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Abstract 

The elemental constituent functions of human minds are not 
yet known, and the paths to identifying these basic “cogni-
tive acts” are constrained at each end by biology and behav-
ior.  A coherent architecture derived bottom-up from brain 
circuits is proffered.  We posit principles and pose questions 
about architectures, their composition, and their applicabil-
ity to a described range of formidable tasks, with the prima-
ry intent of aiding in setting guideposts and challenges for 
ongoing architecture studies.  

 

 Introduction  
One researcher may claim that, e.g., categorization is a 
fundamental psychological operation (“cognitive act”), and 
hierarchical clustering is a composite.  Another may claim 
(perhaps seemingly counterintuitively) that hierarchical 
clustering is the primitive, and that non-hierarchical cate-
gorization is a special case that falls out in certain condi-
tions.  (For our purposes, we will say that the scientific 
question of identifying the actual primitive elements of 
human cognition is in fact important.)   
 How can opposing claims of this kind be tested? It may 
intuitively seem that categorization must be primal: it is a 
constituent of hierarchical categorization, so hierarchies 
must be composites.  Yet there are specific brain circuits 
whose analysis has led to derivation of a hierarchical clus-
tering operation arising directly from the normal physio-
logical operation of those circuits.  Without reference to 
brain mechanisms, the decision of what is elemental and 
what is composite; i.e., what is the base instruction set, is 
in principle underspecified (Granger 2006; 2011).   
 The important thing is to recognize that there is a right 
answer.  The answer isn’t known, yet, but that’s just “yet”. 
There’s a right answer, and it can be investigated.   
 Past work in our lab and others’ has attempted to extract 
algorithms from individual circuits, e.g., thalamocortical 
loops, basal ganglia, hippocampal fields CA3 and CA1, as 

well as from interactions among those circuits, including, 
e.g., cortico-hippocampal and cortico-striatal loops (Chan-
drashekar and Granger 2013; Rodriguez and Granger 
2016).  In each case, detailed algorithmic statements have 
been derived, software systems have been built, and, wher-
ever possible, side-by-side comparisons with comparable 
algorithms have been tested.   
 More importantly for the present paper, these systems 
have been throughout treated from the perspective of a 
unified cognitive architecture, rather than as a set of inde-
pendent free-floating algorithms.  The goal of analyzing 
each individual brain circuit has always been to understand 
it not just in isolation (which it never is) but rather in con-
cert with the rest of the telencephalic / forebrain circuitry 
in humans.  Each circuit is intended to be studied for what 
it confers, individually and in integrated loops, to the over-
all computation of cognition (see, e.g., Granger 2006; 
2011).   A unified architecture has been posited, incorpo-
rating the constituent circuits and their interactions, out-
lined in Figure 1.   
 The architecture has been described previously in partial 
form (Granger 2006; 2011), and a list of educed compo-
nent algorithms has been posited.  These were not arrived 
at from any first principles nor from considerations of any 
behaviors.  Rather, they arose solely from simulation and 
analytic treatments of the circuits that comprise the struc-
tures in Figure 1.  Table 1 lists the resulting proposed in-
struction set that so far arises from these analyses.  

Table 1: Summary of algorithms and data structures derived from 
mammalian forebrain circuitry (see Granger 2006).  

Algorithms derived from telencephalic circuits:  
    thalamocortical loops (“core”):  clustering; hierarchies 

          "                "  (“matrix”): sequences; chaining; hashing 
striatal complex / basal ganglia: RL/TD learning; bridging 
hippocampal fields: time dilation; stacks; match-mismatch 
amygdala nuclei: filters / toggles  

Shared data structures: 
     nested sequences of categories (of sequences of categories) 
     = grammars  

A Standard Model of Mind: 
AAAI Technical Report FS-17-05
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Figure 1. Components of proposed brain circuit architecture, containing all major constituent systems in mammalian forebrain.  
 

Principles of cognitive acts, and examples 
We will focus on both principles and examples: principles 
of cognition and the resulting desiderata (both positive and 
negative) for cognitive architectures; and examples of tasks 
that are currently challenging for cognitive architectures, 
which would be addressable by attending to the articulated 
principles.   
 Cognitive tasks are unspecified.  We have neither defini-
tions for them nor examples, other than observations of the 
behavior of humans (and other mammals).  Notably, as of 
2017, there are no definitions of “human-like” minds, and 
no instances of them, other than humans.   

When a proposed simulacrum is presented, we measure 
its performance solely by example: by reference to ob-
served human behaviors.  Is Siri’s language use “human-
like”?  It can pleasantly surprise us with utterances that 
could have come from humans (and in many cases did, 
given the substantial portions of it that are hand-
constructed), and it can unpleasantly surprise us with com-
pletely non compos mentis responses to queries that a six-
year-old would readily have fielded.   

The only reason that we know that siri can be outper-
formed is that humans do so.  There is no specification of 
its intended operation.  There is no possible external vali-
dation of its performance other than by reference to ob-
served human behavior – not to specifications, which do 
not exist.   
 The notion of a cognitive “standard model” refers aspi-
rationally to physics, whose standard model is claimed to 
be “not a direct model of the entire physical world, focus-
ing as it does only on the relatively low level of particles 
….” while being “grounded” in levels below and providing 
a “critical foundation” for levels above (Laird et al., 2017).  
To truly adopt a physics approach, it is crucial to attend to 
the key empirical grounding of physics: any theory must be 

tested for its predictive and explanatory power.  If a “theo-
ry” doesn’t accord with a physical phenomenon at any 
scale, from quanta to galaxies, the theory is known to be 
wrong, and physicists focus on eventually fixing it, or sup-
planting it.  For cognition, we may temporarily choose a 
“level” (or time constant or implementation detail) of focus 
but acknowledge that empirical phenomena at any level are 
full constraints on any correct theory. The reason that 
physics focuses on the smallest known components is that 
all phenomena arise from them.  Cognitive theory requires 
nothing less: the mind is what the brain does.†  
 
Cognitive acts are brain circuit operations  
Since cognitive tasks have no formal specification other 
than what humans do, and since the mind is what the brain 
does, the most pragmatic path to cognitive architectures 
may be development of algorithms derived from brain cir-
cuits.   
 Deriving cognitive acts from brain circuits is sharply 
distinguished from saying “we should implement purported 
cognitive operations in artificial neural networks”.  Why?  
Because there are actual anatomical brain circuits, and ac-
tual physiological operations thereof, and they are easily 
shown not to conform to current ANN models (with their 
(deep, convolutional, or recurrent) variants: DNNs, CNNs, 
RNNs).  (An intriguing minor exception is that of rein-

                                                
†(“The mind is what the brain does” in no way implies that, for instance, 
“we therefore should not over-treat mental illness just with drugs.”  Even 
when we eventually understand how brain operations cause minds, it will 
still be the case that mental illnesses should not be solely treated with 
drugs, not because minds do not equal brains, but because mental activity 
(brain activity) can itself act on the physical brain, and thus can change 
the brain.  Arguments about the powers of thought and reflection are 
orthogonal to the equivalence of mind and brain.  Addressing such cate-
gory errors is beyond the scope of the present paper, but is important to 
state clearly.)    
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forcement and temporal-difference learning (RL/TD), 
which appear to be very good models of a subset of mech-
anisms within the basal ganglia, which are called as ad-
junct subroutines to the primary operations of the cortex).   
 The assortment of architectural layouts across brain 
structures, although richly diverse, is nonetheless rigidly 
constrained by a range of relevant data (Granger ’11):   
•� allometry shows the astonishingly inflexible limits to 

architectural designs across all mammals, with humans 
exhibiting no exception (Finlay’95; ’05; Herculano’12); 

•� repetition of cortical-subcortical circuitry designates 
extensive shared components evidently underlying cog-
nitive operation from low to high levels; 

•� the disturbingly low precision and slow speed of neural 
components radically restrict the power of elemental 
operations; and yet:  

•� intrinsic parallelism of brain circuits predicts the appar-
ently high Amdahl fractions of the emergent algo-
rithms.   

Taken together, and taken seriously, these have given rise 
to a circumscribed “instruction set” of derived elemental 
operations from which all complex perceptual and cogni-
tive abilities presumably may be composed.  It is assumed 
that, although the operations so far identified are incom-
plete and insufficient, the aim of the enterprise is to com-
plete them and test their explanatory power against a full 
range of cognitive operations.  The set so far amassed (Ta-
ble 1) are all directly derived from the structure and opera-
tion of particular circuits and interactions among circuits 
(Rodriguez et al., ’04; Granger ’06; ’11).  Intriguingly, 
many are not typically thought of as primitive cognitive 
acts.  Ongoing empirical testing is aimed at distinguishing 
among competing hypotheses, and correcting erroneous 
ones, as suggested in the introductory comments.    
 
Brain circuits do not resemble ANNs   
Current artificial neural network (ANN) “deep learning” 
and related systems represent a surprisingly modest subset 
of brainlike algorithms, perhaps accounting for the current 
wide gap between the capabilities of even the most ad-
vanced extant artificial systems versus human capabilities 
in, e.g., rapid learning from few instances, learning by be-
ing taught, attentional mechanisms, navigation, structure, 
temporal sequences, and semantic language meaning – i.e., 
in most realms other than statistical “big data” analyses, 
such as in search-based games.   
 Any model of a real phenomenon selects characteristics 
of the real object of study and constructs a simplified ver-
sion, by omitting or simplifying some characteristics.  
What’s retained and omitted in ANNs?  Retained are pre-
cisely the following four features of brains: i) very simple 
individual unit (neuron) computation (add, multiply); ii) 
messages are scalars; iii) massive parallelism; iv) learning 

via connection changes.  Even within those features, the 
details are divergent: for instance, error correction does not 
occur in brain circuits other than in the cerebellum – not in 
cortex, nor striatum, nor hippocampus – and yet error cor-
rection underlies all current major ANN learning rules.   
 All other features of brains are omitted, and the target 
question is whether those omitted characteristics either add 
to or alter the interpretation of the resulting “model.”  The 
answer is not controversial.  It is easy to show that, for 
instance, changing the learning rule of an ANN radically 
alters its behavior and capacities; likewise, it has been 
shown via models and simulations across myriad labs that 
different architectural arrangements of neurons, for in-
stance, may entirely change the emergent computation of 
the resulting system, (as changing the architecture of elec-
trical circuitry unsurprisingly does likewise).   
 Proposals that backprop-based systems, or systems lack-
ing anatomical architectures occurring in brains, are “mod-
els,” begs the question of what a “model” is – a model is 
intended to be a model “of” something.  A statistical learn-
ing system branded as “cortex-like” or “hippocampally-
inspired,” without correspondence to the actual network 
designs of the cited brain circuits, appear to be described in 
these reminiscent neural terms after the fact, rather than 
being modeled from the substrates alluded to.  
 Taking an existing set of proposed “cognitive” opera-
tions and implementing them via statistical learning or 
ANN tools, then, may not aid in identifying primary men-
tal operations from brain circuitry.   
 
Cognition, big and small 
Current cognitive architectures are intended to conform to 
psychological data, specifically limiting themselves to 
events that unfold over the course of at least 50 (and typi-
cally more than 100) milliseconds – moreover, they are 
aimed at “deliberative” cognitive acts, as contrasted with 
supposedly lower-level operations.   
 Some architectures approach this “blurring” of more 
rapid internal sequences by implementing longer-duration 
cognitive acts in smaller packages constructed from statis-
tical learning / ANN tools; as mentioned, current ANNs do 
not contain the vast majority of brain circuit characteris-
tics, and it remains unknown if these omissions fundamen-
tally revamp what actually goes on in brains.  
 Somehow, real brains give rise to real-world perceptual 
processing as well as to “deliberative” thought; both low 
and high level cognitive acts.  Might the former derive 
from highly specialized front end modules, that can be ne-
glected with respect to high level cognition?  For the pure 
initial interface between physics and brain, there indeed 
exist specialized peripheral structures (retina, cochlea) 
whose exotic architectures do not resemble those of other 
brain areas.  Once past these very early non-cortical mod-
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ules, however, evidence strongly suggests repeated and 
unified systems that are remarkably widely shared from 
low-level to high-level regions.  It of course could turn out 
that future research attempts will show these circuits to 
differ in important ways from each other; at present, such 
attempts are surprisingly rife with negative results.  More-
over, searchers for differential circuitry (or cell types, or 
genetic alleles) between humans and other mammals yield 
extraordinarily and unexpectedly disappointing results thus 
far.  The differences found to date appear to fall radically 
short of any explanatory power for our substantial human 
cognitive advantages.  As these findings continue to stack 
up, the possibility looms larger that they are not negative 
findings, but positive ones: our brains are indeed far, far 
more similar to those of other mammals than we suspected, 
and our unique abilities (largely language) may well arise 
from scale rather than differential design (Finlay and Dar-
lington ’95; Striedter ’05; Herculano ’12; Rodriguez ‘16).   
 

Time, latency, and successive processing 
With these formidable architectural constraints in mind, 
how would one test proposed constructs for their actual 
human abilities?  We forward examples from a broad range 
of highly replicated experimental paradigms, intended to 
probe the distinctions between candidate architectures.   
 
Basic levels exhibit fixed latencies 
As shown by Rosch and replicated extensively, humans are 
faster to correctly identify a robin as a bird than as a robin.  
Moreover, the successive responses (bird → robin) are 
reliably shown to be separated by seemingly quantal reac-
tion times, adding roughly 100 msec latencies for each 
subordinate step (Rosch et al., ‘76).  The suggestion has 
repeatedly been made that these lock-step behaviors reflect 
a regular timed mechanism.   
 Cortico-thalamic loops, which are indisputably at play 
during basic-level behavior, exhibit a timed loop behavior 
that, in modeling work, gives rise to an unexpected succes-
sion of category-subcategory cortical responses, utterly 
absent from any of the materials from which the models 
were constructed.  The successive basic-subordinate be-
havior of the model surprised its builders, and suggested 
that this hierarchical clustering might be a fundamental 
property arising from the operation of cortico-thalamic 
circuitry (eg Rodriguez 04).  The unexplained reaction 
time findings of basic levels should be explained by (not 
just consistent with) a candidate cognitive architecture 
(Rodriguez ’04; Granger ’06; ’11).   
  
Procedural-declarative dissociation     
Studies have investigated the potential application of cog-
nitive acts in architectures (e.g., ACT-R) in problem-

solving tasks such as tower of hanoi.  An additional ques-
tion of interest is the finding that selective damage to the 
medial temporal system enables the tasks to be learned, yet 
dissociates the learning from any retrievable memory of 
the task (tower of hanoi, mirror writing, and many other 
“procedural” tasks conform with these findings).  Architec-
tures have been constructed with “declarative” and “proce-
dural” component modules, conforming to the differences.  
It may be of interest to identify explanatory accounts of 
how these modules differ from each other, and predictive 
accounts of how they arise from starting principles.   
 
Implicit associations, fast and slow 
When asked to pair images with descriptive adjectives, 
subjects exhibit slower reaction times when the pairings 
are at odds with their internal biases.  Thus, pairing afri-
can-american faces with laudatory adjectives is slower than 
pairing these images with negative adjectives – this occurs 
both for caucasian and african-american subjects alike.  
When debriefed, subjects typically claim no such bias, and 
in fact may profess liberal leanings, while nonetheless ex-
hibiting the differential RT behavior described.  Indeed, 
once told about the test, subjects re-taking it then exhibit 
slower responses to all stimuli, whether or not the pairs 
reflect biases.  These speed reductions are accompanied by 
increased activity in anterior cortical areas, presumed to be 
activated later than initial regions, subsequently inhibiting 
the initial (biased) response.  An explanatory account may 
presumably indicate both the early (biased) and late (inten-
tionally corrected) responses.  Much of the panoply of ex-
amples described as “fast” and “slow” (Kahnemann ‘11) 
exhibit related characteristics.   
 
Perception is not solely feed-forward   
Many early-stage perceptual phenomena are processed 
more rapidly than 100 msec; these may perhaps thus be 
judged to fall outside the proper purview of current cogni-
tive architectures.  Researchers often add specialized “front 
end” or modality-specific modules to a given architecture 
to produce “hybrids” – part specialized perception module, 
part “deliberative.” As discussed above, neuroscience stud-
ies find that, other than the extreme periphery, the pro-
cessing of sight and sound is carried out by circuitry very 
similar to, and highly integrated with, the rest of the brain, 
both for feedforward and feedback communication.  One 
might reflect on how much processing underlies the inte-
gration of, say, a dog’s appearance and barking sound.  Are 
there specialized modules not just for vision and sound, but 
also for their cross-modal integration?  Or is the early pro-
cessing of images and sounds just another in a long line of 
cortical regions seamlessly and successively operating on 
ever higher representations of inputs?  This is just the kind 
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of question that some in neuroscience attempt to study, and 
that cognitive architecture research could contribute to.   
 A side effect of assuming separate modules for vision is 
that some modes of perceptual processing become much 
more or much less easy and natural as a function of the 
assumption of the division of labor in the architecture.  If 
there is a separate “vision” front end, followed by “deliber-
ative” reasoning about the visual input, we may think that 
the “vision” component has “completed” its job, providing 
input to downstream modules.  

Figure 2. Successive images extracted from a video sequence, 
illustrating how much features change rapidly over frames.   
  
   These views of a truck (Fig.2), separated by just a few 
frames, have very few shared feature characteristics.  An 
independent “front end” that attempted to recognize them 
would be highly unlikely to rate them as similar, let alone 
to categorize them as the same object.  Yet due simply to 
their contiguity over time, the visible portions of the truck 
can be recognized (by us) as being the same object, and 
even the relationships among its constituent parts can be 
registered.  The confusing variability of the bottom-up / 
feed-forward features can be overcome by top-down / feed-
back information, when an architecture’s perceptual and 
memory processes interact.  Front end systems (such as 
SIFT) are not only computationally expensive, they have 
repeatedly been shown to give incorrect labels since they 
do not have feedback from memory, motion, contiguity, 
etc., whereas the low-level input features (such as the 
truck) are utterly different once the object has moved, or 
turned, or is in different lighting.  Following the most 
prevalent visual processing methods designed for still im-
ages, the task of unifying the view of the object would be 
made artificially (and unnecessarily) difficult.   
 We argue that these are not simply specialized issues 
concerning visual processing; they are issues that are inte-
gral to cognitive architecture design: the need for feedfor-
ward and feedback information; the need for integration 
across successive processing stages; the need for percep-
tion and memory to interact.  Many candidate architectures 
contain characteristics of this kind, and yet many would 
nonetheless find Figure 2 challenging, suggesting that it 
may be fruitful to search for further integrative processing 
that could appropriately treat such natural everyday tasks.   
 Detailed explanation of our approach is perhaps too spe-
cialized for this paper, but we provide just a brief account 
in hopes of illustrating the key architectural points that we 
are advocating.  The architecture uses models of the two 

primary retino-thalamic pathways from eye to brain: the 
parvocellular and magnocellular paths, which can be loose-
ly thought of as, respectively, static image based, empha-
sizing contrast (parvo), and time based, emphasizing mo-
tion and contiguity at the expense of detailed static feature 
identification (magno).  In particular, the magnocellular 
pathway predominantly tracks motion that is relatively 
consistent over time, without searching for wholly con-
sistent features (as, e.g., SIFT would be forced to do).   
 The truck in these images is identified and tracked over 
time largely via contiguity.  No expensive front end such 
as SIFT, nor tracking via optic flow (also expensive and 
typically proceeding via very few frames at a time), are 
used.  We posit that low-level input features are inherently 
neither predictable nor reliable, which (if they were used) 
would lead to inherently questionable inferences.  The re-
sult in our case is an extremely inexpensive front end that 
is designed, architecturally, to be used not as an isolated 
module but in concert with downstream mechanisms de-
signed to evaluate successively longer time spans, and thus 
no longer dependent on still images, nor front end modules 
that must recognize in isolation (Bowen et al., 2017b).    
 
When do two things look alike?  
As traditionally “front end” modules are recognized to ac-
tually be integral parts of the architecture, additional tasks 
can be seen included in the evaluation of the approach.  An 
example is the deceptively simple question of when two 
things look alike.  There is a substantial literature, entailing 
a range of issues including analogy, contextual setting, and 
many more topics, but we have recently asked the question 
at a surprisingly simple level, with encouraging results.   
 The general form of the question admits inputs that 
could range from visual or auditory percepts up through 
complex abstractions.  Taking just the simplest example, if 
we consider two images, the task of “image quality as-
sessment” (IQA) is one that is wholly dependent on human 
behavior: the only measure of “how similar” two images 
are is defined as “whatever humans do”.   
 It is notable that this is a case in which there is no exter-
nal specification other than human performance, and yet 
human performance can be measured with precision, so 
candidate approaches can be impartially evaluated. (Would 
that there were more such instances!)   
 We give a very brief precis of work by Bowen et al 
(2017a).  Subjects are shown pairs of images and asked to 
rate their similarity from 0% - 100% similar.  Image pairs 
can be generated by producing degraded versions of an 
image via JPEG compression. The “right” answer is solely 
“whatever humans do” – measures are evaluated in terms 
of “difference mean opinion scores” (DMOS), i.e., the av-
erage rating given by humans tested on particular images.   
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 The field of image quality assessment strives to predict 
what these human scores will be, from the images alone.   
 Traditional approaches simply measured root mean 
squared distances, pixel by pixel across the two images.  
That approach typically achieved passable estimates, with 
plenty of room for improvement.  The current state of the 
art is a family of methods termed “SSIM,” based on a mul-
tiplicative average of three measures of multi-pixel com-
parison across two images (Wang et al., ‘03).  SSIM relia-
bly outperforms Euclidean root mean squared distances.   
 We have recently shown that a method derived directly 
from brain circuit models, as part of the architecture de-
picted here (Fig 1), outperforms the current industry stand-
ard (SSIM). The brain circuit derived method predicts hu-
man evaluations of image similarity better than the current 
state of the art method.  Moreover, the method is also ap-
plicable to abstract similarity evaluations used by multiple 
researchers (Attneave ’50; Medin ’78; Nosofsky ‘92).  This 
is simply a suggestive reminder that incorporating brain 
considerations, and inclusion of characteristics from low 
level to high level, may aid in arriving at cognitive archi-
tectures that actually match human performance.   
 

Whither cognitive architectures?  
Architecture design, then, may benefit from the inclusion 
of cognitive acts from front to back and from fast to slow, 
including those that traditionally have been excluded from 
“cognitive” architectures.  The inclusion of the full range 
of cognition may highlight structural issues that serve as 
useful constraints on architecture design. Constraints, 
whether from neuroscience, from reaction times, from 
comparative anatomy, from allometry, from computational 
costs, all provide indispensably useful guidelines helping 
narrow down the space of eventual architectures that could 
not just match human behavior, but provide predictive and 
explanatory accounts of how it arises.   
 Human, or “human-like”?  At present we have no ex-
amples of “human-like” minds whatsoever.  Perhaps 
worse: we have no specifications(!) and thus no means for 
measuring how “like” a mind is to ours, nor for falsifying a 
hypothesis that a candidate mind is or is not “human-like”.  
Are there “human-like” minds?  How would we know?   
 Deliberative, or reportable?  Elemental cognitive acts 
are all (or largely) unreportable.  Should this make them 
ineligible as the bases for cognitive architectures? The el-
emental cognitive acts proposed here:  
-  seem not to fit a definition (which does not exist) of the 

intuitive term “deliberative”;   
-  mostly are more rapid than 100 msec; 
-  are not subject to intuition nor overt inference; 

 Seeking to avoid the problem by avoiding the low level 
may be steering the enterprise in a misleading way.  We 
have suggested that inference, bias, even widely used (but 

quite poorly defined) terms such as recognition and catego-
rization, all entail mechanisms that are unreportable; ought 
they all be omitted from cognitive architectures?  
 Modules or successive stages?  The present approach 
argues that, based on brain circuit design, it is the existence 
of successive processing stages communicating with each 
other, that enables seamless interaction from percept to 
concept.  Is this a desideratum for cognitive architectures?   
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