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Abstract 

When to send system-mediated interruptions within collaborative 
multi-human-machine environments has been widely debated in 
the development of interruption management systems. Unfortu-
nately, these studies do not address when to send interruptions in 
multi-user, multitasking scenarios or predictors of interruptibility 
within communication tasks.  This paper addresses the issue of 
predicting interruptibility within these interactions with special 
attention to which users are engaged in which tasks or task en-
gagement and where users are within a current task or task struc-
ture as predictors of interruptibility. Using natural human speech 
from these interactions, we attempt to model task engagement and 
task structure to predict candidate points of interruptions.  The 
motivation for these models and their performance in a multi-
user, multitasking environment are discussed as proposals in de-
veloping communication interruption management systems. To 
model task structure, a task breakpoint model is proposed which 
performs with a 90% accuracy within a multi-user, multitasking 
dataset.  Integrating this task breakpoint model into a real-time 
interaction results in an average accuracy of 93% using the pro-
posed task breakpoint model and a rule-based model.  To deter-
mine the current task in which users are engaged or task engage-
ment, a proposed task topic model performs with an accuracy 
between 76-88% depending on the topic within the dataset.  
Closely examining task structure and task engagement as predic-
tors of interruptibility sheds new light on a rarely explored area 
for system-mediated interruption timings within multi-user, mul-
titasking communication tasks.   

Introduction 
Within human-human-machine collaborative communica-
tion tasks, it is imperative that machines adhere to appro-
priate communication strategies that do not hinder the 
overall task goals.  One form of communication within 
these tasks are interruptions. The work in interruption 
management system development primarily explores inter-
ruptions in human-machine tasks from the perspective of 
single-user, multitasking and multi-user, single task envi-
ronments.  A single-user, multi-task interaction is one in 
which one user is engaged in a primary task while inter-
rupted with information relevant to a secondary task. A 

multi-user, single-task environment is one in which multi-
ple users are engaged in a primary task and interrupted 
with information related to that primary task.  Interruption 
management systems within these interactions leverage 
information from task interactions and apply rule-based or 
machine learning techniques to disseminate information at 
appropriate times.  This research area is motivated by the 
reality that as users increasingly multitask among proactive 
systems, their tasks are being interrupted more often.  

Appropriate interruption timings within multi-user, mul-
titasking communication interactions is the primary focus 
of this paper.  In contrast to previously mentioned interac-
tions, a multi-user multitasking interaction is one in which 
multiple users are engaged in multiple unrelated tasks.  An 
interruption within these interactions can be defined as an 
unanticipated request for task switching from a person, an 
object, or an event while multitasking (Arroyo and Selker 
2011). Examples of multi-user, multitasking interactions 
include human-robot teams, air traffic control stations, 
unmanned aerial vehicle (UAV) operations, commercial 
and military pilots in cockpits, and human-computer tech-
nical support teams.  Within these exchanges, humans are 
not only multitasking, but collaborating within a communi-
cation task as well.  In multitasking environments humans 
are simultaneously working on one or more unrelated 
tasks.  While collaborating, switching tasks could affect 
interdependencies with other teammates (human or ma-
chine). Providing awareness information to machine col-
laborators could be beneficial in helping align their tasks 
and interactions.   

Though proactive delivery of information can benefit 
users, studies show that interrupting primary tasks can 
negatively impact productivity (Bailey and Konstan 2006; 
Czerwinkski, Cutrell, and Horvitz 2000; Monk, Boehm-
Davis, and Trafton 2002; Cutrell and Horvitz, 2000) and 
affective state (Adamczyk and Bailey 2004; Zijlstra et al. 
1999).  Within these contexts there have been proposed 
methods of intelligent system-mediated interruptions. 
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There is empirical research dedicated to manipulating time 
on the delivery (Bailey and Konstan, 2006; Czerwinkski, 
Cutrell, and Horvitz 2000; Monk, Boehm-Davis, and 
Trafton 2002) of system-mediated interruptions 
(McCrickard, Chewar, Somervell, and Ndiwalana 2003) in 
multi-task environments (McFarlane and Latorella 2002). 
There is also literature that explores immediate interruption 
dissemination (Czerwinski, Cutrell, and Horvit, 2000; 
Dabbish and Kraut 2004; Latorella,1996) within dual-task 
scenarios. Studies have shown that delivering interruptions 
at random times can result in a decline in performance on 
primary tasks (Bailey and Konstan 2006; Czerwinski, 
Cutrell, and Horvitz 2000; Kreifeldt and McCarthy 1981; 
Latorella 1996; Robinstein, Meyer, and Evans 2001). Other 
studies show similar results (Altmann and Trafton 2004; 
Czerwinski, Cutrell, and Horvitz 2000; McFarlane D. A., 
1999; Zijlstra et al.1999) and the differences in cost of in-
terruptions are typically attributed to differences in work-
load at the point of interruption (Bailey and Konstan, 
2006).  Additionally, studies have illustrated that interrupt-
ing users engaged in tasks has a considerable negative im-
pact on task completion time (Cutrell, Czerwinski, and 
Horvitz, 2001; Czerwinski, Cutrell, and Horvitz 2000; 
Czerwinkski, Cutrell, and Horvitz 2000; Kreifeldt and 
McCarthy 1981; McFarlane D. C. 1997; Bailey and Iqbal 
2008).  Studies in (Peters, Romigh, Raj, and Bradley, 
2017) explores the benefits of providing a form of intelli-
gent interruption dissemination within multi-user, multi-
tasking interactions in terms of task performance across 
multiple tasks.  Although there has been considerable re-
search in developing systems that use intelligent methods 
to disseminate interruptions in multitasking environments, 
these studies do not address when to send system interrup-
tions in multi-user, multitasking scenarios and do not ad-
dress predictors of interruptibility within communication 
tasks for these interactions.  The aim of this work is to 
augment this area of research by investigating appropriate 
interruption timings and their effect within multi-user, mul-
titasking communication environments. 

Issues in developing interruption management systems 
for multi-user, multitasking interactions include 1) extract-
ing and modeling acoustic and speech information from 
noisy communication channels innate to these interactions 
2) modeling the turn-tasking variability of different teams 
even for the same or similar teaming activities 3) Measur-
ing the effect of these interruptions on team performance 
and separating interruption effect from other factors that 
influence team performance.  The long-term goal is to ad-
dress various issues associated with the development of an 
interruption management system for multi-user, multitask-
ing communication tasks.  The scope of this paper is fo-
cused on the exploration of predicting appropriate interrup-
tions times using speech and acoustic information which 
could potentially provide some insight into modeling turn-

taking variability within these interactions to predict inter-
rupability and make optimal interruption timing decisions.   

One proposed method in determining appropriate inter-
ruption timings is via task structure or more specifically 
task breakpoints.  Task breakpoint modeling has been used 
in single-user, multitasking interruption management sys-
tems to indicate appropriate points of interruptibility 
(Adamczyk and Bailey 2004; Bailey and Konstan 2006; 
Czerwinkski, Cutrell, and Horvitz 2000; Isbal and Bailey 
2006) and shown that deferring delivery of notifications 
until a breakpoint is reached can meaningfully reduce costs 
of interruptions. Conversely, interrupting tasks at random 
moments can cause users to take up to 30% longer to re-
sume the tasks, commit up to twice the errors, and experi-
ence up to twice the negative affect than when interrupted 
at boundaries (Adamczyk and Bailey 2004; Bailey and 
Konstan 2006; Isbal and Bailey 2005).  Within single-user, 
multitasking interruption systems the primary modality 
used to model task breakpoints is system-state information 
(Adamczyk and Bailey 2004; Bailey and Konstan 2006; 
Czerwinkski, Cutrell, and Horvitz 2000; Isbal and Bailey 
2006). Using task breakpoints as candidate points of inter-
ruptibility within single-user multitasking interactions is 
the primary motivation for similar modeling techniques in 
multi-user, multitasking interactions.  The primary differ-
ence in our approach is the modality used to build the task 
boundary models. Since the interruption management sys-
tem in these interactions is making decisions within a col-
laborative communication task, we explore the use of 
acoustic and speech information to predict the presence or 
absence of task breakpoints. 

Another proposed interruption timing strategy is based 
on task engagement via task topic modeling.  For multi-
user, single task interactions, task engagement has been 
explored as a useful predictor of interruptibility (Fogarty, 
Ko, and Anug 2005; Fogarty, Hudson, and Lai 2004; 
Horvitz and Apacible 2003) via multimodal cues to predict 
users’ engagement in the current task and make inferences 
on appropriate interruption moments within the task.  
Within these interactions, the interruption information is 
primarily related to the current task which differs in this 
work where the information could be related or unrelated. 
The motivation to use a task engagement such as those 
proposed in multi-user, single task interactions for our pur-
poses is that if the system has information related to the 
current topic in which users are engaged, this could aug-
ment the priority of the interruption timings.  In contrast, if 
the information the system has is unrelated to the topic, 
other interruption strategies such as deferring until the end 
of the current task may be more appropriate.  Finally, if the 
system has information for a user that is currently “disen-
gaged”, this could provide an optimal opportunity to inter-
rupt.   Since the task engagement models are being inte-
grated into collaborative communication interactions and 
the primary input stream in natural human speech, we pro-
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pose a task engagement model via speaker, addressee, and 
topic modeling to determine who is speaking (speaker), 
who they are speaking to (addressee), and what they are 
speaking about (task topic).  Task engagement results indi-
cate that within a multi-user multi-tasking interaction, 
standard topic modeling techniques using automatic speech 
recognition (ASR) transcriptions have potential to be use-
ful in determining task topics in these interactions. 

In evaluating the performance of the task breakpoint and 
task engagement model in a dual-user, dual-task interaction 
dataset, the proposed models are not only promising in 
predicting interrupability within multi-user, multitasking 
scenarios, but also seem to be suitable for real-time sys-
tems based on the low cost of information processing via 
the raw audio stream and ASR transcriptions.  Closely ex-
amining task boundaries and task engagement as predictors 
of interruptibility sheds new light on a rarely explored area 
of predictors of interruptibility for system-mediated inter-
ruption timings within multi-user, multitasking communi-
cation tasks.     

 

Multi-user Multitasking Interaction  
Prior to developing an interruption management system for 
multi-user multitasking interactions, a simulation of such 
an interaction is necessary to test the proposed models.  
For simplicity, a dual-user, dual-task interaction is simulat-
ed as illustrated in Figure 1 which shows two users not 
only engaged in a primary human-human task, but simul-
taneously in an orthogonal human-machine task where the 
primary information stream is speech, hence a dual-user, 
dual-task communication scenario. 

Figure 1:  Dual-user, dual-task interaction 

The proposed interaction for our experiments is a simu-
lation of unmanned aerial vehicle (UAV) operators and 
ground troop teammates collaborating on a target identifi-
cation alignment task.  In such collaborations, the UAV 
operator and ground teammates have the same information 
from two different perspectives and are tasked with com-

municating over a push-to-talk communication network to 
align their knowledge and perspective, and confirm they 
are talking about the same thing.  In most military mis-
sions, troops are multitasking and some of their tasks can 
be offloaded to machine teammates, but as proactive sys-
tems are integrated into the entire exchange, the human 
tasks are being interrupted more often.  The objective of 
this data collection is to simulate a dual-task comprised of 
a primary human-human task like the alignment task pre-
viously described in conjunction with a secondary human-
machine task.  The machine must listen to the human inter-
action and make decisions on when to interject information 
related to a secondary task such that it is least disruptive to 
the overall exchange.  

The primary human-human task or Tangram task in-
volves two users corresponding over a push-to-talk com-
munication network to arrange abstract shapes (Tangrams) 
within a column into corresponding order to simulate 
aligning knowledge from two perspectives.  To introduce 
more complexity into the primary task, the set of abstract 
objects generated for each trial are similar in appearance.  
For instance, objects that looked like humans were gener-
ated together to avoid dialogue exchanges such as, “dog, 
person, boat, square.”  The five categories that the abstract 
shapes can be extracted from include: birds, people, mis-
cellaneous, boats/miscellaneous, and animals.  
   
Figure 2 is an example graphical user interface (GUI) of 
the primary task for both participants.  Figure 3 is a corre-
sponding sample dialogue of the participants describing the 
shapes to one another.  

 

  
Figure 2: Multi

-
user, multitasking Interface (L: 

participant 1, R: participant 2)  
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Figure 3: Sample dialogue within Multi-user, Multi-
tasking Communication Interaction 

 
In Figure 3, for A1 Player 1 begins by rehearsing an in-

terruption (UAV state update) from the secondary task then 
proceeds to describing the current columns ( 

Figure 2).  In A2, Player 2 confirms that he/she under-
stands the shapes Player 1 described.  Both users press 
DONE then another set of abstract shapes is generated for 
the players to describe.  In A3 Player 1 makes a reference 
to the feedback that potentially illustrates the player’s ina-
bility to correctly arrange the Tangram shapes in the corre-
sponding order.  Player 1 then proceeds to describing the 
next column of shapes.  The dialogue within the primary 
task seems to follow the theory of Conversational Games 
where conversations consist of a series of GAMES, each of 
which involves an INITIATING MOVE (such as an in-
struction or query), followed by either a RESPONSE 
MOVE (such as acknowledgment or reply) or possibly an 
embedded game (e.g. a query may be followed by a clarifi-
cation sub dialogue) (Carletta et al. 2007).   

The secondary human-machine task involves the same 
two users simultaneously receiving interruptions or synthe-
sized audio of status updates and queries related to varying 
UAV states.  The interruption timing decisions are based 
on modeling the audio stream of the primary human-
human task and predicting the time to send UAV updates 
or related queries.  Both users receive 3 -5 updates about 
various UAV states before being queried about the current 
state of a UAV previously presented.  For example, a user 
is only required to keep track of 3-5 UAV states prior to a 
query. After a user receives a query and responds, a differ-
ent set of 3-5 UAV states is presented.  Below is an exam-
ple of an Update/Query block:  
 
{Update I}: Hawk-88' LOCATION is Point Bravo 
{Update II}: Raven-3's FUEL-LEVEL is 30% 
{Update III}: Falcom-11's ALTITUDE is 1900 ft. 
{Query}: What is Raven-3's current FUEL-LEVEL? 
 
Once a pre-specified number of UAV queries is sent to 
both users, the experiment is over.  For both tasks, a cor-
rect response results in a point and an incorrect response 

results in a deduction.  The total points for the primary and 
secondary task are summed as a total team score.  A de-
tailed description of the entire experimental design and 
corpus is described in (Peters et al. 2017).  The aim of this 
data collection is to best simulate an alignment task where 
users may have differing vocabulary for the same object 
and must take turns to align their knowledge while simul-
taneously simulating a human-machine task that monitors 
the interaction of the primary task to make interruption 
timings decisions and send information related to a human-
machine task.   
 

Task Breakpoint Model  
A preliminary proposition for predicting interruption tim-
ings is via task breakpoint detection.  Since these decisions 
are being made within a collaborative communication task, 
it is necessary for the system to leverage acoustic and 
speech information to predict the presence or absence of a 
task breakpoint. Within the literature there has been explo-
ration of the use of prosody to detect boundaries in sen-
tences, discourse structure, and grounding (Mushin et al. 
1999; Mixdroff 2004; Syrdal and Kim 2008; Hasti, Poesio, 
and Isard 2002) and we aim to use similar techniques in 
using prosody to detect task breakpoints.  Here the intend-
ed task breakpoint model leverages prosodic content of 
push-to-talk utterances and predicts whether an utterance 
will be followed by a task breakpoint.   

From this interaction, the interrupted task is the primary 
human-human task. A task breakpoint is defined as a 
timestamp associated with both users pressing the DONE 
button indicating they are done with the current abstract 
shape or Tangram column and proceeding to the next.  
Utterances preceding these points are labeled as break-
points.  A non-breakpoint is an utterance that does not pre-
cede such points.  The entire dataset contains 6590 poten-
tial breakpoint candidates with a 60-40 distribution of 
3875 non-breakpoints and 2715 task breakpoints.    

The use of only prosodic information to infer task 
breakpoints is an exploratory measure of how well one can 
do in predicting task breakpoints using only derived fea-
tures from the raw audio.  Making predictions from the 
raw information within a communication channel has po-
tential for quick data processing and modeling, but may 
hinder detection accuracies.  Several binary classifiers that 
use supervised learning techniques can be used to solve 
this problem.  Here we compare three as potential candi-
date models to integrate into a real-time system:  Naïve 
Bayes (Russel and Norvig 1995) , Support Vector Ma-
chines (Cortes and Vapnik 1995), and Random Forests 
(Ho 1995).  Although more sophisticated models may be 
employed, these simple classifiers have previously been 
found to be effective in such scenarios, and are particularly 
well suited to real-time implementation. The predictors in 
this classification problem are prosody features extracted 
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as a 989-dimensional feature vector from the emotion de-
tection feature set in OpenSmile (Eyben, Weninger, and 
Schuller 2013).  These features are derived from the raw 
audio of the push-to-talk utterance preceding candidate 
breakpoints.  These features are a composition of the utter-
ance signal energy, loudness, Mel-/Bark-/Octave-spectra, 
MFCCs, PLPs, Pitch, voice quality (jitter, shimmer), for-
mants, LPCs, Linear Spectral Pairs (LSPs), and spectral 
shape descriptors.  Additionally, statistical functions or 
feature summaries are included in the feature set: 
means/extremes, moments, segments, samples, peaks, lin-
ear and quadratic regressions, percentiles, durations, on-
sets, DCT coefficients, and zero-crossing.  Each utterance 
is sampled at 32K and the features are extracted from the 
audio partitioned in 25ms windows with 10ms in overlap, 
common in audio processing and modeling. 

We hypothesize that classification techniques that model 
predictor dependencies will perform better at predicting 
task breakpoints like other boundary detection work 
(Swerts 1997; Shriberg, Stolcke, and Hakkani-Tur 2000) 
using prosody which illustrates the combination of pitch, 
energy, and their contours are useful at sentence and dis-
course boundary detection.  Additionally, we hypothesize 
that utterances preceding breakpoints will be shorter in 
duration and lower in energy corresponding to confirma-
tion utterances such as “done,” “got it,” “ok,” “finished,” 
“copy that”.  These utterances can be confused with back-
channels, shorter descriptions of shapes, or turn-tasking 
confirmations in the middle of a task.  With this confusa-
bility, there is the potential for more false positives. 

The task breakpoint model performance is explored 
from two different perspectives, how well the model per-
forms on the dataset (offline) and how well the model per-
forms when integrated into a real-time system (real-time).  
The performance of the offline model is based solely on 
the data from the data collection.  Conversely the real-time 
model performance is derived from integrating the task 
breakpoint model into the interaction described in the Mul-
ti-user Multitasking Interaction section and assessing how 
well the model performs within the interaction at predict-
ing breakpoints.  Overall the objective is to see how well a 
task breakpoint detection algorithm can perform via a 
prosody-only model by validating the model offline and 
finally integrating the model into a live system and evalu-
ating its performance. 

Offline Model 
Prior to testing the system on the real-time dual-user, dual-
task interaction, the model was first evaluated offline.  
From the data and task breakpoint model described in the 
Task Breakpoint Model section, Weka (Frank, Hall, and 
Witten 2016) is used to discriminate task breakpoint and 
non-breakpoints using prosodic features of utterances pre-
ceding these points.  A 10-fold cross-validation method is 
used to generalize each model.  The performance of the 

classifier is evaluated using the metrics precision and recall 
evaluating how well the system correctly classifies a task 
breakpoint with respect to all classified task breakpoints 
(precision) and with respect to all the present task break-
point within an interaction (recall).  Since the classes are 
relatively balanced (60-40), accuracy is also used as an 
evaluation criterion to see how well the overall output pre-
dictions are correctly classified.      

 
 

Table 1: Offline Task Breakpoint Modeling Results 
 Precision Recall Accuracy 

Naïve Bayes 0.88 0.86 0.87 
SVM 0.91 0.90 0.90 

Random Forest 0.91 0.91 0.91 
 

 
 
Table 1 illustrates the final results in task breakpoint detec-
tion.  From these results, we can infer that overall the pros-
ody-only task breakpoint model performs with accuracies 
between 87-91%. Although there is not a large difference 
between the classifier performances, we select Random 
Forest as the model to integrate into the real-time system 
since it has that highest precision, recall, and accuracy val-
ues.    

Real-time Model 
We integrate the task breakpoint model into the interaction 
described in the Multi-user Multitasking Interaction section 
and evaluate its performance where the interruption timing 
decisions (when to send an update or query) are based on 
the detection of a task breakpoint by leveraging acoustic 
information from the primary Tangram task.  The system 
extracts the push-to-talk utterances from the primary task, 
generates a 989-dimentional feature vector from 
OpenSmile (Eyben, Weninger, and Schuller 2013), and 
makes decisions on the probability of a task breakpoint 
using a Random Forest (Banerjee 2016) model presented in 
the Offline Model section.  The operation threshold of the 
classifier is 0.50 so a classification output probability of 
greater or equal to 0.50 is a task breakpoint, otherwise a 
non-breakpoint.  The only difference between the current 
interaction and the one described in the Multi-user Multi-
tasking Interaction section is only 10 original participants 
in the original data collection are retained and 5 additional 
participants are added for the current experiment.  Random 
teams are generated from this pool of 15 participants.  

From this data collection, there are a total of 2149 can-
didate (1285 non-breakpoints and 864 breakpoints) break-
point decisions.  We first evaluated the performance of the 
prosody-only offline model, then augment the system with 
a rule-based duration cue to evaluate if this increases over-
all performance. The augmented task boundary detection 
and rule based model states that if an utterance is less than 
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3 seconds or a task boundary is detected, send an interrup-
tion otherwise don’t send an interruption.  

 
Table 2: Online Task Breakpoint Modeling Results 

 Precision Recall Accuracy 
Prosody-Only 0.74 0.81 0.83 
Pros-Duration 0.96 0.86 0.92 

 
Table 2 illustrates the system’s performance using the 

same metrics as the offline model for comparison.  Accu-
racy is also considered because the classes balance in the 
overall interaction.     

Discussion 
From the results in  

Table 1 one can surmise that task breakpoint detection via 
prosodic cues could be useful in detecting task breakpoints 
in a simulated dual-task, dual-user interaction.  This could 
be illustrative of our previous hypothesis suggesting that 
one discriminating factor in breakpoint and non-breakpoint 
detection is related to duration or the amount of energy in 
the raw audio signal.  In analyzing the important detection 
features in the Random Forest algorithm, the loud-
ness_pcm_minPos feature is a key indicator in discriminat-
ing these classes where 61.3% of classification decisions 
were based on this cue.  This does not necessarily mean 
that how loudness is perceived is a predictor of task break-
points, but could suggest that information correlated with 
energy and potentially duration could be useful in predict-
ing task breakpoints.  This suggestion is corroborated by 
the results from Table 2 that show that augmenting the 
prosody-only model with duration rules results in a 10.84% 
improvement in overall accuracy.  

From these results duration and energy based cues seem 
to be potential indicators of predicting task breakpoints in 
multi-user, multitasking interactions, but if the interaction 
changes slightly and there is more variability in turn-taking 
behavior, are these still reliable predictors?  We cannot 
draw any conclusions from this since the preliminary mod-
els are tested on a single interaction, but future work will 
provide an opportunity to test these prosodic information 
streams on similar interactions. 

 

Task Engagement via Topic Modeling  
A second proposed method of predicting interruptibility 
within multi-user, multitasking interactions is via task en-
gagement.  The motivation behind topic modeling as an 
indicator of task engagement is the assumption that appro-
priate interruption timings can be made if the system 
knows which speakers are engaged in which tasks.  Within 
a communication task, engagement can be defined by who 
is speaking (speaker), to whom (addressee), and about 

what (task topic). Assuming the speaker is known via the 
communication channel, one objective of inferring task 
engagement is to identify the addressee and topic.  For 
complex interactions, it may be useful to know who is talk-
ing to whom about what.  For example, if the interruption 
management system can infer speaker 1 is speaking to 
speaker 2 about a topic, it can assume that speaker 1 and 2 
are engaged in the task and a) subsequently offer infor-
mation relevant to this task topic or b.) provide information 
to another participant who is not engaged. Prior to develop-
ing such a model for more complex interactions, we are 
interested in evaluating the inference of topic modeling 
performance in a simulated dual-user, dual task interaction 
where the speaker and addressee are already known so we 
need only infer the task topic.  

Latent Dirichlet Allocation  
We use Latent Dirichlet Algorithm (LDA) (Blei, Ng, and 
Jordan 2003) which is an unsupervised generative statisti-
cal model for a collection of discrete data.  It aims to de-
scribe how a set of observations are explained by unob-
served groups (latent variables) to capture the similarities 
between observed data. For topic modeling via words LDA 
assumes a document is a mixture of topics and that each 
word in the document is attributed to one of the docu-
ment’s topics.  
 
 

 
Figure 4: Plate notation for LDA with Dirichlet-

distribution topic-word distributions 
 

The graphical representation of the LDA model is illus-
trated in Figure 4, capturing the dependencies among the 
variables:   
 
�� ��parameter of the Dirichlet prior on the per-document 
topic distributions  
�� ��parameter of the Dirichlet prior on the per-topic 
word distribution 
�
�
���topic distribution for document m, 

�� ��word distribution for topic k, 
�
��

�� the n-th word in document m 
�
��

��specific word. 
 

In Figure 4  the outer plate represents the document and 
the inner plate represents the repeated choice of topic and 
words within the document.  The nodes are the variables 
where the shaded nodes are the observed variables and the 
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unshaded are the latent variables. The total probability of 
the model is: 
 

� ���� ������� � �������

�

���

�������

�

���

������� ����������������

�

���

 

 
Learning the various distributions for the set of topics, 

their associated word probabilities, the topic of each word, 
and the topic mixture of each document is a problem of 
Bayesian inference. In this paper, a document and utter-
ance are synonymous and the LDA is used to uncover the 
hidden thematic structure of each utterance.    The infer-
ence technique used to infer the posterior distribution in 
this paper is Gibbs sampling although other techniques 
may also be employed (Blei, Ng, and Jordan 2003). 

Data and Method 
To model task topics, the push-to-talk utterances are ex-
tracted from the interaction described in the Multi-user 
Multitasking Interaction section.  From these utterances, 
automatic speech recognition (ASR) transcriptions via 
Pocketsphinx (Huggins-Daines et al. 2006) are used to 
model the task topics using Mallet (McCallum 2002) 
which implements the LDA algorithm (Blei, Ng, and 
Jordan 2003).  The output from the LDA model is a 5-
dimensional feature vector which represents the probability 
that the utterances belongs to one of the 5 categories: peo-
ple, miscellaneous/boats, boats, birds, and animals.  

In  

Figure 2, a user must describe the illustrated four Tan-
gram shapes.  These shapes are usually similar in appear-
ance to add complexity and uncertainty into the interaction 
for richer dialogue.  Since the images are similar in ap-
pearance and carry some topic based information, the la-
bels of the utterances are based on the group the images are 
associated with.  For example, users may be describing a 
column of birds which was generated from a subset of im-
ages illustrated in  

Figure 5.    

 

 
Figure 5:  Subset of images related to bird category 

 

If the users are discussing a column of images generated 
from the bird category, all the utterances associated with 
this exchange are labeled as “bird.”  The issue with this 
labeling process is that there are several utterances within 
the exchange that do not contain topical information.  For 
instance, backchannels and confirmations like “ok” or “got 
it” have no topical information so we compare two differ-
ent topic modeling strategies: 

1)  Use all the utterances in the dataset and the label-
ing process described above (All) 

2) Only use utterances that are longer than 3 seconds 
in duration. (Partial)   

Since the task breakpoint model considers utterances 
that are less than 3 seconds -- potential indicators in infer-
ring interruptibility via task breakpoint detection -- topic 
modeling may be useful for utterances longer than 3 se-
conds.  The feature vector output from the LDA model and 
corresponding label are modeled using a Naïve Bayes 
(Russel and Norvig 1995) classifier, generalized using a 
10-fold cross-validation and evaluated using the accuracy 
metric area under the curve (AUC) which illustrates the 
trade-off between the true positive rate and false positive 
rate at various detection thresholds. Table 3 illustrates the 
performance of the topic model of the two datasets All (N 
= 5499) and Partial (N=3412) with a uniform distribution 
across categories. 
 

Table 3:  Topic Model Results 
 people birds animal boats misc. 

All 0.78 0.76 0.72 0.70 0.68 

Partial 0.88 0.88 0.83 0.79 0.76 

 
There are a few takeaways from these results.  The first 

clear observation is that the AUC results from the Partial 
dataset are larger than those of the All dataset.  This could 
be attributed to shorter utterances (less that 3 seconds) not 
having as much topic information because they are more 
associated with backchannels and confirmation utterances.  
As illustrated in the sample dialogue in Figure 3, A1 and 
A3 are longer in duration and contain words that could 
better illustrate which set of shapes users are describing.  
Conversely shorter utterances such as “got it” do now con-
tain such information.   

Secondly although AUC results for the Partial dataset 
range between 76-88%.  The categories with larger AUC 
results (people, bird, and animals) may have words that are 
more indicative of the categories they are describing since 
people, birds, and animals are actual categories.  The boat 
category is mainly boats, but also contains other abstract 
shapes and the miscellaneous category has shapes that 
didn’t fit a category so the vocabulary may not have as 
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much topic information.  Below are the top 10 words the 
topic model selected for each category:  
 
People: Person, man, guy, triangle, upside-down, we're, 
running, lady, body, sideways 
 
Birds: Monster, upside-down, crab, turkey, big, ness, pat, 
raptor, humming bird, back 
 
Animal: it's, dog, left, square, top, bottom, head, cat, thing, 
side 
 
Misc./Boat: sailboat, house, tree, sideways, boat, speed-
boat, arrow, christmas, apple, i've 
 
Misc.:  yeah, i'm, good, trial, honor, added, thing, ship, 
shape, there's 
 

Finally, the topic modeling results are promising espe-
cially because they are based on ASR transcriptions which 
affords error propagation through the system.  The baseline 
word error rate (WER) for Pocketsphinx in (Huggins-
Daines, et al., 2006) is 9.73% and without fine tuning any 
of the acoustic or language models, we assume that this 
error is propagated into the LDA model.  ASR transcrip-
tions are tested here because to develop a real-time system, 
we won’t have access to hand-transcribed data when mak-
ing the actual topic classification decisions. 

Overall task topic modeling using LDA seems to be a 
good starting point in predicting interruptibility via task 
engagement.  In comparison to the task breakpoint model, 
the topic model was only evaluated on offline data since 
topic modeling only makes sense for more complex inter-
actions where one could infer the addressee from topic 
predictions and make inferences on who is engaged in 
which tasks. 

Conclusion  
In conclusion, two potential models were proposed as pre-
dictors of interruptibility within multi-user, multitasking 
communication interactions:  task breakpoint and task en-
gagement.  The results from the task breakpoint models 
give some indication that utterance energy and duration 
may be good predictors of a task breakpoints because these 
utterances could be characteristics of confirmations or 
knowledge aligning indicators that a user is ready to con-
tinue to the task.  Although task breakpoint confirmation 
utterances can be confused with backchannels and mid-
task confirmations, experimentation of this task breakpoint 
model in other interactions will give us a better illustration 
of how useful these prosodic and duration cues can be at 
detecting task breakpoints and, in turn, interruptibility.  

Additionally, using ASR transcriptions, we illustrated a 
preliminary strategy for inferring task topics within a sim-

plified multi-user, multitasking interaction.  Even though 
ASR transcriptions can result in error propagation through 
the system, the results of higher AUC results being at-
tributed to categories with more defined topics provides a 
promising first pass at the use of topic modeling as an indi-
cator of task engagement. Both show promise for an effi-
cient real-time system.   
  The combination of both models could be useful in pre-
dicting interruptibility within multi-user multitasking inter-
actions by using shorter duration utterances as indicators of 
where a potential breakpoint could be and longer utteranc-
es as an indicator of which participants are engaged in 
which tasks.  Overall this work offers a first pass at simu-
lating an interaction that has been rarely explored in the 
past and experimenting with two modeling schemes that 
have promising potential of predicting interruptibility.  For 
future work, there is a need to evaluate these models in 
other interactions to get a more illustrative idea of how 
robust these models could be in the overall design of a 
multi-user, multitasking communication interruption man-
agement system.  
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