
 
 

A Mathematical and Physical Base for ‘A Standard Model of the Mind’  

Emmett Redd, A. Steven Younger 
Physics, Astronomy, and Materials Science, Missouri State University, 901 S National Ave., Springfield, MO 65897 

 EmmettRedd@missouristate.edu, SteveYounger@missouristate.edu 
 
 

Abstract 
This paper describes a mathematical and physical base for 
‘A Standard Model of the Mind’.  It is a super-Turing model 
constrained by physical reality of the brain’s construction.  
The constraints are noise and quantized charge transfer.  
The model has computing power beyond the Universal Tu-
ring Machine (UTM), which Turing himself claimed to be 
insufficient to model the brain. The super-Turing model 
meets Turing’s desire for a more complex model.  Allen 
Newell expressed difficulties in modelling the brain with the 
UTM not being as computationally complex as his function-
al analysis indicated.  We will describe the model and note 
neuron operations compatible with it.  Because of mathe-
matical idealities in both Turing and super-Turing models, 
physical devices cannot directly implement either model.  
However, both Turing machines and super-Turing models 
can point the direction to the design and operation of physi-
cal devices. Brain modeling should use the more powerful 
super-Turing model to describe its operation. Our research 
seeks to develop artificial neural networks based on this 
model.  The super-Turing model is guiding analog- and 
digital-hybrid hardware development of these neural net-
works.  We will describe the progress on an optical imple-
mentation with encouraging, chaos-mimicking results and 
on designs for an electronic implementation.  We describe a 
possible spectrum of super-Turing inspired devices.  We 
will call on the community to help further the devices and 
their use in ‘A Standard Model of the Mind’. 

 I. Introduction 
As mathematics formalizes the Standard Model of physics, 
‘A Standard Model of the Mind’ (SMM) should also have 
mathematics and physics at its foundation.  Brain modelers 
have long suggested the Universal Turing Machine (UTM) 
as the mathematical model for the brain.  Turing himself 
claimed it was insufficient and described features needed 
in a more complex computation model (Siegelmann 2013).  
Newell was also aware of difficulties with the UTM mod-
elling the brain since it could not “compute an uncountable 
number of functions--…”(Newell 1990) (Section II below). 
 Siegelmann and others studied the computational com-
plexity of Analog Recurrent Neural Networks (ARNNs) in 
the mid-1990s (Siegelmann 1993, 1994, 1998).  Three 
models (or families thereof) resulted in super-Turing com-

putational complexity.  One has axioms (stochastic signals 
and rational weights) similar to properties of the physical 
universe and is super-Turing.  We will describe the models 
in Section III. 
 In the incipient SMM (Laird 2017), the deliberate act 
level is one to two levels above the neuron and neural cir-
cuit levels (Newell 1990) addressed by this paper. Since 
this is the case, we will spend most of our effort in contrib-
uting details to those two levels of Newell’s Unified Theo-
ries of Cognition rather than Laird’s incipient SMM.  
However, since a level’s operation is independent of those 
above or below, inserting these ideas into an overall SMM 
at the levels below the deliberate act level are all that is 
necessary to affect the whole SMM.  It is at these levels 
that the physical constraints we discuss are most crucial.  
We will discuss the physical constraints and neuron opera-
tions that lead us to pick one of the super-Turing ARNN 
models as the best description for computation for the 
brain.  Since it appears sufficient to explain the complexity 
of brain computations, we here argue that appeals to quan-
tum coherence effects (Penrose 1994) in the macromolecu-
lar band below the biological band (Newell 1990) are not 
required. 
 Section V will discuss the analog- and digital-hybrid 
optical system we have used to test super-Turing operation 
by mimicking chaos.  We will also discuss an accelerator 
board design using analog electronics implementing the 
super-Turing model.  Its use and placement will be like a 
Graphic Processing Unit. 
 In Section VI, we will discuss a spectrum of practical 
ways to implement neural simulations inspired by the su-
per-Turing model.  It will also discuss the future directions 
of our (and we hope) the SMM community’s work looking 
at various ways to use super-Turing inspired tools. 

II. Computation and the Brain 
The following subsections will summarize the computation 
and brain discussions of both Turing and Newell. 
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Turing and the Brain  
Here is a condensation of ‘Turing on Super-Turing and 
Adaptivity’ (Siegelmann 2013) specifically addressing 
brain computation issues.  The article also discusses the 
application of super-Turing computation theory to a much 
wider array of biological processes.  The point here is not 
to describe Turing’s ideas about the brain for insertion into 
the SMM, but rather, to point out the insufficiencies of the 
UTM in describing brain functions. 
 Over the span of about a dozen years, Turing described a 
computational machine stronger than his UTM.  The goal 
was to describe a 100-year-in-the-future machine, which 
would stand a chance in winning the Imitation Game (Tu-
ring 1952).  Near the end of these dozen years, he elucidat-
ed why the UTM was not up to the task (Turing 1950): 

Electronic computers are intended to carry out any 
definite rule of thumb process which could have been 
done by a human operator working in a disciplined 
but unintelligent manner. 

Turing’s multi-year description included four (sometimes-
overlapping) features that a stronger machine would be or 
have, i.e., 1. A Series of Machines, 2. Learning and Adap-
tivity, 3. Randomness, and 4. Rich Information.  The su-
per-Turing model also has these four features (Siegelmann 
2013).  Some of the features align with the constraints of 
the physical world.  Section IV will discuss those con-
straints in detail.   
 In the super-Turing model, a Series of Machines results 
from ‘the combined process of learning and computation’.  
Learning and Adaptivity may be thought of as a given 
within any neural network model.  However, the super-
Turing model described has a higher speed and accuracy 
than the UTM in implementing learning.  Randomness is 
inherent in the analog signals in the ARNN model; UTMs 
eschew randomness. Since real numbers are exponentially 
richer in number than the natural numbers, the super-
Turing model, by using or approximating the use of real 
numbers, has exponentially richer information space than a 
UTM. 
 These latter two seem to be the most important, with 
randomness being the most subtle.  Information richness 
will be discussed in Section III; randomness’ subtleties will 
be discussed here.   
 In digital computer applications, Pseudo Random Num-
ber Generators (PRNGs) are used (Monte Carlo modelling, 
Deep Learning (Neelakantan 2015), etc.) but fail at many 
tasks, i.e. cryptography, slot machines (Koerner 2017), etc. 
Reasons for their failure include determinism and repeated 
sequences.  Determinism is expressly not random.  Some 
tasks will not work with some PRNGs (Jones 2010).  
Properly seeding the PRNGs needs real random numbers.  
Super-Turing ARNNs likely need properly tuned random-
ness.  

Newell and Computation  
Newell (1990) gives �� for the number of functions in a 
computational system where there are � inputs and � pos-
sible outputs for each input. He illustrates the rapid growth 
of this number and references a theorem where countably 
unbounded inputs and outputs results in an uncountably 
infinite number of functions (Minsky 1967).  He then says, 
“This result shows the futility of the hope for computers 
that provide all possible functions--…” and goes on to dis-
cuss computing classes.  At the time, the UTM was from 
the strongest known computation class (Newell 1990).  He 
saw it not having an uncountably infinite state space as a 
difficulty in its use to model the brain.  However, there 
were no alternatives.  We now have an alternative that al-
lows computation of an exponentially greater number of 
functions and removes the Newell-noted difficulty.  Below, 
we will describe a computation class, which has an un-
countably infinite state space and is physically realizable.  
It can model the brain. 

III. Super-Turing Analog Recurrent Neural 
Networks 

Study of the computational power of ARNNs started in the 
early 1990s (Siegelmann 2013).  The expectation was that 
they would be no more powerful than a UTM.  After sev-
eral unsuccessful attempts proving this, the goal changed 
to proving they were more powerful.   This met with suc-
cess (Siegelmann 1993, 1994).   
 The research culminated with a book (Siegelmann 1998) 
describing the computing power of ARNNs for a compre-
hensive set of features.  In summary, the features were 
constraints on the synaptic weights and on the signals.  The 
weights were constrained to be integer, rational, or real.  
The signals were constrained to be deterministic or sto-
chastic.  Table I shows a matrix of computing powers be-
cause of these constraints.  It also summarizes which syn-
aptic weights are physically realizable. 
 In the second column (Deterministic Activations) of 
Table 1, the ‘regular’ computation power is the same as the 
one of finite automata.  The state space for it is finite.  The 
‘P’ computation power is the same as the one of the UTM.  
The state space for it is countably unbounded, designated 
as ��.   The ‘P/poly’ computational power results from 
polynomial advice given to a UTM.  P/poly has super-
Turing computational power and a state space the same 
size as real numbers, i.e. uncountably infinite, designated 
as ��� .  Unfortunately, the quantized nature of the universe 
mitigates against weights having real values.  Therefore, 
real weights are not physically realizable as noted in the 
lowest right table entry.  Additionally, there are no physi-
cally realizable super-Turing computation powers in the 
second column.   
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Table 1.  Computing Power of ARNNs. Given the constraints on 
synaptic weights and neuron activations (signals) different com-
putational powers result.  The physical universe also has its con-
straints of quantized charge putting further limits on what compu-

tational powers are possible.  See text for power descriptions. 

Synaptic 
Weights 

Deterministic 
Activations 

Stochastic 
Activations 

Physically 
Realizable 

Integer regular regular Yes 

Rational P BPP/log* Yes 

Real P/poly P/poly No 

 The remaining computation power is BPP/log*.  It re-
quires rational weights and stochastic activations.  It has 
super-Turing computation power.  It also has an uncounta-
bly infinite state space (Cabessa 2014).  Fortunately, it is 
physically realizable for two reasons.  Collections of quan-
tized particles provide rational weights.  Inherently (ther-
mal, etc.) noisy signals provide stochastic activations.  It is 
super-Turing and has the state space of real numbers be-
cause it is a probabilistic (coin flipping) Turing machine 
that uses binary coins having real probabilities.   “…a long 
sequence of coin flips allows indirect access to the real 
valued probability…” (Siegelmann 1998).   

IV. Physical Constraints 
Two main physically realizable features discriminating 
between the super-Turing models described above are sto-
chastic signals and rational weights.  From the discussion 
above, these are the minimum requirements.  The 
BPP/log* model family has these features and indicates 
that a physically realizable super-Turing computation 
model exists.  This existence is crucial and these two fea-
tures can help guide their implementation in the physical 
world. 
 Without a doubt, digital computers can provide rational 
weights. (We will use that fact in our mixed-signal neural 
network design in Section V.) In fact, the quantum nature 
of charge argues against real-numbered weights or signals.  
A neuron’s ion channels can each only admit quantized 
packets of charge.  This causes the cell potential to in-
crease in (albeit small) steps until a threshold is reached.  
This is a rational number process because ions passing 
through cause the weight inherent in a synaptic process to 
be some fraction of the ions needed to exceed the thresh-
old.  This means that the neuron’s synaptic processes can 
implement the rational-number-weight axiom of the super-
Turing model. Therefore, both the brain and other physi-
cally realizable devices can perform at a level that satisfies 

Turing’s own comments above and quoted in (Siegelmann 
2013). 
 Newell explicitly says that the neuron pulse codings “are 
all statistics on the pulse sequences as a stochastic pro-
cess.” (Newell 1990)  Some mathematicians may complain 
that random physical processes (noise in signals) are not 
truly stochastic.  However, they are the nearest possible 
physical manifestation of stochasticity.  While there are 
several physical processes that underlie this random noise, 
the thermal voltage noise of 25 mV is clearly sufficient.  
Contrary to this, digital systems have invalid signal voltage 
ranges so noise does not contaminate its signals.   
 The discussion above shows that neural circuits can 
perform super-Turing operations while digital computers 
cannot perform all operations necessary for this super-
Turing model.  Therefore, a digital system is not optimum 
for simulating neural operations. 

V. Super-Turing Inspired Physical Neural 
Networks 

We were researching Fixed-Weight Learning (FWL) 
(Younger 1999) on optical hardware (Younger 2009) when 
we became aware of super-Turing ARNNs (Siegelmann 
1998).  Since FWL is recurrent and we were combining the 
optical signals in an analog fashion, we referred to Siegel-
mann as a justification for our research.  When the oppor-
tunity arose, we informed Siegelmann of our research.  
That led to a collaboration between the three of us that 
ultimately resulted in the combined understanding of this 
position paper.  It also led to design of a Mixed-Signal 
Neural Network better implementing the super-Turing the-
ory in a physical device (Younger 2014).  With the existing 
optical system, we have shown computation consistent 
with super-Turing operation (Younger 2017).  The optical 
and mixed-signal systems will be discussed separately be-
low. 

Optical Neural Network Mimics Chaos  
While a super-Turing machine should be able to compute 
an exponentially larger number of functions, the only de-
finitive ‘test’ for super-Turing operation that we know is 
mimicking chaos (Siegelmann 1995).  We would entertain 
suggestions for other tests to verify super-Turing operation 
or its improved performance in any specific domain.   
 Unfortunately, with the tests for chaos, one cannot prove 
that a system or device is chaotic; one can only determine 
whether it is consistent with chaos or not (Kaplan 1995).  
A reason for this is that the next output from a supposed-
chaotic system could start a sequence which replicates an 
earlier portion of the sequence.  Another way of stating this 
is one must take an infinite sequence to make sure the out-
puts never start repeating.  A similar idea to this is that it 
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takes an infinite number of outputs from a device to prove 
it is super-Turing (Costa 2017).  So, whether chaotic or 
super-Turing, one can only say, “The (process, device) is 
consistent with (chaos, being super-Turing).” 
 The optical system shown in Fig. 1 was consistent with 
chaos in a 10000-point time series (Younger 2017).  The 
paper also shows how Digital Recurrent Neural Networks 
(DRNNs) running on a conventional computer failed at 
mimicking chaos.  One DRNN had precision of 9-bits for 
comparison to the approximate precision of the optical 
system.  This appears to be a low level of precision, but 
even a purely digital neural network can work at these low 
levels (Höhfeld 1992).  The other had approximately twice 
the number of bits of precision.  (Comparing to the full 64-
bit precision of the digital computer calculating the 
DRNNs appeared to be an unacceptable apples-to-oranges 
test.)  The two DRNNs failed to indicate the chaos of the 
Logistic function in two tests:  Autocorrelation and Largest 
Lyapunov Exponent.   

Figure 1.  The OpticARNN uses optical signals in red to perform 
rational synaptic weight multiplications via the DMD and analog 
neural summations in the line camera. Digital signals are in blue. 

 The Autocorrelation Test rules out chaos by showing 
that a finite number of unique points successively repeats 
in the time series.  In the time series resulting from the 9- 
and 18-bit DRNNs, there were, respectively, only 22 and 
109 unique points.  Therefore, the DRNNs did not exhibit 
chaos.  The optical neural network did not repeat in its time 
series.  Its results are consistent with chaos since chaotic 
systems do not repeat. 
 In the Largest Lyapunov Exponent Test, a positive ex-
ponent indicates the trajectories starting at two nearby 
points diverge; negative exponents indicate a convergence 
of trajectories.  It is a mathematical measure of the sensi-
tive dependence on initial conditions feature of chaos.  
Another name for this feature of chaos is the butterfly ef-
fect.  The DRNNs both failed to have any positive expo-
nents.  The optical system had a positive exponent of 1.083 

(actually indicating more divergence than even the training 
data for the three neural networks trained and tested).  
 In both tests, the optical neural network showed con-
sistency with chaos while neither of the DRNNs did.  Fu-
ture work may insert comparable precision pseudo- and 
physical-randomness to test whether the modified DRNNs 
can mimic chaos.  Further discussions are below. 

Mixed-Signal Neural Network  
Figure 2 shows a conceptual diagram for a mixed-signal 
neural network.  The intent is to build an Analog Neural 
Network Accelerator (ANNA) board implementing the 
portion of the model illustrated in black for insertion on a 
computer bus. 

Figure 2.  Mixed-Signal Feed-Forward Neural Network.  Red is 
the digital side and Black is the analog side. Right pointing ar-

rowhead indicates fan out; left pointing one indicates fan in.  
Recurrent connections are externally connected. 

 The super-Turing features of rational weights and sto-
chastic signals guided its design.  The computer operating 
the red side to the neural network would provide rational 
weights to the analog side. This board would keep some 
signals and their inherent noise solely in the analog do-
main.  Using Commercial-Off-The-Shelf components, 
ANNA could have up to 24 neurons and 144 synapses.  At 
this point, the design is only a multi-layer perceptron.  
Other connection schemes, even dynamic ones could be 
had, but the additional required components would take 
space, causing removal of some synapses and neurons.  
Successive designs would seek to incorporate those fea-
tures.  Connectors would allow signal connection to other 
boards for deeper networks or back to inputs for recurrent 
networks.  

VI. Super-Turing Inspired Device Spectrum 
Newell (1990) noted that the most general machine in a 
computation class could “realize any function realized by 
any other machine in the class.”  This is a universal ma-
chine of the class.  Any non-universal machine of the class 
can compute some, but not all functions of the class.  We 
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have presented one device, short cutting some of the 
BPP/log* super-Turing axioms, whose output is consistent 
with chaos and the BPP/log* computation class. We have 
presented one design implementing the super-Turing mod-
el guidance more fully.   
 The two devices in Section V reflect that there is a su-
per-Turing hierarchy of computing classes (Siegelmann 
1998) with these two devices being on a spectrum of super-
Turing inspired devices capable of computing different sets 
of functions.  They also indicate that strict adherence to the 
BPP/log* axioms may not be required.  The spectrum may 
reflect various levels of adherence to the axioms.  As dis-
cussed below, some may not have super-Turing power 
because their digital portions strip too much of the ran-
domness away.  In addition, any suggested randomness 
generator needs critical analysis to determine its suitability 
for any particular task. 
 Here is a list from our research efforts of provisional 
entities on that spectrum (in speculated order from lowest 
to highest power): 

1. Digital computer with Turing’s radium (Turing 
 1951) 
2. 9-bit DRNN using 9-bit PRNG 
3. 9-bit DRNN using RdRand system call 
4. 18-bit DRNN using 18-bit PRNG 
5. 18-bit DRNN using RdRand system call 
6. 64-bit Phoneme Recognition NN using  

MATLAB’s rand() 
7. 64-bit Phoneme Recognition NN using RdRand 

system call 
8. OpticARNN 
9. Mixed-Signal Neural Network 

 Since radium might not overcome the designed-for-
noise-immunity digital computer, the first entry likely falls 
off the list as remaining a Turing machine.  To get radioac-
tivity generated random numbers to work is more compli-
cated than Turing’s idea of just exposing the computer to 
radium. 
 Because of the results detailed above, the second and 
fourth entries maybe should not be included on the spec-
trum since PRNGs repeat.  However, tests are possible on 
these entries. 
 Since about 1999, many Intel based computers have had 
an entropy-based random number generator and other 
chipmakers included one later.  A system call (RdRand) 
accesses it.  While there are questions about its security for 
encryption, it can add true randomness to a computer’s 
calculation. Whether this is sufficient for a computer to 
mimic chaos, we can test whether the modified DRNNs do.  
 The tests using Phoneme Recognition in entries 6 and 7 
will not determine whether they are or are not on the super-
Turing device spectrum.  Rather, they are tests seeking to 
show in a practical way that super-Turing guided devices 
have improved performance over conventional computa-

tion.  Other researchers could use the listed (P)RNG func-
tions to perform to perform similar tests on their brain sim-
ulations or neural networks. 
 Further testing with OpticARNN also seeks for a practi-
cal way to show improved performance. 
 Progress on ANNA will be slow until a funding source 
can be convinced it is worth the investment.  Should the 
tests above show improved performance, they may provide 
reasons not to build the ANNA boards.  That is, ANNA’s 
cost might not be justified by the expected improvement in 
computing power.  However, ANNA boards (or others 
similarly designed) should be the nearest to implementing 
the super-Turing model since they adhere most closely to 
the BPP/log* axioms.  Its rational weights only have pow-
ers of two in the denominators.  Since the theory uses all 
rational numbers in its weights, ANNA is not likely the 
universal machine for the BPP/log* computation class.  
Similarly, we do not know whether the brain’s variety of 
computable functions uses a more significant fraction of 
the rational number set and, thereby, needs to be modelled 
by the universal BPP/log* machine. 
 We actually encourage others to join in this testing.  Its 
results will be useful to the SMM community. 

VII. Conclusion 
Our call for action is the same as presented in the quote 
below (Siegelmann 2013). 

If we limit our research to Turing computation only, 
we may fail in our efforts to create true Artificial In-
telligence and likewise we may misunderstand the 
mechanisms upon which life is based. 

At this point, SMM simulations are restricted to digital 
computers inspired by the Universal Turing Machine.  This 
paper argues that super-Turing inspired computations 
would be better for calculating the SMM.  We realize spe-
cific tools inspired by the super-Turing model do not yet 
exist for adoption within the SMM community.  While we 
continue to develop mixed-signal neural networks wherein 
some signals remain always analog, the optical experiment 
may hint at super-Turing consistent operation with fewer 
analog (i.e. random) operations.  We listed several other 
systems accessible in our research group which might be 
made to exhibit chaos.  We are continuing to investigate 
those as well.  Two list entries provide our example exper-
iments, which use ubiquitous computer hardware available 
to other researchers, to prompt them to test their systems 
for improved performance themselves. When we or when 
the SMM community helps make super-Turing inspired 
computation devices available, the community will make 
significant progress on the underlying mathematics and 
physics of A Standard Model of the Mind. 
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