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Abstract

This paper proposes a reinterpretation of selective attention as
a form of control of working memory based on self-generated
reward signals and model-free reinforcement learning. In ad-
dition to being simple and parsimonious, this approach sys-
tematizes a number of classic psychological constructs with-
out calling for additional, specific mechanisms. Finally, the
papers presents the results of an empirical test of this frame-
work, and elaborates on the implications of our findings for
general models of control and intelligent behavior, as well as
neurobiological models of the basal ganglia.

Selective attention is the capacity to focus and concentrate
processing resources in the face of multiple competing stim-
uli. As such, it is an essential part of any adaptive, intelligent
system.

In psychology, the ability to efficiently allocate process-
ing resources is often studied and discussed under the terms
of “executive function” or “cognitive control”, and typically
studied with paradigms that pitch a contextually inappropri-
ate but prepotent response against a contextually appropri-
ate but weaker one. For example, to successfully perform
the Stroop task (in which participants are asked to name the
color a word is printed in while ignoring the word itself),
one must divert attention from the prepotent act of reading a
word and instead focus on the internal goal of retrieving and
naming the color name.

Unfortunately, it is difficult to distinguish executive func-
tion, selective attention, and working memory, as the three
concepts are intimately connected. For instance, working
memory correlates highly with measures of cognitive con-
trol, and even with tests of intelligence (Harrison, Shipstead,
and Engle 2015).

Finally, according to an influential account, working
memory is, in fact, just a form of “executive” attention—
that is, the ability to concentrate and focus on some relevant
information while ignoring the rest (Engle 2002). In other
words, there is a high degree of overlap between these con-
cepts, and, as a consequence, it is hard to describe computa-
tionally their specific mechanisms.

In this paper, I will introduce the idea that attention, can
be understood in terms of reinforcement-based procedural

control of working memory. Furthermore, I will introduce
some experimental data that illustrates the point. Finally, I
will show how this evidence has important consequences for
the architecture of the standard model, and for how the stan-
dard model can be related to the neural architecture of the
brain.

A Framework for Selective Attention

The proposed framework is outlined in Fig. 1; the red line
marks the specific component that corresponds to selective
attention. According to this framework, cognitive control is
achieved through four interrelated mechanisms:

1. Spreading Activation from Working Memory. This as-
sumption states that the availability of different units of
declarative knowledge changes over time based on the
contents of working memory. A common implementa-
tion of this idea consists of having activation spread from
working memory contents to the associated contents of
long-term memory.

2. Procedural Control of Working Memory. This assumption
states that contents of working memory are updated or
deleted by the activation and selection by specific units of
procedural knowledge.

3. Reinforcement Learning Control of Procedural Memory.
This assumption states that the units of procedural mem-
ory are selected on the bases of their expected reward, us-
ing a form of model-free reinforcement learning (RL) to
progressively refine these expectations. A corollary of this
assumption is that an agent can learn which is the most
promising information to put in working memory through
feedback.

4. Continuous Performance Monitoring. This assumption
states that the agent regularly generates internal feedback
signals about its own performance, with or without ex-
plicit feedback from the environment.

All of these assumptions can be defended on the bases
of current neuroscientific research (Miller and Cohen 2001;
McNab and Klingberg 2008; Schultz, Dayan, and Montague
1997). In this framework, working memory is thought of as
a limited-capacity store. However, its strategic allocation is
what ultimately determines the behavioral outcome, and is
controlled by procedural memory.
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Figure 1: The proposed framework for selective attention

Implementation

The framework described herein was initially implemented
in the ACT-R cognitive architecture (Anderson 2007), al-
though, as it will be clear, it is easily generalizable to other
architectures. For reference, a brief overview of ACT-R is
given in Figure 2. ACT-R stores knowledge in two formats,
declarative and procedural. Declarative knowledge is stored
into table-like structures called chunks, which are used to
represent static information, such as semantic memories
(Paris is the capital of France), perceptual inputs (A black
triangle is on the screen), or motor commands (Press the
spacebar). In Fig. 2, chunks are represented by the flowchart
symbol of a document.

Procedural knowledge, on the other hand, consists of pro-
ductions, that is, state-action rules that implement the basic
procedures needed to perform different tasks. In Fig. 2, pro-
ductions are represented with the flowchart symbol of a pro-
cess, with incoming arrows representing the state in which
the rule can be applied and outgoing arrows representing
their consequent actions.

The relationship between chunks and productions is me-
diated by a set of functional modules (solid rounded rectan-
gles in Fig. 2). For instance, perceptual modules create new
chunks to represent the contents of the outside world, and
a memory module maintains chunks in long-term memory.
Chunks are made available to production rules via a set of
module-specific buffers, (dashed rounded rectangles in Fig.
2). Only when chunks are placed into buffers, can they be
inspected, modified, and copied by production rules.

Simplifying Assumptions

ACT-R is a complex architecture: it has several dozen pa-
rameters, and the same task can be potentially modeled in
very different ways. Thus, to implement a general frame-
work on top of it, two simplifying assumptions were made:

1. Single-Buffer Working Memory Although ACT-R is made
of several buffers and components, only one of them (the
imaginal buffer) was used as a working memory store.

Note that, because ACT-R’s buffers can only contain a
single chunk, the contents of working memory are by na-
ture unstructured.

2. Unconstrained Retrieval. That retrieval of information
from Long-Term Memory is completely characterized by
chunk activation, which includes both base-level activa-
tion and spreading activation. Any time the retrieval buffer
is empty, it simply retrieves the most active chunk.

Notice how these two assumptions significantly reduce
ACT-R’s number of degrees of freedom. The second as-
sumption, in particular, is in direct contrast with the natu-
ral mechanisms of ACT-R, in which productions can place
constraints on which chunk will be retrieved by specifying
the desired pattern. For example, a production can directly
retrieve the arithmetic fact “3 + 4 = 7” from long-term mem-
ory by specifically requesting to find a chunk whose first ad-
dend is “3” and whose second added is “4”. In other words,
an ACT-R model can always be programmed to retrieve the
desired information efficiently.

In contrast, the retrieval of correct information in the pro-
posed framework must rely on the strategic allocation of
spreading activation, which, in turn, depends on which in-
formation is placed in working memory. For example, when
trying to retrieve the arithmetic fact “3 + 4 = 7”, a model
developed in this framework would need to keep in work-
ing memory both “3” and “4”, and let activation spread so
that the baseline activation of the relevant arithmetic fact sur-
passes that of other, competing rivals.

There are three consequences of this assumption. The first
is that, in this framework, attention comes at a price. In par-
ticular, the cost associated with deploying attention is the
allocation of increasingly larger resources of working mem-
ory. Thus attention and working memory are by nature con-
nected. The second consequence is that working memory
is not only needed to store intermediate processing results
but also to overcome interference. If a model can specify a
unique retrieval pattern, as in canonical ACT-R, then there
is no way it can make a mistake. In contrast, in the proposed
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Figure 2: Overview of the ACT-R cognitive architecture

framework, errors occur naturally whenever spreading acti-
vation from working memory is not sufficient to overcome
the activation of irrelevant chunks. Thus, the presence of
specific retrieval cues in working memory is necessary to
properly guide retrieval. The third and last consequence is
that a model can learn to properly allocate attention through
reinforcement learning. This is the key for any model con-
forming to this framework to improve its own performance
over time.

Of these three consequences, the first two are the least
contentious. In fact, many authors agree upon either the
connection between attention and working memory (En-
gle 2002) or the connection between working memory and
interference management (Miller and Cohen 2001). The
reinforcement-learning nature of attention allocation, on the
contrary, is a novel prediction of this framework and re-
quires further examination. The next sections will introduce
the specific form of reinforcement learning implemented in
this framework, and summarize the results of a study that
successfully tested this prediction.

Reinforcement Learning

and Procedural Knowledge

In ACT-R, production rules are selected on the basis of their
utility, an associated scalar quantity that can be thought of
as the equivalent of the Q-value in reinforcement learning.
Like a Q-value, the utility Up of a production p is updated

at every time based on the difference between actual and
expected rewards. Specifically, the update follows the delta
rule:

U p
t =U p

t−1 +α(Rt −U p
t−1) (1)

where α is the learning rate and Rt is the current reward.
The use of RL theory to implement procedural learning is

common to both ACT-R and Soar, the two principal cogni-
tive architectures in existence. It is also consistent with the
current neuroscientific consensus on the nature of procedural
knowledge. According to this consenses, procedural knowl-
edge is related to the basal ganglia, a set of highly intercon-
nected subcortical nuclei which receive extensive dopamine
projections. Most importantly, the activity of dopamine neu-
rons has been shown to closely mimic the reward prediction
error (the difference Rt−U p

t−1 in Eq. 1) in single-cell record-
ings in primates (Schultz, Dayan, and Montague 1997;
Schultz 2000).

While reinforcement-learning models have often been
used as a computational approximation of the basal gan-
glia (Joel, Niv, and Ruppin 2002), some noteworthy differ-
ences remain. Most importantly, the biological basal gan-
glia contain at least two pathways, whose different number
of inhibitory synapses results in distinct mechanisms to ex-
cite and inhibit the release of thalamic projections to the
prefrontal cortex, thus facilitating or preventing information
from entering working memory. These two pathways can be
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Figure 3: Functional anatomy of the basal ganglia

observed by looking at the physiology of the basal ganglia,
and are highlighted in green (direct pathway) and red (indi-
rect pathway) in Fig. 4.

The existence of these two pathways has important clin-
ical effects. In a recent model, I was able to show that this
distinction can be captured within ACT-R by modifying its
procedural module to contain two set of productions (corre-
sponding to the two pathways), controlled by partially inde-
pendent parameters (Stocco 2017). Thus modified, ACT-R
models were capable of reproducing important results from
the literature and yield qualitative patterns that could not be
previously obtained from the standard architecture.

The existence of two separate pathways fits nicely with
an intuitive understanding of what attention is, and the fact
that it might require the competing processes of focusing on
a stimulus while actively ignoring and inhibiting the others.
In fact, much evidence links attention, inhibition, and basal
ganglia (Casey et al. 1997).

Testing the Framework

The previous sections have described a general framework
for selective attention that integrates several psychological
constructs. The framework’s central tenet is that attention
allocation depends on procedural learning mechanisms—
which are, in turn, controlled by the specific RL dynamics
of the basal ganglia. One straightforward way to test this
assumption is to demonstrate the existence of a correlation
between some measurable aspect of reinforcement learning
and some performance aspect of selective attention. In turn,
this requires measuring the performance of a group of par-
ticipants (N = 50) across two behavioral tasks, one that mea-
sures RL parameters and one that measures selective atten-
tion.

The PSS Task

The relative strength of the two pathways of the basal gan-
glia can be behaviorally measured through the Probabilis-
tic Stimulus Selection (PSS) task (Frank, Seeberger, and
O’Reilly 2004). The PSS task is an iterative, two-alternative
forced-choice paradigm in which participants repeatedly
choose from pairs of non-verbalizable stimuli, each of which
has a different probability of yielding a binary reward. Par-
ticipants are first trained to select the most rewarding stim-

ulus out of three different pairs. Note that the correct re-
sponse can be made by either learning to choose the most
rewarding stimulus, or by learning to avoid the least reward-
ing one. To distinguish between these two strategies, partic-
ipants are then tested over the remaining combinations of
stimuli, so that their sensitivity for learning to choose high-
reward probability stimuli (“Choose” accuracy) and their
sensitivity for learning to avoid low-reward probability stim-
uli (“Avoid” accuracy) can be measured independently. Mul-
tiple patient, pharmacological, and genetic studies (Frank,
Seeberger, and O’Reilly 2004; Frank et al. 2007a) have
shown that Choose accuracy reflects the contribution of the
direct pathway, while Avoid accuracy reflects that of the in-
direct pathway.

The Simon Task

In the Simon task (Simon 1990), participants are asked to
respond with their left and right hand to the specific visual
feature (e.g., shape) of a stimulus that appears on a screen.
For example, they might be asked to respond with their left
hand when the stimulus is a square, and with their right hand
if the stimulus is a circle. Interference occurs when a stimu-
lus is presented on the side of the screen that is contralateral
to the desired response. As a result, these “incongruent” tri-
als are less accurate and take longer than “congruent” trials
in which the stimulus appears on the side of the desired re-
sponse. This extra time reflects the additional cost necessary
to resolve conflict generated by the activation of two com-
peting responses (one for the shape, one for the position).
A review of the literature (Lu and Proctor 1995) concluded
that interference in the Simon task occurs early on, at the
moment in which the relevant and irrelevant features of the
stimuli are being processed. In addition, because the stimuli
of the Simon task do not convey any information about the
correct response, the response rule is likely retrieved from
long-term memory (Diamond 2013). Thus, it is safe to as-
sume that performance in the Simon task reflects the alloca-
tion of attention to different stimulus features, and that the
behavioral response reflects the retrieval of the instructed re-
sponse rule from long-term memory. Taken together, these
characteristics make the Simon task an ideal paradigm to
test our framework.
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Figure 4: A successful test of the framework: Performance on a selective attention task (the Simon task) is correlated with the
activity of the inhibitory pathway of the basal ganglia (as indexed by the Avoid accuracy in the PSS task)

Results

Such an experiment was recently carried out in my lab
(Stocco et al. 2017), and its results confirmed our predic-
tion: a negative correlation was found between the capac-
ity to inhibit the location of the stimulus (as indexed by the
Simon effect, or the response time difference between in-
congruent and congruent trials) and the strength of the basal
ganglia’s indirect pathway as indexed by the Avoid accuracy
[r(50)=−0.45, p= 0.001]. Even more remarkably, this cor-
relation was found to be specific to the Avoid accuracy; no
correlation was found between the size of the Simon effect
and Choose accuracy [r(50)< 0.10. p > 0.40].

Thus, these experimental results confirm two facts simul-
taneously. The first is that a reliable relationship exists be-
tween the capacity to strategically allocate attention and
procedural reinforcement learning. This confirms the broad
framework of Fig. 1. The second is that the particular im-
plementation of procedural memory that was suggested by
Stocco (2017) captures the essential characteristics of the
basal ganglia (the difference between the two pathways)
that are necessary for implementing this framework in a
biologically–plausible manner.

Discussion

This paper has outlined a minimal and general framework
to interpret selective attention as the interaction between a
limited-capacity working memory store and a procedural
learning system driven by RL, and has successfully tested
one of this framework’s crucial predictions.

It is worth noting that the proposed framework has im-
plications for the functional interpretation of basal ganglia
physiology, and, by extension, for how the role of such cir-
cuit should be modeled within a unified cognitive architec-
ture. Broadly speaking, models of the basal ganglia that in-
clude detailed physiology divide into two families. One fam-
ily, which can be traced back to Albin, Young, and Penney’s
original work (Albin, Young, and Penney 1989), assumes
that the most important characteristic of the circuit is the
competition between the direct and indirect pathways. Be-

cause of the competing activity of the two pathways, models
belonging to this family are also known as “brake and ac-
celerator” models. Models belonging to this family include
those by O’Reilly and Frank (2006) and Stocco, Lebiere,
and Anderson (2010).

According to the other family, however, the main dis-
tinction is between the basal ganglia pathway that passes
through the subthalamic nucleus (blue line in Fig. 4) and
the two pathways that pass through the striatum. This inter-
pretation was initially proposed by Kevin Gurney (Gurney,
Prescott, and Redgrave 2001), and has been implemented in
the spiking neuron models by Chris Eliasmith’s group (Elia-
smith et al. 2012; Stewart, Bekolay, and Eliasmith 2012).

The distinction between these two families might appear
exquisitely academic, and, indeed, models exist that inte-
grate both views (Frank et al. 2007b; Nambu 2004). How-
ever, the difference between the two types of models re-
flects a deeper disagreement on the role of the basal ganglia.
Gurney’s (2001) landmark model was explicitly proposed to
frame the basal ganglia as an action selection mechanism.
In contrast, while brake–accelerator models might be used
to perform action selection, they tend to have a more gen-
eral function. For instance, in the Prefrontal–Basal Ganglia
Working Memory model (O’Reilly and Frank 2006) all the
basal ganglia actions (which correspond to the opening and
closing of cortical “gates”) can fire simultaneously, while the
Conditional Routing model (Stocco, Lebiere, and Anderson
2010) is only limited by a bottleneck of how much informa-
tion can be transferred per cycle of operation.

Since our results favor the first family of models, it worth
pondering whether procedural should also include an action
selection bottleneck. Because the proposed framework was
implemented in ACT-R, it did inherit the architecture’s serial
nature and single-production bottleneck. However, as noted
in previous work (Stocco 2017), this is not a strict require-
ment of the proposed procedural module.

A second interesting consequence is related to the rela-
tionship between basal ganglia and cortex. For instance, the
Conditional Routing model (Stocco, Lebiere, and Anderson
2010) assumes that all cortical areas are constantly exchang-
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ing information, so that their contents are constantly subject
to the risk of being accidentally overwritten. According to
this model, the basal ganglia are mostly needed to block and
inhibit most signals and prioritize weaker ones that would
be quickly overwritten by more established cortico-cortical
connections. This is not the case, however, in PBWM, where
the connections between prefrontal and posterior regions are
organized in a much tighter way, and the basal ganglia are
mostly needed to let information in at the appropriate times.
While both models could be, in principle, correct, our re-
sults identified a specific correlation between attention and
the (inhibitory) indirect pathway only, thus suggesting that
inhibition of incoming signals is more important that their
excitation. In turn, this seems to favor the Conditional Rout-
ing model over PBWM. It also suggests that, in a more re-
alistic cognitive architecture, buffers should be directly con-
nected with each other, with large opportunities for working
memory contents to be accidentally overwritten—and cor-
respondingly greater needs for inhibitory processes in atten-
tion control.
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