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Abstract

To provide, anywhere and anytime, smart assistive services
to people, cognitive robots and agents need to be endowed
with advanced spatio-temporal knowledge representation and
reasoning capabilities. In this paper, a semantic approach for
cloud-assisted robotics integrating entities of the ambient en-
vironment is proposed. Its principle consists of advanced con-
textual knowledge representation and reasoning models based
on the hybridization of metric, topological and semantic in-
formation. A scenario dedicated to the cognitive assistance of
frail people is implemented and analyzed for validation pur-
poses of the proposed approach.

Introduction
Robots and smart objects are increasingly populating our ev-
eryday life environments where 20.8 billion objects are es-
timed, by Gartner company, to be connected in 2020. The
ambition of the ambient assisted living (AAL) domain is to
provide intelligent assistive services, with a high level of
performance and acceptability, in order to increase the au-
tonomy of dependent people and to improve their safety and
well-being (Chibani et al. 2015).

The emergence of new smart objects such as smartphones,
smart sensors and companion robots with the cloud com-
puting systems is strongly contributing to extend ambient
intelligent (AmI) environments (Kehoe et al. 2015). These
environments will be composed of cognitive entities that are
capable of perceiving their environments, reasoning, proac-
tively executing tasks and adapting themselves to the user’s
context. According to the paradigm of context awareness,
such robots will be able to better monitor dependent peo-
ple, and provide them assistive services according to their
context (Henricksen and Indulska 2006). For example, a
companion robot that can assist visually impaired humans
by describing them objects’ location in dynamic environ-
ment. Such a robot must be able to communicate and to
exchange knowledge with other entities, and then to adapt
these knowledge in the humans’ context, as illustrated in
Figure 1. More generally, to provide, anywhere and any-
time, smart assistive services to people, robots need to be
endowed with advanced spatio-temporal knowledge repre-

Copyright c© 2017, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Figure 1: Interaction issue between Mary, visually impaired
person, and cognitive entities in AmI environment.

sentation and reasoning capabilities. One of the most im-
portant challenges in assistive robotics is to have complete,
generic and expressive models for knowledge representation
and reasoning, adapted to the dynamic nature of an ambient
intelligent environment (Tapus, Maja, and Scassellati 2007;
Hodges et al. 2012). Existing cognitive architectures usu-
ally emphasize uniformity in representation and reasoning
mechanisms (Loutfi et al. 2008; Lemaignan et al. 2010;
Riazuelo et al. 2015). They have dealt with the use of bi-
nary relationship-based ontology language such as OWL,
DOLCE, Cyc. However, representing dynamic environment
requires that all constituents of an event, an action, a flu-
ent, etc. must necessarily be managed at the same time as a
unique and coherent block (Zarri 2009).

To address these challenges, expressive representation
models of contextual knowledge associated with the entities
characterizing an ambient intelligent environment (human,
robot, sensors, actuators, etc.) are required. These models
will be able to represent spatial entities, their properties and
spatial relationships between them at a specific time. Build-
ing efficient cognitive models for better modeling a dynamic
environment requires a suitable architecture.

In terms of application, this study focuses on cognitive
assistance of dependent people at home. Such a service aims
to help a person to prepare his/her meal.

In this paper, novel contextual representation models
based on n-ary ontologies and inference mechanisms are
proposed. The expressiveness of the n-ary ontologies on
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which the narrative knowledge representation language
(NKRL) is based, is exploited in this paper. It overcomes
the problems encountered in the spatial and dynamic knowl-
edge representation approaches based on binary ontologies
such as (Walter et al. 2013; Riazuelo et al. 2015), commonly
used in ambient intelligence and robotics. The contributions
of the paper can be summarized as follows: (i) a cognitive
architecture for cloud-assisted robots to endow robots and
agents with new capabilities in order to better understand
the context of an entity and consequently to improve the de-
cision making; (ii) a spatiotemporal knowledge representa-
tion model based on the hybridization of metric, topological
and semantic information, and associated reasoning mecha-
nisms. By exploiting both the NKRL language (Zarri 2009)
and a semantic graph describing the spatial entities and their
relationships, a complete, coherent and expressive spatio-
temporal knowledge representation is guaranteed allowing
a group of agents and robots to reason over representations
of dynamic environment. An extension of NKRL based on
a new structure of the templates of the HTemp (hierarchy of
templates) ontology is proposed; (iii) a representation model
of properties of entities and reasoning about the status of
these entities populating the environment. By representing
changes of context, the proposed model improves the per-
ception of the context and ensures better adaptation of assis-
tive services. By exploiting these models, the goal is to make
inferences on knowledge about user’s context in the dynamic
environment. This knowledge may relate to the entities pop-
ulating the environment, their relationships, and their status
to improve context awareness.

The paper presents, first, a review of related works con-
cerning the representation of a dynamic environment and
reasoning in the robotics field. Then, it describes the differ-
ent layers of the cloud-assisted robot cognitive architecture
for human-environment interaction and introduces the novel
approach for contextual knowledge representation and rea-
soning. Finally, this paper evaluates the proposed approach.
It is concluded with a short review of the proposed approach
and a summary of the ongoing works.

Related work
In the field of robotics, the symbolic representation of a dy-
namic environment has been the subject of many research
projects in recent years. Several works have dealt with the
use of semantic web ontologies to implement robotic knowl-
edge management platforms without supporting spatial rea-
soning at the ontology level. For example, the RobotEarth
platform based on binary representations using the language
owl doesn’t support spatial reasoning or temporal reason-
ing at the ontology level, (Riazuelo et al. 2015). The ORO
platform is limited to geometric reasoning (Lemaignan et al.
2010). PEIS Ecology uses the DOLCE language to describe
static knowledge and doesn’t support spatial reasoning in the
ontology (Loutfi et al. 2008).

To provide an expressive description of the environment,
several researchers have proposed alternatives to metric
maps by developing approaches to represent the environ-
ment as topological maps and/or semantic maps (Riazuelo
et al. 2015; Hemachandra et al. 2011). Thus, Zender et al.

(Zender et al. 2008) propose a framework to represent en-
vironments such as offices. Semantic models are proposed
to represent categories of offices and spatial relationships
between these offices. Pronobis and Jensfelt (Pronobis and
Jensfelt 2012) propose a multimodal representation incorpo-
rating semantic knowledge from identified objects, and spa-
tial information provided by humans. The two approaches
are related to the establishment and exploitation of semantic
maps rather than the exploitation of both metric and seman-
tic representations of the environment.

The idea of merging the metric, topological and semantic
maps, has been proposed by several researchers such as Wal-
ter et al. (Walter et al. 2013). However, the languages used
for the semantic representation of the environment such as
OWL, are limited to the use of binary and unary relation-
ships. Representing a dynamic environment with complex
spatial relationships requires that all constituents (spatial en-
tities and these relationships) must necessarily be managed
at the same time as a unique and coherent block (Zarri 2009).
Thus, the binary representation doesn’t guarantee the coher-
ence of the relationships.

Cloud-assisted robot cognitive architecture

Figure 2: Cognitive architecture for cloud-assisted robotics

An extension of the cognitive architecture presented in
(Ayari et al. 2015), is proposed for cloud-assisted robotics
in this paper. To render robots and agents able to better
understand the context and consequently to improve their
decision-making, this extension endows robots and agents
with new capabilities. These latter concern the expressive
and efficient contextual knowledge representation and rea-
soning models for a richer and complete description of the
environment. An overview of the proposed architecture is
shown in figure 2.

At the low level, a communication service enables the en-
tities populating the environment to connect and subscribe to
the cloud services using the standardized middleware tech-
nologies (XMPP, REST, etc.). The communication service
enables also the basic exchange capability between any en-
tity by more focusing on the encoding of messages’ con-
tent, which is defined by elements such as lexicon, grammar,
speech acts, and semantics.

A knowledge base connects most of the services such as
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the knowledge representation service and the reasoning ser-
vice, enabling cognitive agents or robots to be endowed with
large general purpose commonsense knowledge for human-
environment interaction. When connected to the cloud, a
robot or an agent can benefit from the powerful computa-
tional, storage, and communications resources of modern
data center in the cloud, which can process and share infor-
mation from various robots or agents (other machines, smart
objects, humans, etc.). The ontology representing common-
sense knowledge relies on a central server and is shared
between all the entities populating the environment when
each entity has its own instantiations of dynamic knowledge.
Sharing a commonsense knowledge and common language
guarantee the semantic interoperability of these entities and
enables them to communicate between each other.

At the high level, the cloud enables robotic systems to be
endowed with robustness, resources elasticity, and compu-
tational power according to the definition of cloud robotics
paradigm. Thus, it is possible to build lightweight, low cost,
smarter robots, which intelligent ”brain” is in the cloud. The
”brain” here consists of information processing, knowledge
representing, environment models, reasoning engine, etc. In
this study, a brain is designed to provide the following ser-
vices:

• The knowledge representation services exploit the ex-
pressiveness of the n-ary ontologies on which the narra-
tive knowledge representation language (NKRL) is based.
The natural language (NL)/NKRL service provides a set
of common techniques, algorithms and technologies in-
troduced in previous work (Ayari, Chibani, and Amirat
2013). It allows robots to understand statements by con-
verting these latter into NKRL predicates occurrences.
The spatiotemporal context modeling service, proposed in
this paper, produces symbolic descriptions of the spatio-
temporal context of the entities populating the environ-
ment. The event and fluent modeling service represents
what is occurring in the environment such as states of
the entities populating the environment. The generated
NKRL predicates occurrences within these services are
stored in the knowledge base, and queried back, when
necessary by reasoning techniques or query-answering
system;

• The online NKRL context-aware reasoning is based on the
inference engine of Narrative Knowledge Representation
Language (NKRL). This engine was extended, in previ-
ous work, by context-aware reasoning models including
human preferences (Ayari et al. 2015), reasoning model
based on collective intelligence (Ayari et al. 2016). In this
work, this engine is extended by new spatio-temporal rea-
soning models including reasoning on topological, orien-
tation and proximity relationships, and reasoning models
for context and entities properties values changing.

The main design principle of the proposed architecture is to
integrate seamlessly the entities populating an ambient en-
vironment. In particular, it consists of the integration at the
representation level to manage the rich semantics of natu-
ral interactions with humans and to ensure that all entities
populating the ambient intelligent environment share a com-

monsense knowledge and common language. The proposed
architecture aims to develop intelligent and autonomous
robots in dynamic environment that are able to serve and
interact seamlessly with humans by providing assistive ser-
vices.

Contextual knowledge representation and
reasoning: hybrid models

To take into account both the ’static’ and ’dynamic’ char-
acteristics of any entity populating the environment and to
overcome the problems encountered in the dynamic knowl-
edge representation approaches based on binary ontologies,
an ontological model based on the Narrative Knowledge
Representation Language (NKRL) is proposed.

Narrative Knowledge Representation Language
The NKRL language (Zarri 2009) is based on:

• HClass ontology: an upper ontology that consists of a hi-
erarchy of binary classes. It allows describing plain/static
commonsense knowledge for human-environment inter-
action such as person, object, etc. This ontology is char-
acterized by the subsumption relationship describing gen-
eralization/specialization among concepts;

• HTemp ontology: an n − ary ontology that allows to
define templates for representing dynamic entities based
on the notions of ”conceptual predicate” and ”functional
role”. To each role, arguments and the property ”loca-
tion” can be associated. The HClass ontology has an au-
tonomous existence, with respect to the description of the
dynamic entities in the HTemp ontology. This allows to
take into account well-defined classes of cognitive phe-
nomena without considering the specificities of their con-
texts, figure 3;

• Inference engine: high-level inference procedures are
based on NKRL transformation and hypothesis rules,
which allow the inference of implicit relations between
predicative occurrences and consequently the chronolog-
ical context of a given event such as the inference of the
new robot’s location and the related spatial relationships
when the robot moves;

• Query-answering system: the queries are operated di-
rectly on explicit predicative occurrences stored in the
knowledge base by means of search patterns pi, which
are processed by the Filtering Unification Module (FUM)
(Zarri 2009).

Dynamic environment Representation
Acting and interacting in AmI environments requires a spa-
tial representation model that enable heterogeneous entities
populating this environment such as, mobile robots and hu-
mans, to be integrated seamlessly. To deal with that, a spa-
tiotemporal knowledge representation model based on the
hybridization of metric, topological and semantic informa-
tion, and associated reasoning mechanisms is proposed in
this paper. This model exploits both the NKRL language
(Zarri 2009) and a semantic graph (Walter et al. 2013) to de-
scribe the spatial entities and their relationships at specific
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Figure 3: The HClass and the HTemp ontologies

time. The HTemp ontology of NKRL complete the semantic
graph with temporal knowledge to be adapted to represent a
dynamic environment. Formally, a dynamic environment is
then described as a semantic graph G (E ,R, t) composed of:

• A set E of entities; each entity is represented, at time t, by
its situation vector X and a conceptual instance I in the
HClass ontology, such as kitchen, table, etc.;

• A set R of relationships between these entities; each rela-
tionship is represented using the predicate NKRL ”EX-
IST” of the HTemp ontology. This predicate is used to
represent spatial relationships between the entities of the
environment by associating the time dimension to these
relationships.

Figure 4 shows the semantic graph representing a scene
from an ambient environment.

Spatial entity representation: To represent static and dy-
namic spatial entities, both of semantic and geometric repre-
sentation models are introduced in this work. Semantic rep-
resentation enables robots to conceptualize human-made en-
vironments similar to the way humans do where geometric
representation enables them to navigate autonomously.

• Semantic Representation: Each spatial entity e, denoted
by e ∈ E , is represented by an instance I of the con-
cept ’entity ’ of the HClass ontology and denoted by
I � entity , figure 5.
A static entity is a fixed element of the environment
whose position doesn’t evolve through time, for example,
a house, a bedroom, a kitchen, etc. This type of entity is
described by the concept ”location ” of the HClass on-
tology and denoted by I � location .
A dynamic entity represents an element of the environ-
ment whose position evolves over time. Two categories of
dynamic entities are distinguished:

Figure 4: Typical scene of ambient environment with its se-
mantic graph

– The living entities (person, animal) that are described
by the concept ”living entity” of the HClass ontology
and denoted by I � living entity;

– The entities ”objects” whose position changes as a re-
sult of an action performed by an agent. For example,
the ”vase” is moved by John (the agent). This type of
entity is described by the concept ”artefact ” of the
HClass ontology and denoted by I � artefact .

• Geometric representation: ”Spatial entity” represents an
element of the environment that is characterized by its po-
sition, its orientation and its dimensions (eg width, length,
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Figure 5: Entities representation in HClass ontology

height). In this work, each spatial entity, static or dynamic,
is represented by its situation vector X (x, y, θ) where x
and y are the cartesian coordinates of its center of grav-
ity, and θ its orientation. A static entity is represented also
by its region REG(xmin, ymin, xmax, ymax) defined by
an enclosing rectangle, where xmin, ymin, xmax et ymax

represent the coordinates of the lower-left and upper-right
vertices of the rectangle.

Extension of NKRL for spatial relationship represen-
tation: Although the NKRL language allows a com-
plete, coherent and expressive knowledge representation, it
doesn’t support spatial reasoning in its original version.

Among the most representative works in spatial knowl-
edge representation domain, we can mention those handling
topological representations by exploiting the notion of la-
beling of the spatial relations, as proposed in the Region
Connection Calculus (RCC) algebras. RCC-8 is one of the
most used algebras for semantic representation of entities
and spatial relations based on the language OWL. These re-
lations cover, however not, all the spatial relations such as
orientation relationship (”left of”, ”right of”), proximity re-
lationship (”close”, ”far”), etc.

In this paper, the proposed spatial representation model
is mainly focused on topological, orientation and prox-
imity relationships. The formalism ABLR (Above Below
Left Right) (Laborie 2008) is exploited to represent topo-
logical and orientation relationships between spatial enti-
ties. On all the relations proposed by Laborie et al. (La-
borie 2008), the following 11 spatial relationships (topo-
logical and orientation relationships) are exploited for their
expressiveness: ABOVE, BEHIND, BELOW, BETWEEN,
FRONTOF, ONE, LEFTOF, RIGHTOF, INSIDE, OUT-
SIDE and INCLUDE. To model the notion of proximity,
four linguistic variables characterizing the proximity be-
tween two objects are considered: CLOSE, FARENOUGH,
FAR and VERYFAR. These relationships can be composed
using AECS operators (for Alternative Enumeration Coor-
dination Specification) of the NKRL language for a richer
spatial description of the environment.

Example: Consider the following statement: E4: John is

near to the refrigerator. Its representation in NKRL is:

E.occ4: EXIST
SUBJ JOHN: CLOSE(REFRIGERATOR 1)
date-1: 14/02/2017 11:30
date-2:

Exist: HumanPresentAutonomously

Extension of NKRL with fluents for entities properties
representation In this work, we focus on the context
changing through the changes of the entities properties of
the environment following the occurrence of events. The
study of the state of the art has shown that the theory of the
Event Calculus or the Situation Calculus proposed by Mc-
Carthy and Hayes is a logical approach well adapted for rep-
resenting knowledge and reasoning about changes of context
and changes of values of entities properties (McCarthy and
Hayes 1969). In this theory, the notion of fluent is introduced
to represent the entity properties whose values change over
time. A fluent associated to an entity property is true, if this
entity acquires a specific value for this property.

Event Calculus NKRL Language
HoldsAt(closed,t1) F.occ1: OWN SUBJ DOOR 1

OBJ property
TOPIC closed
date-1 t1
date-2

Own:SimpleProperty

Table 1: Example of a fluent representation in Event Calcu-
lus and in NKRL

To model entities properties values changing in NKRL,
the notion of fluent used in the Event Calculus theory is ex-
ploited. The predicate Holds(property, t) of this theory is
formalized using the OWN predicate of NKRL, cf. table1.
The OWN meaning stands for ’being in possession of some-
thing’. Specifically, the templates Own:CompoundProperty
and Own:SimpleProperty represent the entity properties at
specific time. They are well adapted for representing flu-
ents. A symbolic label ”F” is also used to identify a pred-
icative occurrence that represents a fluent. Thus, the repre-
sentation of the property of an entity through the predicate
OWN means that the value of this property is true between
the instants t1 and t2. The table 1 shows the fluent represen-
tation in NKRL and in Event Calculus corresponding to the
state ”closed” of the property ”opening state” of the entity
”door”, that is true starting from the instant t1.

Context-aware reasoning
Spatio-temporal context recognition New spatial rea-
soning models extending NKRL inference engine are pro-
posed in this work allowing to better understand the sap-
tial/spatiotemporal context.

• Reasoning on topological relationships: To extend NKRL
with spatial reasoning models, the principle of composi-
tion of topological relationships is exploited in this work.
In the ABLR formalism, the composition of topological
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relations is based on the relations of Allen’s temporal in-
tervals (Allen 1983). In this paper, two categories of rela-
tions are used to infer new spatial relations: inverse rela-
tions and composed relations. Formally, a relation R can
be obtained:

– by inverting an existing relationship: R = r−1

– by composing several existing relationships: R = r1⊗
r2 ⊗ ...⊗ rn

The inference of spatial relationships in NKRL is based
on the principle of composition on which is founded
the topological reasoning. This mechanism involves two
steps: generation of inverse relationships and composition
of spatial relationships.

– Inverse relationships: A set of rules is defined in NKRL
to infer an inverse relationship. An inversion rule is
composed of a condition, a consequent, and a set of
variables, table 2.

Condition:
EXIST SUBJ var1: BEHIND (var2 )

Consequent:
EXIST SUBJ var2: FRONTOF (var1)

Table 2: Example of inversion rule in NKRL

– Composition relationships: Using the transitivity prop-
erty, a composition rule allows to infer a new spatial
relationship from existing relationships. In this paper,
a composition rule is built from the composition table
proposed by Laborie et al. (Laborie 2008). Formally,
for a topological relationship, defined by its label L,
involving a set of entities E , the transitivity relationship
is defined as follows:

∀x, y, z ∈ E , [(xL(y) ∧ yL(z)) ⇒ xLz]

In NKRL, a composition rule is described by a condi-
tion consisting of a conjunction of two or more predi-
cates, a consequent, and a set of variables, table 3.

Condition:
COORD(C1 C2)
C1. EXIST SUBJ var3: LeftOf (var1 )
C2. EXIST SUBJ var1: LeftOf (var2 )

Consequent:
EXIST SUBJ var3: LeftOf (var2)

Table 3: Example of composition rule in NKRL

• Reasoning on orientation relationships: To establish ori-
entation relationships, defined in this paper, it is necessary
to define a reference landmark. In the case of an ambient
environment, the reference landmark corresponds to the
landmark of an observer such as a robot, a Kinect cam-
era or a person. The reasoning on the orientation consists,
here, of transforming the spatial relation described in the
reference landmark of the first observer, for example, the

entity ”KINECT”, into a new relation described in the ref-
erence landmark of the second observer, for example the
entity ”MARY”, by taking into account the situation vec-
tors of these two entities.

Condition:
C1. EXIST SUBJ var1: RIGHTOF(var2)

Consequent:
EXIST SUBJ var1: LEFTOF(var2)

Table 4: Example of orientation rule in NKRL

To establish a spatial relationship, a set of metric trans-
formation rules exploiting the situation vectors of the en-
tities are used. Orientation rules expressed in NKRL are
specified using these transformation rules. Reasoning on
orientation relationships improves the interaction between
agents, robots, and human by exploiting efficiently the
spatial knowledge of each entity;

• Proximity relationships: The use of distance relationships
in ontologies enables a richer representation of spatial
knowledge. However, the semantics of these relationships
vary depending on the application context. For example,
at a city level, a distance of 50 meters can be character-
ized by the proximity level ”close”, whereas at a build-
ing level, this distance is characterized by the proximity
level ”far”. In this work, reasoning model allowing to in-
fer proximity relationships between entities from metric
distances and vice versa, is proposed. To implement this
reasoning, the distance is partitioned into four partitions
configured using a parameter denoted by the variable α.
This parameter depends on the class of the spatial enti-
ties. This type of representation was proposed by Hudelot
(Hudelot, Atif, and Bloch 2008). Formally, a proximity
level corresponding to a distance d between two spatial
entities E1 and E2 is defined as follows:

– close, if d(E1, E2) ∈ [0, α]

– far enough, if d(E1, E2) ∈]α, 3
2α]

– far, if d(E1, E2) ∈] 32α, 2α]
– very far, if d(E1, E2) ∈]2α,+∞]

Reasoning on context and entities properties values
changing: To deduce the values of fluent f , associated
with the entity properties, following the occurrence of an
event e at the instant t2, the transformation rules RT of
NKRL is used. A transformation rule allows to convert an
event of changing from one state to another, described in
NKRL using the predicate MOVE, into two fluents f1 and f2
described in NKRL using the predicate OWN. In Event Cal-
culus theory, this transformation is represented by the pred-
icates Initiates (e, f, t) and Terminates (e, f, t). Unlike the
Event Calculus theory where fluents and events are specific
to each use case, the NKRL language allows greater abstrac-
tion thanks to the transformation rules allowing the deduc-
tion of different fluents from any event. Formally, an event e
can make true or false a fluent f starting from an instant t2
such as:

(f, t2) ⇐ (e, t2) ∧RT
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¬(f, t2) ⇐ (e, t2) ∧RT ∧ (f, t1) ∧ t1 < t2

For example, the occurrence of the event ”open a door”
at the instant t2 results from the fact that the fluent ”door
opened” becomes true starting from this instant while the
fluent ”door closed” becomes false.

Evaluation
To highlight the benefits of using the proposed approach,
three dimensions are considered: the size of the knowledge
base, its runtime performance, and examples showing how
diverse entities benefit from the proposed cloud-based con-
textual knowledge representation and reasoning system.

Knowledge base
Nowadays, more than 9.000 concepts describing com-
mensense knowledge covering a wide range of concepts
about human-centric applications are included in the HClass
ontology. Using commonsense knowledge is motivated by
the possibility of an automatic extension of these knowledge
by other upper ontologies such as wordnet. Each cognitive
entity has its own knowledge base. This latter consists of
instances of HTemp ontology that is growing during tests.
Endowing entities with distributed knowledge base allows
to reduce significantly the complexity of the system in dy-
namic environment and thus the processing time.

Runtime and scalability
The execution of each component (service) is independent
of the size of the dynamic knowledge base but is dependent
of the size of HClass ontology. The number of accesses to
the HClass ontology is proportional to the search patterns,
objects detected, etc. Since NKRL rules define the domain
of variables, the access to the HClass ontology is limited to
a specific segment. This avoids exploring all concepts of the
ontology.

Figure 6: Response Time of each component

The use of the cloud for externalizing the expensive com-
putation processes provides an improvement in the response
time that make them useful in the context of group of agents
and robots. Figure 6 shows that the response time of the rea-
soning and querying services remains constant during the
tests. The response time of the parallel NL/NKRL conver-
sion services is less than 500ms where the average time
needed for querying the knowledge base to respond to a
query is around 2ms. These results show clearly the effi-
ciency of the proposed cognitive architecture in terms of

computation time, that is well adapted to natural human-
environment interaction in ambient environment.

Assistance to prepare a meal

Figure 7: Scene extracted from the kitchen of the livingLab

The proposed scenario consists of implementing an assis-
tive service to a person living alone and suffering from mem-
ory problems by providing contextual information to help
him/her to prepare a meal, figure 7. This scenario is mo-
tivated by the problems of people with memory disorders.
The objective of this demonstration is to show how a simple
robot can reliably and efficiently update and exploit jointly
the metric, topologic and semantic maps of other entities
needed to perform daily tasks using the NKRL cloud ser-
vices. To recognize the context ”prepare a meal”, the per-
son, called John, must be situated in front of the work plan in
the kitchen during one of the following temporal references:
”morning”, ”midday” and ”evening”. According to the sce-
nario, a cognitive agent is able to detect that John is prepar-
ing a meal through the correlation of events concerning his
location during breakfast, lunch or dinner time. To localize
John in indoor environment, a localization system based on
infrared beacons and an accelerometer placed at the chest
of the person are used. The object detection service is im-
plemented in the cloud infrastructure to extract objects situ-
ated on the work plan and their spatial relationships from an
instant image detected by the kinect camera. These objects
can be recognized then through the Cloudsight service1 that
provides their descriptions in natural language. The assistive
service here consists of assisting John to prepare a meal; the
robot turns on the hob and emits the recipe instructions. This
work is reported in a multimedia video file2.

Several experiments of this scenario have been conducted
in the kitchen of the living-Lab of LISSI- UPEC3. 5 peo-
ple agreed to test the proposed assistive service to prepare a
meal involving the Kompai robot during the lunch break. In
these experiments, we focus on the semantic and topologic
mapping of a kitchen and the heterogenous data sources
(camera, sensors, metric map and NL statements). These
people have almost a similar daily agenda where they are

1http://cloudsight.ai/
2http://www.lissi.fr/videos/demo1.php
3http://youtu.be/XicBDjGSxYc
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present in their office all day with a lunch break. Each per-
son has foods in the refrigerator enabling him to prepare
or to only warm up their meal. During these experiments,
the queries are in natural language under the form of vo-
cal message through the companion robot. Speech recog-
nition turned out to be not robust enough due to the lim-
ited sensitivity of the microphone embedded into the com-
panion robot. Participants repeat their utterances few times.
Person detection was 100% reliable with a minor inaccu-
racy in terms of metric position. Spatial reasoning model
needs significant enhancement to be intuitively usable. In
very complex situation with ambiguous spatial relationship,
this module cannot infer the right relationship. Therefore, a
consistency checking of the proposed model is needed.

Conclusion
In this paper, a semantic approach for cloud-assisted
robotics integrating entities of the ambient environment
is proposed. Its principle consists of advanced contextual
knowledge representation models based on the hybridization
of metric, topological and semantic information. By exploit-
ing both the NKRL language and a semantic graph describ-
ing the spatial entities and their relationships, the proposed
approach overcomes the problems encountered in the spatial
and dynamic knowledge representation approaches based on
binary ontologies.

The scenario dedicated to the cognitive assistance of frail
people showed promising results in terms of pertinence of
the provided service where a better adaptation of the user’s
context is ensured. The ongoing works address the exten-
sion of the proposed approach for the represention and the
reasoning on temporal context to improve context awareness
and allow a better decision making.
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