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Abstract

Lineage of malware has been studied using phylogenetic
based methods. Multiple sequence alignment techniques in
biology form the foundations of phylogenetic analysis. The
analysis of malware trace data using sequence alignment
techniques is a drastic simplification from reality. In this
work, we describe a framework that incorporates uncertainty
in discovering the relationship between malware traces. The
framework leverages on probabilistic measures of similarity
between stochastic models to compare two malware families.
A proof-of-concept of our formalism is demonstrated with the
construction of a network of malware relationships.

Introduction
The deluge of malware attacks in recent times requires so-
phisticated tools for detection. The goal of malware writ-
ers is to infect IT infrastructure and create an environ-
ment that facilitates malware actions in the systems. The
consequences of persistent presence of malware in intru-
sion of systems, overcoming the antivirus software requires
the malware to exist in families. The variants of malware
have similar code and often, have similar behavioral charac-
teristics. Malware variants, exhibiting similar behavior are
grouped in families. Detection of families of malware is
computationally intensive and hence, efficient algorithms
are required for analysis. The analogy of mutation of hu-
man viruses and morphing of malware such as polymor-
phic malware (Jang, Brumley, and Venkataraman 2010;
Karim et al. 2005) with the operating system is striking.
Malware execution traces capture intrinsic behavioral char-
acteristics of the malicious code. Malware detectors based
on byte signatures are not effective given the code changes
can make the malware undetectable (Canali et al. 2012).
Typically, malware writers change the code of a malware
and hence, the modified code do have behavioral relation-
ship with the original code. The relationships between the
code bases that capture behavioral characteristics encoded
in traces are analogous to relationship encoded in biolog-
ical sequences such as genomic sequences. Therefore, bi-
ological sequence analysis methods are promising tools in
the analysis of malware traces given the notion of evolu-
tion amongst code bases of a malware. A critical step in
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understanding the evolving threats is to gain knowledge of
the processes that are responsible for attacks. Given the be-
havior of the malicious code is deceptive, reverse engineer-
ing on traces is performed to understand the intrinsic pro-
cesses of attacks. There is a large body of published liter-
ature malware detection methods (Idika and Mathur 2007;
Christodorescu et al. 2005; Singh and Nene 2013). In this
work, we will focus on labeling malware execution traces
to predefined groups, malware families based on behavioral
characteristics.

Understanding the timeline of malware attacks and iden-
tification of latest variant of prior cyber attacks is the key
motivation to study lineage of malware. A study represent-
ing generic software lineage with details of research prob-
lems in software lineage (Jang, Woo, and Brumley 2013).
Malware lineage construction is a current research area.
A malware family is defined (Anderson, Lane, and Hash
2014) consists of malware instances, have common code-
base and have similar behavior during execution. There-
fore, the notion of phylogenetic relationships has been ex-
plored. An automated construction of malware families and
variations (Hayes, Walenstein, and Lakhotia 2009) on phy-
logenetic models were reported. Recent work addressing
malware families have been reported using phylogenetic-
insprired methods(Kim, Khoo, and Liò 2012; Carrera and
Erdélyi 2004; Khoo and Lió 2011). The construction of phy-
logenetic relationships in biology is from alignment of gene
(biological) sequences (Khoo and Lió 2011). There is no
direct mapping with biological sequences with that of se-
quences of system calls as in malware trace. Biological se-
quence alignment is scored on the basis of point accepted
mutation matrix which is based on protein mutations. The
alignment methods used from biology in trace alignment of-
ten suffers from lack of additional information.

The phylogenetic analysis from biology is limiting in the
study of malware phylogeny, due to code fragment inher-
itance from different malware instances (Liu, Wang, and
Wang 2016). The notion of a known root for phylogeny tree
construction of malware is missing. In this work, we focus
in evaluation of sibling relationships between the malware
families. To the best of our knowledge there has no work
that has addressed sibling relationships using malware (dis)-
similarity directly from traces without making minimal as-
sumptions.
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In this work, we propose an alignment free methodology
that compares malware traces and evaluate, if the traces are
similar in behavior. The goal of this work to group malware
traces in families of malware based on (dis)-similarity values
based on behavioral features of malware. The membership
in a family of malware for gieasven traces is based on (dis)-
similarity between the traces. Formally, we are seeking to
answer the following query: Given two malware traces, T1

and T2, are the two traces (dis)-similar by a numeric value
of x? We describe a phylogenetic inspired framework that
incorporates incomplete knowledge and measures similarity
among malware represented by execution traces.

Background
In this section, we review the literature in sequence align-
ment in biology, stochastic models and theories of phy-
logeny in malware analysis. These are different theories that
form the foundations of our work.

Sequence Alignment methods in Phylogenetics

Sequence alignment algorithms (Durbin et al. 1998) have
been used heavily in bioinformatics to study sequences of
DNA, RNA and proteins. Multiple sequences are arranged
one below another and similarity between the subsequences
is recorded. The evaluation of similarity for each position
in the sequences are scored. The similar subsequences are
homologous and critical in understanding phylogenetic re-
lationships. Mutations rate of an element in a specific po-
sition of a sequence when compared with other elements
over time are quantified by a substition matrix. The point
accepted mutations (PAM) (Dayhoff, Schwartz, and Orcutt
1978) and BLOSUM(Henikoff and Henikoff 1992) are sub-
stitution matrices based on mutation of proteins. Modeling
set of execution traces of malware analogous to biological
sequences is challenging because there is no notion of pro-
teins in set of instructions. The drawback of sequence align-
ment methods is that there can be many sequences and call-
ret call standards maybe different for malware writers (Khoo
and Lió 2011). Khoo et al describes a method aligning se-
quences based on functional similarities such as kernel space
API calls would be similar across different malware.

Alignment free methods in Phylogenetics

Alignment free methods are important in the construction
of phylogenetic trees from sequences (Vinga and Almeida
2003) because they make fewer assumptions to address bi-
ological problems such as genome rearrangements, model-
ing of DNA sequences that have undergone recombination
(Höhl, Rigoutsos, and Ragan 2006). There are two cate-
gories of alignment free methods that have been proposed
(Vinga and Almeida 2003): (i) Statistics on words and infor-
mation theory concepts and (ii) Kolmogorov complexity and
Chaos theory. The effectiveness of alignment free methods
in phylogeny tree construction was evaluated (Höhl, Rigout-
sos, and Ragan 2006).

Stochastic Model and Similarity Measures

Stochastic models namely, markov chains and markov de-
cisions processes have been used to model biological se-

quences(Durbin et al. 1998). We define markov chain as a
state based system (Baier, Katoen, and others 2008).

Definition 1. Discrete-Time Markov Chains
(DTMC): a discrete-time Markov chains is a tuple:
M〈S, S0, ιinit,P, L〉 where:

• S is a finite set of states.
• S0 is the set of initial states.
• P : S × S → [0, 1] , where P represents the probability

matrix and
∑

s,s′∈S

P(s, s′) = 1.

• ιinit : S → [0, 1] where
∑
s∈S

ιinit(s) = 1 is the initial

distribution.
• L : S → 2AP . where AP the set of atomic propositions.

The definition of DTMC is stated in terms of state-based.
The comparison of two discrete time markov chains (dtmc)
have been studied (Rached, Alajaji, and Campbell 2004;
Deng et al. 2009). One of the measures that has been used
in the analysis of (dis)-similarity of stochastic models is
Kullback-Leibler Divergence. Kullback-Leibler divergence
(Kullback and Leibler 1951) or relative entropy is a non-
symmetric measure between two probability distributions.
A numerical expression for computation of KLD was de-
rived for time invariant finite alphabet markov sources of
arbitrary initial distributions (Rached, Alajaji, and Camp-
bell 2004). An information theoretic treatment in the con-
struction of a reduced order markov model from a large
scale markov model has been reported (Deng et al. 2009).
Formally, Kullback-Leibler Divergence (KLD) is defined
(Pham and Zuegg 2004): Given P and Q be two probability
distributions over the random variable X , the KLD is de-
noted by H(P,Q) of P with respect to Q is, H(P,Q) =

∑

x∈X

P (x)log
P (x)

Q(x)

Clearly, H(P,Q) is not a metric because H(P,Q) �=
H(Q,P ). Jensen-Shannon divergence (JSD) is a distance
metric (Lin 1991) that is constructed from KLD.

Malware Trace

We define malware execution trace on a set of finite alpha-
bets, Σ.

Definition 2. A trace, T = α0, α1, α2, . . . αn where n ∈ N

and αn ∈ Σ.

A trace is a program execution sequence and is repre-
sented by set of states. The states often represent system
calls and traces provide a snapshot of the behavior of the
program with respect to the request to the operating system
services. A DTMC (Anderson et al. 2011) was generated to
model the transitional relationships between call traces. A
probability matrix, P , from trace execution sequences for
each malware is constructed. The transition matrix of the
markov chain M1,P1 is compared with transition matrix of
another markov chain M2, P2, using KLD. A lower value
of H(P2,P1) implies the malware trace represented by M2

is proximal M1.

201



Model

In our formalism, we construct markov chains from trace
data. Let markov chains constructed from traces, T1 and T2

be given by M1 and M2, respectively. The set of unique
system calls in T1 and T2 is represented by γ1 and γ2, re-
spectively. The set of unique system calls in T1 and T2 is
Γ = γ1 ∪ γ2. Given a set of unique system calls, Γ and a
set of states, S , a one-one labeling function is denoted by,
L : S → Γ. The set of labeled states is denoted by S. The
algorithm, ConstructMarkov generates a dtmc, M1 based
on trace data, T1 on a set of labeled states, S. The algorithm
can be executed to construct dtmc, M2 from the unknown
trace, T2 constructs a dtmc, M2 on the identical set of la-
beled states, S. It is critical for the two dtmc to have the
same state space–a requirement for computing KLD.

The steps of the algorithm, ConstructMarkov are the
following: From the given set of labeled states, S, an edge
labeled graph is constructed. The states have outgoing and
incoming edges from every other state. There are no self
edges. Each transition in the labeled graph constructed from
the states from S is matched with the trace data, T1. The
number of matches found is added to the edge labels which
were initialized to 1. The probability on an edge was the ratio
of the sum of number of matches found and one to the sum
of the total matches of the transitions with the trace from a
state,s.

Algorithm 1 ConstructMarkov

Input: Set of labeled states, S and trace, T1

Output: A Discrete Markov Chain, M1

1: for each i ∈ 1, . . . , | S | do
2: for each j ∈ 1, . . . , | S | do
3: if (i �= j) then
4: Initialize: αij ← 1.
5: Construct transitions from γi to every

γj , γi
αij−→ γj , where γi, γj ∈ S .

6: end if
7: end for
8: end for
9: for each successive transition, (s → s′) in T1 do

10: for each transition, (γ → γ′) do
11: if (s = γ ∧ s′ = γ′) then
12: αij ← αij + 1
13: end if
14: end for
15: end for
16: for each s ∈ S do
17: P(si, sj) = αij∑

j

αij

where 1 ≤ j ≤| S | and j �= i.

18: end for
19: M1〈S, S0, R, P, L〉.

The algorithm ConstructMarkov terminates after finite
number of steps. The for-loop in lines (1)-(2) executes finite
number of steps, | S |2 The for-loop in lines (9)-(10) exe-
cutes finite number of steps, m1 ·m2 where m1 =| S |,m2

= maximum length of T1 and m1,m2 ∈ N . The for-loop in

line (16) terminates after | S |. The order of time complexity
of the algorithm is O(| S |2 +m1 ·m2+ | S |).
Theorem 1. M1 is a Discrete Markov Time Chain.

Proof. The labels,αij on every transition si ∈ S to sj is ini-
tialized by 1 in line(4) of ConstructMarkov. Here, i �= j
and 1 ≤ i, j ≤| S |. In lines(9)-(15), the labels are updated
based on the frequencies of (si, sj) in T1. The frequencies
of any transition from s, appearing in the set of traces, T
are recorded. The sum of the labels with nonzero values,
αij after the update is,

∑

j

αij . The set of weighted labels,

P (si, sj) from si form a probability distribution, P is given,
P (si, sj) =

αij∑

j

αij

where 1 ≤ j ≤| S | and j �= i. There-

fore, si ∈ S ,
∑

j

P (si, sj) = 1.

Theorem 2. Given a probability distibution, P from a state,
s in M1 with probability p on (s, s′), there exists a transi-
tion, s, s′ in T1 occuring with a frequency of m.

Proof. The probability distribution on k transitions from
state, s in M1 is p1, p2, . . . , pk where 0 < pk ≤ 1, k ∈
N,

∑

k

pk = 1. The frequencies on the set of k transitions

from s after using the trace, T1 are q1, q2, . . . , qk where
m, q1, q2, . . . , qk ∈ N. Hence, the occurence of (s, s′) is
m = pk.

∑
(q1 + q2 + . . .+ qk)− 1.

Simulation

Trace data was used from the publicly available dataset (dat
Online accessed 5 May 2017). Five traces were prepared
for experiments, namely, Tr1, T r2, T r3, T r4 and Tr2. We
show the results using pairwise comparisons. In the first
step, the distinct set of systems calls from the two traces
that were to be compared was extracted. The dtmc for each
of the traces was created. The KLD was computed (Rached,
Alajaji, and Campbell 2004) and the Jensen-Shannon diver-
gence from the transition matrices of the markov chains con-
structed from the traces. In the Table 1, KLD(1) and KLD(2)
represent trace A being compared to trace B and trace B be-
ing compared to trace A, respectively.

Trace Trace KLD(1) KLD(2) JSD
Tr1 Tr2 17.764 19.992 3.87
Tr1 Tr3 29.141 26.059 5.561
Tr1 Tr4 11.772 9.228 2.272
Tr1 Tr5 12.409 9.799 2.412
Tr2 Tr3 30.964 22.418 5.217
Tr2 Tr4 17.863 12.502 3.031
Tr2 Tr5 17.647 12.255 2.988
Tr3 Tr4 18.304 21.619 3.896
Tr3 Tr5 10.168 21.346 4.001
Tr4 Tr5 0.649 0.523 0.141

Table 1: Pairwise comparision of Traces using KLD and JSD
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In the Table 1, the KLD(1) and KLD(2) values for Tr4
and Tr5 are close. Hence, the JSD value is less. The pairwise
comparison of traces, Tr1, T r2 and Tr3 with traces, Tr4 or
Tr5 show are similar in the KLD(2) values and JSD values.
The values provide inside that similar traces have similar
divergence or similarity values with unknown traces.

If there are multiple traces for a family, there would be a
dtmc constructed based on the traces from the family. The
dtmc would then will be compared to another dtmc for an
unknown trace or multiple traces. The KLD and JSD values
of the pairwise comparisons would provide insights of sim-
ilarity or dissimilarity between the two malware families by
a quantitative value.

Pruning of the Edges

A pruning mechanism based on the values of the divergences
on the graph is demonstrated. Figure 1 shows a graph with
nodes labeled with the names of traces and the edge labels
are the JSD values of the traces. The reading of the edges is:
The JSD value, e is the edge label on the edge between n1

and n2, where n1 and n2 are labeled with traces. Similarly,
the directed graph in Figure 2 shows the KLD values on the
edge labels. Each direction of the edges represent the KLD
values of the pair of traces, represented by nodes. The read-
ing of the directed edge is The KLD, e is the edge label on the
edge directed from n1 and n2 when compared n1 with n2.
Figure 3 shows only the edges that have value less than 15.
The number of edges are significantly less when compared
with all the edges in Figure 2. The pruning helps to focus
on the relationships among the nodes that are closest, that
is the malware traces that more similar than others. In other
words, KLD values of the traces are closest if they have sim-
ilar behavior. The numerical value on the edge labels below
which the edges are not pruned in the edge labeled graph is
the threshold.

Figure 1: Jenson-Shannon divergence of Five traces

We show the pruning on 150 traces from the dataset. Ini-
tially, we construct an edge labeled graph with KLD values
on the edges and the nodes representing each traces. The

Figure 2: KLD divergence of Five traces

Figure 3: KLD divergence of Five traces with less than 15

KLD is computed by pairwise comparison of the 150 traces.
Figure (a)-(d) shows the pruning on the edges with thresh-
old, x where x = 30, 20, 10, 5. The smaller the value of
the KLD, the shorter are the edges in the Figure . Some of
the edges in the Figure (a) are long. As the threshold value
decreased, the edges became short denoting that only those
edges remained in the graph that were below the threshold.
Clearly, the clusters of the traces based on the KLD is promi-
nent with threshold 5.

Conclusion

In this paper, we describe a formalism that is motivated by
phylogenetic methods to evaluate the similarity among mal-
ware families represented trace data. The KLD rate mea-
sures the proximity of an unknown malware trace to a set
of given malware families by comparing the dtmc represen-
tation from the traces. Currently, the model is implemented
and rigorous analysis on trace data is performed to identify
the behaviors that are likely to occur in a malware family.
The formalism will be modified for efficient analysis for
large amount of trace data and comparing the unknown mal-
ware trace to a large number of families of malware. We
have demonstrated the relationships between the traces in
the form of network. The weights on the edges of the net-
work quantify the similarity among the traces represented by
nodes. Bayesian approaches on the system calls in the simi-
lar traces will be analyzed to understand behavioral charac-
teristics of evolving attacks.
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(a)

(b)

(c)

(d)

Figure 4: The pruning of edge labled graph representing
pairwise KLD values of 150 traces at different thresholds
of KLD. (a) KLD < 30 (b) KLD < 20 (b) KLD < 10 (b)
KLD < 5.
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