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Abstract

In this position paper, we propose a game theoretic formu-
lation of the adversarial learning problem called a Repeated
Bayesian Stackelberg Game (RBSG) that can be used by a
prediction mechanism to make itself robust against adversar-
ial examples.

Introduction

Adversarial learning (Huang et al. 2011) is an important
problem in several machine learning-based prediction sys-
tems such as email spam filters, online recommender sys-
tems, text classifier and sentiment analyzing techniques
on social media, and, automatic video and image clas-
sifers. Recently, a type deep network-based model of ad-
versarial learning called Generative Adversarial Networks
(GANSs) (Goodfellow and et al. 2014) have gained popular-
ity. In GANs, a learning algorithm, called a discriminator,
is tasked with the problem of correctly predicting or label-
ing data passed to it into a finite set of classes. However, an
adversary, called the generator, continuously tries to learn
the discriminator’s prediction mechanism and creates mali-
cious or adversarial examples of data that are passed on to
the discriminator. The objective of the generator is to cre-
ate enough adversarial examples so that the discriminator’s
classification mechanism results in increased misclassifica-
tion. The main contribution of GANs has been to show that
the generator can create adversarial examples that are very
close to valid examples. A GAN models adversarial learn-
ing as a two-player, zero-sum game between the discrimina-
tor and generator, and solves it as a minimax optimization
problem. While the capability of GANs in generating adver-
sarial examples has been well-researched, the topic of mak-
ing the discriminator robust to the adversarial examples is
less well understood. In this position paper, we posit that a
game theory based framework called a Repeated Bayesian
Stackelberg Game (RBSG) can be used by the discriminator
to model its interaction with the generator within an adver-
sarial GAN setting and make its prediction mechanism more
robust against adversarial examples.

Game theory-based analysis of adversarial learning set-
tings have been recently proposed in literature (Liu and
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Chawla 2009), albeit not in the context of a GAN. Many of
these analyses model the interaction between the two play-
ers, the adversary and the learner, as a sequential or Stackel-
berg game where players take turns to make their moves or
actions. In the context of adversarial learning GANSs, the dis-
criminator’s action is to select a prediction mechanism from
a set of prediction mechanisms. On the other hand, the gen-
erator’s action is to select a perturbation function from a set
of perturbation functions to create adversarial examples. As
the game is sequential, the discriminator moves first, and,
consequently, the generator can observe the discriminator’s
prediction mechanism (action). However, when the discrim-
inator selected its prediction mechanism, it was unaware of
the generator’s action - how and if the generator created
an adversarial example and gave to it as input. To handle
this uncertainty, a probability distribution is used by the dis-
criminator to model the generator’s possible choices or types
over its set of perturbation functions. This uncertainty model
used by the generator yields a Bayesian Stackelberg game.
In (Grosshans et al. 2013), it was shown that the selected ac-
tions of the discriminator and generator calculated using an
adversarial learning Bayesian Stackelberg game correspond
to a unique Nash equilibrium.

However, a shortcoming of the existing Bayesian Stackel-
berg game-based adversarial learning is that the probability
distribution over the generator types used by the discrimi-
nator, is guessed by the discriminator. Not having a realistic
estimate of this probability distribution can lead to incorrect
calculations and incorrect action selection by the discrimi-
nator. Consequently, the game’s outcome could deviate from
the Nash equilibrium. To address this issue, we posit to inte-
grate a repeated game framework with a Bayesian Stackel-
berg Game, as described in the next section.

Adversarial Learning as Repeated Bayesian
Stackelberg Game (RBSG)

We model the interaction between the discriminator and gen-
erator as a 2-player repeated, Bayesian Stackelberg game
where D and G are the two players representing the dis-
criminator and generator respectively. The objective of D
is to learn the probabilities with which G uses different ad-
versarial strategies. Following (Grosshans et al. 2013), each
input is denoted by the tuple (X, y;, z;), where X; is the set



of input values, y; is the ground truth label for X;, and z;
is the label (adversarial or non-adversarial) for X; intended
by G. D takes X; as input and outputs a label fy (X;) us-
ing its prediction mechanism, where W is a set of attributes
that parameterizes D’s prediction mechanism. We assume
W € W, where W is a set of prediction mechanisms that
D is aware of through prior training. D’s utility for predict-
ing a set of inputs, X = { X}, can be expressed as:

[X]
ta(W, X, cq) = — Z ca(X) (fw (Xi) — i) + Qalfw),

where Qq(fw) = ||fw]| is a regularizer term and ¢, is the
prediction cost to D for input X;. Here, | fyy (X;) — y;| gives
the error in prediction by D and the first term on the r.h.s.
can be considered as D’s penalty for incorrect prediction.
The problem facing D in evaluating the above equation is
that it cannot distinguish whether an input X is valid ver-
sus adversarial. We assume that G uses a perturbation func-
tion to generate adversarial example X; from valid example
X;. The degree of perturbation however might vary; differ-
ent types of generators could perturb the input to different
degrees. In general, we say that a generator, G%, of type
6; € ©, will perturb the input using perturbation function
¢;j where, ¢;(X;,0;) = X;. D’s utility function can then be
rewritten as:

ﬁd(w X, Cd, e) =

X

ch(qu (X3, 03)) (fw (65(Xi,05)) — 1:))* | + Qa(fw)

where p is a probability distribution over G’s set of types O.

We model the generator G’s utility in a similar manner.
Only, we note that G’s objective is to get D’s output to cor-
respond to its intended label z; for input example X;. The
utility received by G for set of adversarial inputs is then
given by:

ig(W, K, cg) = = > cg(Xi) (fiw (Xi)—2)*+Q(X;, X)),
=1

where ¢, () is the benefit that G gets from this misprediction
by D and QQ(XZ',X}) is G’s effort to perturb X; (Alfeld,
Zhu, and Barford 2017).

To solve this game, D finds the best weight pa-
rameters for its classifer W* € W, that satisfies
W*[¢] = arg max 1a(W, X, cq, ©). Correspondingly,

G observes the W selected by D and then select a suit-

able type (or perturbation) ¢* that satisfies ¢*[W] =

arg max uqy(W, X, ¢g). The Bayes-Nash equilibrium of the
X

game is then given by the pair (W*, ¢*).

Till now, we assumed that while solving for W*[¢]|, D
has information about p, the probability distribution of G’s
types (perturbation functions). However, in real-life settings,
it is unrealistic for D to have exact knowledge of its ad-
versary, G’s type distribution p(). To address this issue, we
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Figure 1: Schematic of our proposed GAN-based adversarial
learning model using repeated Bayesian Stackelberg game.

propose that D simulates possible games with a virtual gen-
erator G’. Each game is represented as a game tree with al-
ternating moves by D and G upto a specified horizon h. As
there are could be presumably many possible perturbation
functions (types) used by G’ at each of its moves, yield-
ing an infeasibly large game tree, D resorts to probabilistic
sampling of the game tree using Monte Carlo Tree Search
(MCTS) (Browne and et al. 2012). A schematic for our ap-
proach is shown in Fig. 1. Within the repeated game, D can
use fictitious play or Bayesian learning with G’ to observe
the different perturbation function selection frequencies of
G’and estimate the probability distribution over Gs types
more precisely. This would enable D to calculate p and the
Nash equilibrium of the RBSG more accurately. As our on-
going work, we are implementing the proposed RBSG ap-
proach for adversarial learning for text classification. To the
best of our knowledge, our work is one of the first attempts
to address robustness issues of the discriminator in adversar-
ial GAN settings using a repeated game framework.
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