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Abstract 
Human-level cognition (most uniquely characterized by our 
abilities to use language) should be seen as a superset of func-
tional and behavioral capabilities shared by lower life-forms 
including animals and insects, and this perspective ought to 
principally guide our strategies for developing integrated 
cognitive architectures. Just as the study of biological model 
organisms has led to tremendous advances in our scientific 
knowledge of genetics and cellular function, the study of em-
bodied cognition in simple agent-environment simulations 
can yield similar advances in Cognitive Science, Artificial In-
telligence, and Robotics. By working first on the foundations 
of intelligent interaction with one’s environment, and by fo-
cusing on core functions such as predictive and inductive 
learning, probabilistic goal-directed behavior compilation, 
and empathetic reasoning, we can better establish the ground-
ing that the physical symbol system hypothesis assumes 
(Newell and Simon 1976), yet often without explicit demon-
stration of a mechanism to derive symbolic relations and se-
mantics from raw sensory data. Logic and language are seen 
to emerge from our willingness to make discrete simplifying 
assumptions in a continuous and probabilistic world of expe-
rience, and developing a Standard Model of the Mind can 
help build much-needed bridges between historically non-
aligned research communities. 

 Introduction   
A recent effort to map and unify several existing cognitive 
architectures into a Standard Model of the Mind offers a 
welcome approach for finding commonality across many 
disparate but closely related research disciplines, including 
Artificial Intelligence (AI), Cognitive Science, Neurosci-
ence, and Robotics (Laird, Lebiere, and Rosenbloom in 
press). However, the candidate models that most directly in-
fluenced this work, at least initially, emphasized cognitive 
characteristics of mental processes (i.e. minds) over more 
tightly integrated mind-body or agent-environment holistic 
views. While the proposed standard model does include per-
ceptual and motor components, it clearly encompasses an 
ambitious human-oriented perspective, in the sense that it 
                                                

seeks to represent, reason, and generally account for con-
ceptual knowledge that can be naturally expressed via lin-
guistic phenomena. This form of knowledge is often de-
scribed as symbolic relational, and when used in strictly dis-
embodied simulations of intelligence, has given rise to a 
criticism known as the Symbol Grounding Problem (Harnad 
1990). Symbols in the form of natural language words evoke 
rich semantic interpretations in humans, and many such 
words are not intended to map directly to tangible, physical 
objects. Even those that do have object mappings however, 
challenge the cognitive architect to explain how low-level 
perceptual and sensory data might give rise to them. Often, 
it is assumed that sensory data can be progressively ab-
stracted through layers that represent their knowledge sub-
symbolically (Steels 2008). The current proposal for a 
Standard Model of the Mind adopts this view, but doesn’t 
exactly resolve how sub-symbolic knowledge and symbolic 
relational metadata (which includes frequencies of occur-
rence, attentional weightings, etc.) might be similar or dif-
ferent. In short, the current proposal leaves room for further 
research to develop and mature the lowest levels of the cog-
nitive architecture, those closest to animal-behavioral inter-
actions with the world.  

Layers of Embodied Cognitive Learning 
If perceptual and motor-control processing are seen as being 
low-level, and knowledge and language as high-level, we 
can naturally choose to approach human cognition in a top-
down, or alternatively, a bottom-up fashion. Most traditional 
AI research, especially that which emphasizes symbolic 
knowledge representation, is essentially top-down. Other re-
search however, including connectionist, neural network, 
and robotics work, prefers a more bottom-up approach 
(Brooks 1986). Intelligence acquired and demonstrated 
through the use of language and logical reasoning, vs. 
simply knowing how to act in real world situations (some-
times referred to as the difference between book smarts and 
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street smarts) has been recognized and discussed within AI 
(Levesque 2017). Less well observed however, are those 
clearly cognitive capabilities that, while sub-linguistic in na-
ture, involve self-conscious abstraction and mapping. In the 
spirit of this, Figure 1 offers a layered model of human 
learning that emphasizes successively more sophisticated 
capabilities of an embodied agent, depicted here as a subdi-
vided triangle. 
 
This form was chosen to emphasize the foundational aspect 
that the lower levels are believed to provide. Views such as 
this are also adopted by researchers in the nascent field of 
Sociocognitive Science, where interactivity and grounding 
are seen as key elements of social context and learning, and 
embodied cognition helps define the central notion of 
agency (Neumann and Cowley 2013). 
 

Figure 1. Levels of Learning for Embodied Cognition. 

The two upper layers, taken together, reflect social aware-
ness and communication skills, as they are used to teach oth-
ers and to learn from them. Similarly, the two lower layers 
reflect more primitive cognitive skills, motivated by the ob-
servation that animals and even insects, lacking the lan-
guage and verbal skills which clearly distinguish humans as 
higher life-forms, are nevertheless able to learn using both 
methods. This has been surprisingly well demonstrated in 
bees, who can learn by mapping a second person perspective 
onto themselves using what we might describe as empa-
thetic or analogous reasoning (Mirwan and Kevan 2013).  
 
The lowest layer of experiential learning is possible in a 
world devoid of other agents, where patterned regularities 
such as determinism and laws of physics can be discovered 
via exploration and trial-and-error, but also through careful 
interactive experimentation and hypothesis testing. Biologi-
cal minds rarely if ever exist in such simplistic worlds, but 
our artificial agents can be studied under these conditions, 
and robots sent to explore space and desolate planetary 
worlds can experience them. Achieving an eventual detailed 
understanding of how this foundation enables and facilitates 

the upper layers might serve to unlock many remaining mys-
teries of the mind. 
 
This layered decomposition was motivated by an analysis of 
an agent’s information sources for learning, and by extend-
ing embodiment into social and contemplative realms. How-
ever, it may also serve to frame the discussion regarding het-
erogeneous and pluralistic representations for experience 
and knowledge. The lowest layer, needing the closest bind-
ing to raw sensory data, is most suitable for using what have 
been called sub-symbolic representations. These could in-
clude the learned weights of a neural network, but also might 
be captured by feature trajectories or other temporal se-
quence memory structures (as described more later). At the 
highest layer, we have the large and historic body of work 
that uses symbolic relational models, including declarative 
languages based on assertions and ontologies, or graphical 
semantic networks. Somewhere between these rather sepa-
rated schools of thought might lie the knowledge represen-
tation approaches that use diagrammatic or analogical mod-
els, case-based reasoning, or ones that attempt to map qual-
itative features into multi-dimensional conceptual spaces 
(Lieto, Chella, and Frixione 2017). 

Time is of the Essence 
In symbolic AI models, lone symbols intended to represent 
objects are abstracted away from their specific and experi-
ential temporal contexts (often by a purely manual engineer-
ing process), allowing their conceptual forms to be power-
fully and more easily inserted or removed from imagined 
scenarios. The psychologist’s distinction between episodic 
and semantic memory attempts to delineate at least some of 
this temporal factoring, and we can use this to argue that 
episodic memory is an important component in the experi-
ential first-person learning of Figure 1 (Gershman and Daw 
2017), whereas semantic memory belongs somewhere 
higher up. In addition, many important semantic relation-
ships are in fact temporal in nature, and these kinds of gen-
eralizations are used in symbolic AI to help construct and 
leverage what is known as Procedural Memory. 
 
While some AI researchers may believe that semantic level 
symbolic knowledge can be directly crafted into dis-embod-
ied agents to bestow them with human-level intelligence, or 
that symbol grounding is unnecessary even for achieving 
Artificial General Intelligence (AGI), it appears short-
sighted to de-emphasize the role lower-level experience in 
the world has on our ability to learn, think, and intelligently 
act. Central to this viewpoint is the recognition that time 
plays a crucial role. Sensory data comes to an agent contin-
uously, or taking a discrete modeling perspective, as a series 
of data frames. Orderings matter, and patterns in time are 
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more fundamental than patterns in space (which require mo-
tion and perspective to establish). Causality, even if near-
instantaneous, depends on temporal sequence. Furthermore, 
causality often is evident only with respect to some temporal 
lag, which will not be discernable unless one’s cognitive ar-
chitecture explicitly provides a means to look for it in its 
variable form. Generally speaking, in any environment 
where processes exist independent of the agent (obviously 
including those occupied by other agents), time itself can be 
said to introduce pressure to think and decide quickly, in the 
form of deadlines or what engineers might call real-time re-
quirements (Cohen et. al. 1989). 
 
To its credit, the Standard Model is built around the notion 
of a cognitive cycle, where a deliberative act is chosen ap-
proximately every 50ms, as informed by studies of human 
behavior. Time is clearly evident in the model in the form of 
this cyclic process, but also inherently in both the Episodic 
and Procedural Memory components. Similarly, learning to 
become reactive after practiced deliberation (e.g. the notion 
of Chunking in Soar), captures another importance of time 
in a cognitive architecture. Whether innate or learned, think-
ing fast is a hallmark of intelligence, and is complementary 
to more reasoned contemplation and goal-driven planning 
(Kahneman 2011). This is illustrated in Figure 2. 
 

Figure 2. Temporal Cognition. 

While present in various forms throughout the Standard 
Model, temporal aspects of cognition are somewhat hidden, 
to accommodate representational and functional memory 
decompositions. In contrast, consider the view of intelligent 
processing that sees the core function of the brain’s neocor-
tex as continuously executing a common algorithm to per-
form temporal sequence prediction and learning (Hawkins 
and Blakeslee 2007), or Reinforcement Learning models 
which use recursive expansions of time in their formalisms. 

Symbols and Statistical Patterns 
Symbolic AI has long recognized that the symbols being 
manipulated by computer programs are equivalent to arbi-
trary bit strings, and that it is the relationships between sym-
bols as well as how they are processed which are necessary 
to give any meanings to them. Black-box models of intelli-
gence, including the Turing Test and Searle’s Chinese 
Room, attribute understanding to an agent or system’s abil-
ity to “do the right thing” in response to particular stimuli. 
This is true whether the stimulus is linguistic or sensory-
motor in nature. So, we might say that all semantics are be-
havioral (and in the eye of the beholder), and that under-
standing unfolds and manifests itself over time through ex-
perience. This perspective is important, because it helps 
keep us from expecting all natural language expressions to 
have a true and correct meaning independent of the back-
ground of the listener. While behavioral semantics may be a 
somewhat unifying concept to work from, the level of ab-
straction of the stimulus still serves to separate researchers. 
 
Consider how those working from a linguistic perspective 
of cognition more naturally seem to adopt symbolic repre-
sentations, specifically ones that align with logic and formal 
systems of reasoning, including rules of grammatical syntax 
and discrete mechanisms for thought, planning, and prob-
lem-solving. Approaching semantic grounding from a de-
clarative or knowledge-based perspective has produced 
some linguistic theories that seek to make connections to 
sensory-motor phenomena. However, these approaches of-
ten remain abstracted above raw sensory data, as they seek 
to maintain various temporal relational factorings (e.g. Lian 
et. al. 2017). 
 
On the other hand, those working close to sensory-motor in-
terfaces with the world are prone to think in terms of quan-
titative values and statistical patterns, vs. symbols. Combin-
ing high-bandwidth sensing with complex multi-agent envi-
ronments produces an enormous pattern space of temporal 
sequence data to which relatively few symbols must some-
how be grounded. While the symbols may be relatively short 
bit strings, the experiential patterns from which they derive 
their useful meanings may be arbitrarily complex in struc-
ture and length. A sensory data-driven view of cognition 
sees statistical and probabilistic representations, including 
the real-valued numeric weights of a neural network, as a 
way to abstract and summarize in the face of this combina-
torically vast underlying variability. Unfortunately, these 
bottom up approaches have their own difficulty connecting 
naturally to linguistic and symbolic reasoning. 
 
Interestingly, a middle-out strategy has proven hard to de-
velop, yet there could be a lot to learn from features of in-
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telligence that are sufficiently abstract yet still pre-linguis-
tic. Associating names with patterns of experience (or other 
forms of indexing sensory data memories) appears to be an 
important aspect of symbol grounding, but language and 
thought clearly support more than this. The 2nd person per-
spective of the middle layer of Figure 1 is useful for high-
lighting a significant feature of minds, namely what is 
known as metacognition, including various kinds of self-
consciousness. While humans are easily capable of reason-
ing about the state of knowledge of others, sometimes recur-
sively to several levels and combined with hypothetical and 
counterfactual reasoning, basic forms of metacognition have 
been demonstrated in animals as well. That animals can 
know when they remember, or have a sense of social fair-
ness, is quite remarkable (Foote and Crystal 2007) (Brosnan 
and De Waal 2003). It seems reasonable that many human 
cognitive linguistic abilities, including making assertions 
about assertions (reification), might be built in some way on 
these sub-linguistic foundations. 
 
Finding a Goldilocks approach to all this does hold promise. 
In retrospect, it may be recognized as simply an historical 
artifact that truth-theoretic formalisms such as deductive in-
ference played such an important part in early AI research, 
owing to the significant influence of mathematics and phil-
osophical schools of thought (such as Logical Positivism). 
Over time, as it has become more obvious that human infer-
ence is only plausible at best and that even the best-inten-
tioned rationality is inherently resource-bounded, methods 
of inexact reasoning have gained prominence (Pearl 2014). 
Furthermore, by studying that which is theoretically learna-
ble to only a probabilistically and approximately correct de-
gree, we are reshaping our very concept of the meaning of 
the word knowledge (Valiant 2013). But to see semantics 
emerge from behavior, and behavior emerge from experi-
ence-based learning, we find it useful to try to first under-
stand the most primitive of our cognitive abilities. 
 
In addition to robotics research, there are increasing efforts 
to extend and generalize the Reinforcement Learning para-
digm as a form of bottom-up cognitive modeling, which can 
be studied using multi-agent and agent-environment simu-
lations. Cast in the form of games, these investigative frame-
works are able to add increasingly complex real-world chal-
lenges for learning and intelligent behavior, including par-
tial observability, stochastics, time pressure, and non-er-
godic process complexities (Aslanides, Leike, and Hutter 
2017). One aspect that is particularly important in this work 
is seeking to understand how agents might deal with trade-
offs in multi-goal situations, which is ubiquitously present 
in its simplest form as the well-recognized dilemma of ex-
ploration vs. exploitation. Motivations that shift with con-
text, and goals that are often at odds with each other, make 

this particularly challenging, yet inspiration from brain re-
search, combining parallel evaluation with sparse coding 
ideas, may assist in demonstrating simple architectural prin-
ciples that can account for intelligent dynamic behavior. 
 
This basic research agenda offers many opportunities to 
study and understand embodied cognitive processes without 
the complexities of building and testing real-world robots, 
and with the considerable advantage of being able to start 
with benign environments and simple agent capabilities, but 
to then progressively introduce realism over time. This is 
reminiscent of the affordance of using Model Organisms in 
Biology and Genetics research, where simple forms of life 
are extensively studied in laboratory settings, and from 
which tremendous advances in our knowledge of cellular 
function and the fundamental genetic aspects of all life on 
earth have emerged. Or it might better be compared to be-
havioral psychology studies done in-silico, where our crea-
tures can be endowed with natural and even unnatural abili-
ties, and then tested under highly controlled environmental 
conditions. 
 
Combining low-level sensory data and temporal sequence 
learning, we have been studying models of memory con-
structed as variable-depth probabilistic suffix trees, where 
nodes in the tree can be seen as categorical state space values 
that emerge from patterns over select or focus bits in each 
data frame. Each node-to-root path represents a hypothetical 
Markov state, allowing the agent to eventually determine 
whether it is safe to assume the past and future are condi-
tionally independent given that state (or whether the notion 
of the present might be better defined in that context using 
a longer path or higher Markov order). As such, each node 
maintains a frequency-of-occurrence distribution of experi-
enced successor states, and these can be initialized and up-
dated in ways that support Bayesian reasoning as well as bi-
ases designed to adapt to statistical non-stationarities 
through selective forgetting. The occurrence of particular 
patterns in such trees can be thought of as opaque yet sym-
bolic, and the whole tree as a Variable Order Markov Model 
(Ron, Singer, and Tishby 1994) (Volf and Willems 1995) 
(Bühlmann and Wyner 1999). It can be updated continu-
ously and in parallel with its primary use for prediction as a 
decision process model, which enables both reactive recog-
nition as well as deliberative time-sensitive planning, using 
for example Monte Carlo planning (Chung, Buro, and 
Schaeffer 2005) as a kind of Anytime Algorithm (Dean and 
Boddy 1988). This architecture has been chosen to most nat-
urally accommodate the key temporal aspects of embodied 
cognition, and to leverage the success of weak-methods for 
data-driven reinforcement learning in the era of low-cost 
storage and massive computing parallelism. 
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Branching tree representations of time, whether into the past 
for memories (suffix trees) or into the future for expectations 
and plans, are natural and efficient ways of grounding se-
quential dependencies. They can be customized via choices 
in determining the nodal states, for example by using atten-
tion-focused raw data or derived features. They can adopt a 
fixed frame of reference from the perspective of a sensor, or 
they can be built to take a target perspective if coupled with 
sensory-motor object tracking (think of a cartoon of a run-
ning character who stays fixed in the middle of the frame as 
the background moves behind them). Paths through these 
trees represent behavioral trajectories, which become aggre-
gate mental objects that can themselves be recognized and 
frequency counted, classified and clustered, and used to 
form higher-level patterns. 
 
The data-intensive nature of these architectures leaves us 
with the formidable problem of induction and generaliza-
tion. Currently, we see three possible approaches to abstract-
ing patterns from the suffix trees to produce hierarchical 
classes of discernable states. The first is a method that looks 
for syntactic similarity in suffix tree paths, based on the heu-
ristic that some intermediate node states might not matter, 
as when coincidental noise intervenes in a causal pattern 
with temporal lag (Schmill and Cohen 1995). The second 
method is one that strictly considers the similarity of the suc-
cessor state distributions (Shalizi 2001), which could be 
combined with the first method to test the strength of pro-
posed pattern clusters. This is sometimes thought of as a 
kind of semantic similarity, since states with different syn-
tactic forms that give rise to similar outcome distributions 
can be thought of as having similar behavioral meaning. Fi-
nally, there is the method that tries to group states by their 
temporal proximity (George 2008), which would view the 
successor states in the probabilistic suffix tree as weighted 
edges in a DeBruijn Graph, and would cluster nodes that 
have strong temporal correlations. It appears to be an open 
research problem to evaluate these alone and in combina-
tions, to apply them to multiple levels of abstraction, or to 
determine key characteristics of problem environments to 
which they most appropriately might be suited. 

Spectrum of Reasoning and Representation 
Having identified induction as a key to leveling up in our 
models of the mind, it might be worthwhile to review other 
forms of natural reasoning that have been studied, and to 
consider how they leverage and depend on each other. Very 
early in the history of scientific thought, the syllogisms of 
the ancient Greeks captured the essence of inference via de-
duction. Much later, in the mid 1700’s, Hume and his con-
temporaries debated the importance and nature of induction. 
And it was more than another 100 years before what is now 

commonly called abduction was properly identified and 
characterized by C.S. Pierce (Minnameier 2010).  
 
Deduction is usually associated with formal, exact, and in-
fallible reasoning, where universal and necessary generali-
zations meet incontrovertible facts, to produce indisputable 
conclusions. Abduction, as a form of only plausible reason-
ing, also uses generalizations, but posits likely explanations 
for after-the-fact observations given them. Induction, as 
suggested in the previous section, is the holy grail, in the 
sense that both of the other types of inference depend on it. 
While some universally quantified natural language state-
ments are formal and definitional (mathematically axio-
matic), human linguistic and common-sense reasoning reg-
ularly adopt the use of deduction based on induced rules, 
and therefore in practice deduction is only as plausible as 
the foundation it is built upon. 
 
These points illustrate that natural uses of logic and lan-
guage are a form of digital thinking derived from simplify-
ing assumptions, that is, the convenient and powerful meth-
ods we use to make our analog and continuous world easier 
to understand, and to facilitate communication and social 
cooperation. Animals reason about their environments with-
out visible forms of symbolic language, but in spite of this 
they successfully use behavioral interactions and observa-
tions of others to communicate. The Physical Symbol Sys-
tem Hypothesis can still hold over temporal patterns of sen-
sory data and their abstract generalizations, which at their 
lowest levels at least, appear to be emergent symbols whose 
meaning comes from their contextual occurrences and use. 
 
Being able to recognize, generate, and reason with 
knowledge in linguistic forms seems to lie at the pinnacle of 
human cognitive capabilities. But jumping to representa-
tional conclusions modeled after linguistic forms may be 
preventing us from letting the trees more naturally define the 
forest. The gradual but powerful rise of data-driven and sta-
tistical weak-methods should give us pause, to consider and 
favor performance and behavior over explainable transpar-
ency. To wit, many abductive explanations of our reasoning 
are arguably telling stories that make us comfortable without 
strong justification for their particular selection (e.g. “the 
stock market was down today on concerns over oil prices”). 
Perhaps the precision of logic and language is an illusion, 
useful in its own right, but more derivative than founda-
tional. 

Integrating Across Technical Perspectives 
Over the course of its history, Artificial Intelligence has kept 
a mostly consistent and widely accepted goal-oriented view, 
namely to understand intelligent behavior well enough to 
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emulate it with machines. However, as a professional disci-
pline, the field has been splintered repeatedly in its techno-
logical approaches. Functional decomposition of human 
abilities has led some researchers to study vision, others lan-
guage, others problem-solving or learning. Even within a 
subfield such as Machine Learning, there are numerous 
technical schools of thought and algorithmic orientations 
that cry for unification (Domingos 2015). Fortunately, AI 
has also played a part in spinning-off many useful engineer-
ing technologies, including Object-Oriented Programming, 
Operations Research, and Information Retrieval (search en-
gines), so the divide and conquer approach has had its ben-
efits. Yet a grand unification theory of cognition beckons us. 
 
One major divide that has unfortunately largely persisted, is 
that between inexact and exact representation and reasoning. 
The Standard Model’s discussion of metadata appears to try 
to accommodate both, but grounded knowledge in the form 
of sensory patterns and their generalizations should be rec-
ognized as symbolic in their own right. Using low-level data 
structures that capture temporal relationships in their very 
structure (as opposed to only using temporal predicates, the 
way we represent relations like ownership) seems justifiable 
as well, given their fundamental nature. 
 
This brings us to our final call for integrative cognitive mod-
eling, to build bridges between the oft-separated technical 
perspectives of probability and logic, or connectionist and 
symbolic AI. To the extent that the Standard Model helps to 
achieve this, it will have done Science a huge favor. 
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