlling how the eye 
moves, and timing parameters.  
 CHREST has been used to model human performance in 
a wide range of different applications.  These include de-
tailed models of expertise in chess (de Groot & Gobet, 1996; 
Gobet & Simon, 2000) and computer programming (Gobet 
& Oliver, 2016); diagrammatic reasoning (Lane, Cheng & 
Gobet, 2001); ageing (Smith et al., 2007); the role of emo-
tions in problem gambling (Schiller & Gobet, 2014), and 
implicit learning (Lane & Gobet, 2012b).  Related versions 
of CHREST’s discrimination network are found in EPAM 
(Feigenbaum & Simon, 1984) and MOSAIC (Freudenthal et 
al., 2010), each of which carefully model human perfor-
mance from naturalistic data.  

Comparison with Other Architectures – Im-
plications for SMM 

 CHREST is one of a number of cognitive architectures, 
such as ACT-R or Soar, which are the focus of the SMM 
discussion.  One way in which CHREST complements these 
other architectures is its emphasis on how “declarative” 
memory is constructed and indexed, in particular with its 
links to perception, whether visual or verbal.  
 Laird (2012), after describing the requirements of Soar, 
states “we will still fall short of creating human-level agents 
until we encode, or until the systems learn on their own, the 
content required for higher-level knowledge-intensive capa-
bilities” (p. 40, emphasis added). With CHREST, the con-
struction of the discrimination network and associated learn-
ing of chunks1 and their relations is a natural way to explain 
the origins of (some aspects of) declarative memory in 
knowledge-intensive tasks. 
 The way knowledge is acquired leads to a number of in-
teresting conclusions about knowledge representation. First, 
CHREST is essentially bottom-up: more complex 
knowledge is incrementally and recursively built upon sim-
pler elements, as a function of the interaction with the envi-
ronment. In that sense, CHREST is self-organizing. By con-
trast, ACT-R and Soar architectures are more top-down: 
knowledge is built (by the programmer) around goals. Se-
cond, the distinction between declarative and procedural 
knowledge (productions) is not as clear-cut as in ACT-R and 
Soar, where these two types of knowledge are stored in dif-
ferent modules.  In most CHREST applications, productions 
use perceptual chunks as conditions. Thus, productions are 
strongly anchored in perception. Third, due to their percep-
tual component, productions in CHREST are less powerful 
than productions in ACT-R and Soar; in particular, they do 
not offer by default the possibility of encoding variables. 
                                                             
1 It is a very unfortunate twist of history and a source of much confusion 
that the term “chunk” has three different meanings in ACT-R, Soar and 
CHREST: a unit of declarative knowledge, a unit of procedural knowledge, 

(Variables could be learnt by a mechanism similar to that 
used in the construction of templates.) Finally, because of 
the way knowledge is acquired, CHREST offers more con-
straints than ACT-R and Soar on the type of theories that it 
could implement.  
 Apart from learning, Langley et al. (2009) suggested that 
many cognitive architectures are overly focussed on prob-
lem-solving tasks, and that attention should be given to cat-
egorisation and understanding. The same authors suggest 
that architectures need to consider “visual, auditory, dia-
grammatic and other specialized representation schemes” 
used by humans, and should better reflect the limited re-
sources available for perceiving and affecting the world. 
CHREST currently has this focus on categorisation and un-
derstanding, although it is relatively weak in formal prob-
lem-solving abilities, and in handling non-symbolic data. It 
embodies resource limitations in many areas, including a re-
liance on timing parameters, human-inspired limitations in 
perception, and short-term memory constraints; these limi-
tations arise naturally as CHREST is built around the prin-
ciple of bounded rationality.  
 With regard to the limitation in problem-solving ability, 
we are currently working on ways of improving this aspect 
of CHREST by combining its pattern-recognition abilities 
with problem-solving algorithms: see Lloyd-Kelly et al. 
(2015b) for one approach inspired by Dual Processing theo-
ries.  Some other hard problems for cognition and how 
CHREST relates to them are discussed in Gobet and Lane 
(2005). 
 The time scales at which CHREST works are also very 
broad.  From eye movements and encoding of data into tem-
plate slots, CHREST can operate on the order of hundreds 
of milliseconds.  However, its discrimination network re-
quires a simulated time of many years to build up to expert 
level.  As we discussed in Lane and Gobet (2012b), the same 
mechanisms in CHREST can be used to simulate learning 
which occurs over seconds and learning which requires 
many years to take place. 
 This focus on large scale knowledge acquired over long 
time scales is interesting theoretically because CHREST of-
fers considerable constraints about what can be learnt. By 
contrast, architectures such as Soar and ACT-R make fewer 
ontological commitments about the nature of knowledge. 
 For these reasons, we believe that CHREST offers an ex-
ample of how to use psychological data to drive the design 
of a strict cognitive architecture (or SSMM), and is also an 
example of a theory capable of operating across multiple 
timescales and with varied kinds of data. 

and a node in long-term memory encoding perceptual information, respec-
tively. For a discussion of these and other meanings of the term, see Gobet, 
Lloyd-Kelly, & Lane, 2016). 
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