
Holographic Declarative Memory:
Using Distributional Semantics within ACT-R

Matthew A. Kelly
The Pennsylvania State University

University Park, PA
matthew.kelly@psu.edu

David Reitter
The Pennsylvania State University

University Park, PA
reitter@psu.edu

Abstract

We explore replacing the declarative memory system of the
ACT-R cognitive architecture with a distributional semantics
model. ACT-R is a widely used cognitive architecture, but
scales poorly to big data applications and lacks a robust model
for learning association strengths between stimuli. Distribu-
tional semantics models can process millions of data points
to infer semantic similarities from language data or to in-
fer product recommendations from patterns of user prefer-
ences. We demonstrate that a distributional semantics model
can account for the primacy and recency effects in free recall,
the fan effect in recognition, and human performance on it-
erated decisions with initially unknown payoffs. The model
we propose provides a flexible, scalable alternative to ACT-
R’s declarative memory at a level of description that bridges
symbolic, quantum, and neural models of cognition.

Introduction

The ACT-R cognitive architecture (Anderson and Lebiere
1998) provides a symbolic, high-level account of declarative
memory that has explained much behavioral data. Distribu-
tional models of memory (e.g., Jones and Mewhort 2007)
can describe exactly how memories and associations are
formed and work well in big-data contexts (Rutledge-Taylor,
Vellino, and West 2008). Are symbolic and distributional ar-
chitectures compatible, and can they be unified?

We demonstrate that a distributional model integrated
with ACT-R can effectively substitute for the ACT-R Declar-
ative Memory (DM). Our model, Holographic Declarative
Memory (HDM), accounts for primacy and recency effects
in free recall, the fan effect in recognition, and human
performance on iterated decision. HDM provides a flexi-
ble, scalable alternative to ACT-R’s DM. HDM is a vector-
symbolic (Gayler 2003) or conceptual space (Lieto, Chella,
and Frixione 2017) model, and as such, operates at a level of
description that is the lingua franca of cognitive modeling,
bridging symbolic, quantum, and neural models. In develop-
ing HDM as a module for ACT-R, our intent is help advance
cognitive science toward a cognitive architecture capable of
modeling human performance at all scales of learning.

ACT-R

The ACT-R cognitive architecture consists of perceptual and
motor modules that interact with the agent’s environment,
working memory buffers which hold the active data in the
agent’s mind, a declarative memory that holds the agent’s
world knowledge, and a procedural memory that controls
the flow of information and evaluates possible actions.

ACT-R’s declarative memory (DM) consists of items of
knowledge, called chunks, weighted by an estimate of the
probability that chunk is useful in the agent’s current con-
text. Each chunk is a list of slot:value pairs (e.g., ”name:tiger
type:animal has:stripes”).

In ACT-R, the agent’s current context serves as a cue to
the memory system. Chunks in memory are activated ac-
cording to a combination of the chunk’s base-level activa-
tion, which reflects how frequently and recently that chunk
has been accessed, and the amount of activation that spreads
from the cue to the chunk, which reflects the strength of
the association between the cue and the chunk. More active
memories are retrieved more easily and quickly.

In vector-symbolic models, each memory is represented
by a vector, which can be understood as a point on the sur-
face of a hypersphere of all possible memories. The dis-
tance from the cue’s vector to a given memory’s vector in
this high-dimensional space is the activation of that memory
with respect to the cue. The geometries of the space estimate
the probability of the relevance of the memory given the cue
(Kelly, Kwok, and West 2015). As such, the distance can be
understood as a realization of DM’s spreading activation.

BEAGLE

In the BEAGLE model of semantic memory (Jones and Me-
whort 2007), each word is represented by two vectors: an
environment vector that represents the percept of a word and
a memory vector that represents the concept of a word.

An environment vector (denoted by e) stands for what a
word looks like in writing or sounds like when spoken. In
our simulations, environment vectors are generated by ran-
domly sampling values from a Gaussian distribution with
a mean of zero and a variance of 1/n, where n is the di-
mensionality. In BEAGLE, the dimensions are meaningless,
only the relationships between vectors are meaningful. The
number of dimensions, n, determines the fidelity with which

A Standard Model of Mind:
AAAI Technical Report FS-17-05

Copyright c© 2017

382

BEAGLE stores the word co-occurrence information from a
corpus, such that smaller n yields poorer encoding.

Memory vectors (denoted by m) represent the associa-
tions a word has with other words. Memory vectors are con-
structed as the model reads the corpus. Memory vectors are
holographic in that they use circular convolution (denoted by
∗) to compactly encode associations between words (Plate
1995). Given a sentence, for each word in the sentence, vec-
tors representing all sequences of words in the sentence (or
grams) that include the target word are summed together and
added to the target word’s memory vector.

When adding grams to a target word’s memory vector,
each word in those grams is represented by an environment
vector, with the exception of the target word, which is re-
placed by the placeholder vector. The placeholder vector is
generated randomly like an environment vector. We use ”?”
to denote the placeholder, as it functions much like a ques-
tion mark. The memory vector for a word can be understood
as the sum of all questions to which that word is the answer.

Given the sentence, “eagles soar over trees”, we update
the memory vectors for each word in the sentence: meagles,
msoar, mover and mtrees. Each memory vector is updated
with a sum of grams. msoar, is updated with the bigrams
“eagles ?” and “? over”, the trigrams “eagles ? over” and “?
over trees”, and the tetragram “eagles ? over trees”.

BEAGLE’s algorithm is not specific to language and has
been applied to iterated decision, math cognition, and play-
ing simple games (Rutledge-Taylor et al. 2014). BEAGLE
can also be used as a recommender-system for films and re-
search papers (Rutledge-Taylor, Vellino, and West 2008).

Holographic Declarative Memory

Holographic Declarative Memory (HDM), first proposed by
Kelly, Kwok, and West (2015), is a module for the Python
implementation of ACT-R (Stewart and West 2007). Both
Python ACT-R and HDM are available through GitHub1.

HDM is a variant of BEAGLE designed to interface with
the ACT-R procedural memory. ACT-R can add chunks to
and request chunks from HDM. However, unlike DM, HDM
does not store chunks. Instead, HDM stores associations be-
tween values. Each value is represented in memory by a
holographic vector that moves in relation to the vectors of
other values as chunks are added to HDM. Next, we review
how cognitive operations are performed, from elementary
ones to complex ones for which empirical data exist.

Add a chunk with slots

Typically in ACT-R, a chunk consists of an unordered set of
slot:value pairs. HDM represents each slot by a randomly
generated permutation Pslot. Each value is represented by
an environment vector evalue and a memory vector mvalue.

Each mvalue is a sum of questions to which the value
is an answer. E.g., when the chunk ”color:red shape:square
size:large” is added, mred, msquare, and mlarge are updated.

1Python ACT-R with HDM can be downloaded from
https://github.com/MatthewAKelly/ccmsuite and example ACT-
R HDM models can be downloaded from https://github.com/
MatthewAKelly/HDM

To update mred, the four questions ”What color is it?”,
”What color is the square?”, ”What color is the large thing?”
and ”What color is the large square?” are added:

(1)
mred,t = αmred,t−1 + qcolor:? + qcolor:? shape:square

+ qcolor:? + qcolor:? size:large

+ qcolor:? shape:square size:large

where t is the current time step and α is the forgetting rate.
Each question is represented by a cue vector, q, constructed
by permuting each evalue by the corresponding Pslot and
then convolving. Using the placeholder vector, Φ, the ques-
tion ”What color is the large square?” is constructed as:

(2)qcolor :? shape:square = (PcolorΦ) ∗ (Pshapeesquare)

Add a chunk without slots

Python ACT-R allows chunks that are ordered sequences of
values (e.g., ”large red square”). To encode chunks without
slots, HDM uses the permutation Pbefore recursively to cre-
ated nested permutations. The cue vector for ”What came
after large and before square?” or ”large ? square” is:

qlarge ? square = (Pbefore((Pbeforeelarge) ∗Φ)) ∗ esquare
(3)

HDM uses skip-grams such that values in a chunk do not
need to be consecutive to be associated with each other. For
example, in ”large red square”, ”? square” (i.e., ”What came
before square?”) is added to both mlarge and mred.

Recall: request with one unknown

To recall something, the request to HDM must pro-
vide a chunk with exactly one unknown (e.g., ”color:?
shape:square size:large”). In exact matching, the chunk is
represented by the corresponding cue vector. In partial
matching, the chunk is decomposed into all sub-questions
(e.g., ”What color is it?”, ”What color is the square?”, ”What
color is the large thing?”, and ”What color is the large
square?”) and represented as the sum of those questions.

The memory vector with the highest similarity to the cue
vector, or sum of cue vectors, is selected as the response.
Similarity between vectors is measured by the vector cosine.
The unknown in the chunk is then replaced with the response
and the modified chunk is returned.

Recognition: request with no unknowns

To recognize something, the request to HDM must provide
a chunk with no unknowns. HDM then computes the coher-
ence of the chunk. Coherence is calculated as the mean co-
sine between the memory vector for each value in the chunk
and the cue vectors for a chunk with that value substituted
for an unknown, e.g., for ”color:red shape:square”:

(4)0.5(cosine(qcolor:? + qcolor:? shape:square,mred)

+ cosine(qshape:? + qcolor:red shape:?,msquare))

383

Decay and the Serial Position Curve

In DM, each chunk i in memory has a base level activa-
tion Bi that decays as a power function of the time since the
chunk was last added to memory,

(5)Bi = ln(

n∑

j=1

t−d
j)

where n is the number of times chunk i is presented, tj is the
time since the jth presentation, and d is the rate of decay.

Conversely, HDM has association strengths, but no base
level activation. The activation of a value is a function of
the distance on the surface of the hypersphere between that
value and a given cue. The structure of HDM commits us
to representing the availability of information in memory as
entirely contingent on associations.

The serial position effect (Ebbinghaus 1885) is the finding
that when people study a list, the items at the beginning and
end of the list are remembered best. The recall advantage
for items at the beginning of the list (the primacy effect) is
generally attributed to participants having longer to process
and rehearse those items. There are, however, several com-
peting theories of the recall advantage for items at the end
of list (the recency effect). In DM, the recency effect is due
to decay. In distributed processing models, a recency effect
can be modeled as interference.

In models such as holographic memories and neural net-
works, whenever an item is added to memory, the memory
engram for that item interferes with the engrams of prior
items (retroactive interference), and is also interfered with
by those prior engrams (proactive interference).

TODAM, a holographic memory model (Murdock 1982),
uses a forgetting parameter α to update memory,

(6)mi = αmi−1 + vi

where vi is the vector for a memory engram and mi−1 and
mi are the memory vector before and after storage. The
forgetting parameter α ranges from 0 to 1. Multiplying the
memory store by α privileges new information over old in-
formation, allowing retroactive interference to be stronger
than proactive interference, which produces a recency ef-
fect. We use α as a parameter to control forgetting in HDM.
Franklin and Mewhort’s (2015) holographic model accounts
for both primacy and recency effects in terms of rehearsal
and interference without needing a time-based memory de-
cay function. Franklin and Mewhort’s model is a single holo-
graphic memory vector that stores all list items. As such, all
new items stored interfere with all previous items.

Conversely, HDM has one memory vector per item, such
that interference occurs only between different associations
for a given item. As a result, there is less interference in
HDM than in a single vector model. This property allows
HDM to better handle big data, such as modeling language
learning, but at the cost of making HDM a less accurate
model of small scale memory tasks such as list learning.

To compensate, we add a time-based decay function to
HDM. We hold that this time-based decay function is prop-
erly understood as a proxy for sources of interference that

-2

-1

0

1

2

3

4

0 10 20 30

es
tim

at
ed

 lo
g

od
ds

time (seconds)

Presentations

DM

HDM η=1

Figure 1: Activation of a chunk over time in DM and HDM.

have not been explicitly modeled. Decay is implemented by
adding noise over time to all memory vectors,

(7)mt = mt−1 + ηn

where m is a memory vector, t is the time in seconds, n is
a random vector, and η is the noise parameter. If η is zero,
no noise is added and there is no decay. For larger η, more
noise is added per second and decay is steeper.

To compare DM and HDM, we treat the coherence of a
chunk in HDM as analogous to base level activation in DM.
In Figure 1, we compare activation of a chunk over 30 sec-
onds in DM and HDM without parameter fitting. DM has
d = 0.5 and HDM has dimensionality = 64, α = 0.9, and
η = 1. The chunk is repeatedly stored in memory at random
intervals indicated in Figure 1 by vertical lines.

Activation in DM is an estimate of the log odds of the rele-
vance of the chunk to the current situation. Similarly, cosine
in HDM is an estimate of the root probability of the rele-
vance of the chunk. Accordingly, for Figure 1, we convert
cosine C to activation A as follows:

(8)A = ln(
C2

1− C2
)

We find that adding noise in HDM is more stochastic than
decay in DM but produces comparable performance.

In Figure 2 we compare two ACT-R models of the se-
rial position effect to human data from Murdock (). The
two models are identical except that one uses DM and the
other uses HDM. Participants and models were presented
20 words at a rate of one word every 2 seconds. After, par-
ticipants reported back the list in any order (free recall). For
simplicity, the models did not report back the list and instead
we use the state of memory as a proxy for recall probability.

To study the list, the models stores chunks that contain
pairs of items: the current item and the previous item. There
are 22 items in total: the 20 words of the list, the start list
cue, and the end list cue. There are 21 chunks, one for each
pair of items: (START 1, 1 2, ... 9 10, 10 END). In Figure 2,
the activation of a given item is calculated as the mean of the
activations of the two chunks that the item appears in (e.g.,
for word 6, the activation is the mean of the chunks 5 6 and

0%

20%

40%

60%

80%

100%

0 5 10 15 20

re
ca

ll
pr

ob
ab

ili
ty

, a
ct

iv
at

io
n,

 c
os

in
e

serial position

Murdock (1962)
HDM
DM

Figure 2: Performance as a function of list position.

6 7). We divide DM activation by 4 to convert to predicted
recall probability. Error bars indicate standard deviation.

To capture the primacy effect, the models used the follow-
ing rehearsal strategy: rehearse the chunk for the current and
previous item of the list, then return to the start of the list and
rehearse forward as far as can be recalled.

DM and HDM use the same equation to determine time to
recall a chunk. Retrieval time RT is an exponential function
of Ai, the cosine or activation of chunk i,

(9)RT = Fe−Ai

where F is the latency factor. Because HDM’s cosine and
DM’s activation have different ranges, HDM and DM may
need to use different F. In a task where DM chunks have
Ai > 1, retrieval will be faster than for DM than HDM.

For the free recall task, to prevent the models from re-
hearsing through the entire 20 item list every 2 seconds dur-
ing the study phase, we used long retrieval latencies for both
models. For DM, we used the standard decay rate of d = 0.5
and a latency of F = 3.0. For HDM, we used a dimensional-
ity of 64, α = 0.9, η = 1, and F = 0.5.

Both models strongly correlate with the human data (r =
0.87 for DM, r = 0.90 for HDM). Parameters were set by
hand. Better fits for both models may be obtainable using
systematic parameter fitting, but the results in Figure 2 are
sufficient to demonstrate that HDM provides at least as good
a fit to human forgetting data as DM.

Interference and the Fan Effect

In the fan effect task (Anderson 1974), participants study
words pairs, such as person-location pairs (e.g., hippy-park
or lawyer-bank). At test, participants are presented pairs that
are either studied (targets, e.g., hippy-park) or novel (foils,
e.g., lawyer-park) and must quickly discriminate.

The fan of a word is the number of pairs in the study set
that contain that word. For example, if there are three pairs
in the study set that contain hippy (hippy-park, hippy-bank,
and hippy-store), then hippy has a fan of three. The fan effect
is the finding that, at test, participants are slower to make
judgments about words with a higher fan. If lawyer has a fan
of 1 (i.e., is only in the pair lawyer-bank), then participants

1

1.05

1.1

1.15

1.2

1.25

1.3

1.35

1.4

1:1 1:2 1:3 2:2 2:3 3:3

re
ac

tio
n

tim
e

(s
ec

on
ds

)

fan of targets

Anderson (1974)

HDM

DM

Figure 3: Response time for targets in the fan effect task.

are faster to make judgments about pairs that contain lawyer
than they are about pairs that contain hippy.

The fan effect illustrates a fundamental principle of hu-
man memory: the availability of information in memory is
an estimate of the probability that the information is useful
in the current situation. If a participant has studied 3 pairs
with the word hippy, each pair has only a 1 in 3 chance of
being useful for judging a test pair that contains hippy. Con-
versely, if the participant has studied only one pair with the
word lawyer, that pair has a 100% chance of being useful for
judging a test pair that contains lawyer.

DM models the fan effect by setting the association
strengths between the words in the cue and the pairs in mem-
ory to a function of the fan of each word (Anderson and
Reder 1999). The DM model produces a response time T in
seconds that is a function of the fans fperson and fplace,

(10)T = 0.233(fpersonfplace)
1/3 + 0.845

which correlates well with humans (r = 0.95, see Figure 3).
Unfortunately, to build the DM model, associations

strengths must be set by hand. Conversely, HDM learns as-
sociation strengths from experience.

Kelly, Kwok, and West (2015) model the fan effect task
using HDM. Without changing any parameters in Anderson
and Reder’s (1999) model of the fan effect, the HDM model
provides a good fit to the data (r = 0.91). Both the DM and
HDM models used a latency of F = 0.63 and no decay.

Kelly, Kwok, and West show how the fan effect arises
from the geometry of the vector space. The HDM fan ef-
fect model uses a dimensionality of 256, but the effect can
be illustrated in three dimensions (see Figure 4).

The memory vector for hippy, mhippy, is constructed as
a sum of cues. For a fan of 2, those cues are ”Who is in the
park?” and ”Who is in the bank?”, respectively represented
by the chunks ”? park” and ”? bank” and the correspond-
ing vectors q? park and q? bank. If these two questions are
weighted equally, mhippy will be equidistant from q? park

and q? bank. HDM uses randomly generated vectors that are
orthogonal in expectation. If we assume the vectors are per-
fectly orthogonal, mhippy will be at a 45◦angle from q? park

and q? bank with a cosine of 0.71.
At a fan of 3, mhippy is equidistant from q? park, q? bank

and q? store with a 55◦angle and a cosine of 0.58.

q?park

q?bank

q?store

mhippy

mhippy

q?park

q?bank

Figure 4: mhippy with a fan of 2 (left) or 3 (right). Figure
from Kelly, Kwok, and West (2015).

As the fan increases, the angle between memory and cues
increases. For a fan of f and perfectly orthogonal vectors,
the cosine is f−1/2, i.e., the square root of the probability
of the item conditional on the cue (Kelly, Kwok, and West
2015).

In the fan effect task, all pairs of words in the study set are
equiprobable. For events with unequal probabilities, the co-
sine underestimates the probability of low frequency events.
Kelly, Kwok, and West (2015) note that for n events with
frequencies v1 to vn, the cosine of event i is:

(11)cosine =
vi√

v21 + ...+ v2i + ...+ v2n

HDM can be understood as a realization of the quantum
probability model of human judgment within a cognitive ar-
chitecture. Like HDM, quantum probability models (Buse-
meyer et al. 2011) use the cosine between vectors to model
human probability judgments.

However, HDM differs from quantum probability mod-
els in two important ways: (1) HDM can learn the strengths
of associations between items from experience whereas in
quantum models the vector similarities are set by hand, and
(2) quantum probability models use the square root of the
frequencies and the square of the cosine so as to compute the
exact probability. HDM is unable to do (2) because of (1).
Taking the square root of the frequencies requires knowing
the frequencies a priori, whereas HDM learns the frequen-
cies gradually through experience.

Like HDM, when making decisions from experience, peo-
ple tend to underestimate the probability of rare events (Her-
twig et al. 2004). The cosine’s biased estimate of probability
may support HDM’s validity as a cognitive model.

Procedural Learning and Decision Making

Procedural and declarative memory are often characterized
as memory of how and what, respectively. Procedural mem-
ory consists of ”if condition then action” production rules
weighted by utilities that estimate how good it is to do ac-
tion. Declarative memory consists of information weighted
by how useful it is to remember that information given a cue.

At a high level of description these two systems are the
same: ”if cue then information” is not much different from
”if condition then action”. Chunks and production rules are

0%

20%

40%

60%

80%

100%

 Trials 1 to 200 Trials 201 to 400

R
es

po
ns

e
A

cc
ur

ac
y

Block Half

Correctly chose J

Correctly chose T

Correctly chose V

Figure 5: Rate at which participants makes optimal deci-
sions. Figure adapted from Walsh and Anderson (2011).

0%

20%

40%

60%

80%

100%

Trials 1 to 200 Trials 201 to 400

R
es

po
ns

e
A

cc
ur

ac
y

Block Half

Correctly chose J

Correctly chose T

Correctly chose V

Figure 6: Rate at which HDM makes optimal decisions.

both weighted by probability estimates. Activation estimates
the probability that a chunk is useful to know and utility es-
timates the probability that a production rule is useful to do.

The usefulness of knowing and doing are distinct. For
example, knowing that touching a sharp object will hurt
you is useful. Touching a sharp object is not. Nevertheless,
the functional similarity between procedural and declarative
memory suggest that the same model of memory could be
used to implement both systems.

Walsh and Anderson (2011) have human participants per-
form an iterated binary decision task with initially unknown
payoffs. The tasks consists of a choice, made by pressing
one of two keys, followed by an abstract cue, and then a
second choice. After the second choice, participants receive
either positive or negative feedback. This completes a single
trial of the task. The probability of positive feedback is con-
tingent on the first and second choice as well as the cue. The
task is difficult to learn as optimal choices yield a maximum
of a 50% chance of positive feedback.

As shown in Figure 5, over 400 trials, participants gradu-
ally learn to perform the task well. Results are from Walsh
and Anderson (2011). Data is averaged over 26 participants.
Error bars indicate standard error.

Kelly and West (2013) apply HDM to Walsh and Ander-

386

son’s task. HDM is initialized to a state of optimism. Each
possible decision in the task, decisioni, is initially asso-
ciated with positive feedback, good, by adding the chunk
”decisioni good” to memory 30 times.

Kelly and West find that optimism motivates the model
to explore the decision space. This is consistent with the
broaden-and-build (Fredrickson 2001) theory of positive
emotions, which holds that positive emotions broaden the
repertoire of actions considered when making decisions.

Each completed trial is represented sequentially as a
chunk of the form ”start decision1 cue decision2 feedback”
and added to memory. The first decision is made by query-
ing memory with ”start ? good” and the second is made
by querying with ”start decision1 cue ? good”. The HDM
model learns to perform the task well at a rate similar to hu-
mans (see Figure 6). The HDM model uses 256 dimensional
vectors. Results are averaged across 26 runs of the model.

A critical difference between procedural memory and
declarative memory is that procedural memory uses rein-
forcement learning. In reinforcement learning, an associa-
tion is learned as a function of how surprising it is, i.e., the
magnitude of the difference between prediction and obser-
vation. Walsh and Anderson find that human performance
on the task is consistent with temporal difference reinforce-
ment learning models. We speculate that performance of the
Kelly, Kwok, and West model could be improved by imple-
menting surprise-driven reinforcement learning in HDM.

Conclusion

In sum, we believe that an integrated theory of cognition
should have both a symbolic (e.g., a description in terms of
features and values) and a sub-symbolic (e.g., a description
in terms of vector algebra) component to provide satisfying
explanations, and that distributed semantic representations
are a natural candidate for an account of declarative memory
and its learning processes.

Acknowledgements

The authors gratefully acknowledge funding from NSF
grants SES-1528409 and BCS-1734304.

References

Anderson, J. R., and Lebiere, C. 1998. The Atomic Compo-
nents of Thought. Mahwah, NJ: Lawrence Erlbaum Asso-
ciates.
Anderson, J. R., and Reder, L. M. 1999. The fan effect: New
results and new theories. Journal of Experimental Psychol-
ogy: General 128:186–197.
Anderson, J. R. 1974. Retrieval of propositional information
from long-term memory. Cognitive Psychology 6:451–474.
Busemeyer, J. R.; Pothos, E. M.; Franco, R.; and Trueblood,
J. 2011. A quantum theoretical explanation for probability
judgement errors. Psychological Review 118:193–218.
Ebbinghaus, H. 1885. Memory: A Contribution to Experi-
mental Psychology. New York, N.Y.: Dover.

Franklin, D. R. J., and Mewhort, D. J. K. 2015. Memory as
a hologram: An analysis of learning and recall. Canadian
Journal of Experimental Psychology 69:115–135.
Fredrickson, B. L. 2001. The role of positive emotions in
positive psychology: The broaden-and-build theory of posi-
tive psychology. American Psychologist 56:218–226.
Gayler, R. W. 2003. Vector symbolic architectures answer
jackendoff’s challenges for cognitive neuroscience. In Pro-
ceedings of the Joint International Conference on Cognitive
Science. Sydney, Australia: University of New South Wales.
133–138.
Hertwig, R.; Barron, G.; Weber, E. U.; and Erev, I. 2004.
Decisions from experience and the effect of rare events in
risky choice. Psychological Science 15(8):534–539. PMID:
15270998.
Jones, M. N., and Mewhort, D. J. K. 2007. Representing
word meaning and order information in a composite holo-
graphic lexicon. Psychological Review 114:1–37.
Kelly, M. A., and West, R. L. 2013. Decision-making in a
dynamically structured holographic memory: Learning from
delayed feedback. In West, R., and Stewart, T., eds., Pro-
ceedings of the 12th International Conference on Cognitive
Modeling. Ottawa, Canada: Carleton University. 47–52.
Kelly, M. A.; Kwok, K.; and West, R. L. 2015. Holographic
declarative memory and the fan effect: A test case for a new
memory model for act-r. In Taatgen, N. A.; van Vugt, M. K.;
Borst, J. P.; and Mehlhorn, K., eds., Proceedings of the 13th
International Conference on Cognitive Modeling. Gronin-
gen, the Netherlands: University of Groningen. 148–153.
Lieto, A.; Chella, A.; and Frixione, M. 2017. Conceptual
spaces for cognitive architectures: A lingua franca for dif-
ferent levels of representation. Biol. Inspired Cognitive Ar-
chitectures 19:1–9.
Murdock, B. B. The serial position effect of free recall.
Murdock, B. B. 1982. A theory for the storage and retrieval
of item and associative information. Psychological Review
89:609–626.
Plate, T. A. 1995. Holographic reduced representations.
IEEE Transactions on Neural Networks 6:623–641.
Rutledge-Taylor, M. F.; Kelly, M. A.; West, R. L.; and Pyke,
A. A. 2014. Dynamically structured holographic memory.
Biologically Inspired Cognitive Architectures 9:9–32.
Rutledge-Taylor, M. F.; Vellino, A.; and West, R. L. 2008.
A holographic associative memory recommender system. In
Proceedings of the 3rd International Conference on Digital
Information Management, 87–92.
Stewart, T. C., and West, R. L. 2007. Deconstructing and
reconstructing ACT-R: Exploring the architectural space.
Cognitive Systems Research 8(3):227–236.
Walsh, M. M., and Anderson, J. R. 2011. Learning from de-
layed feedback: Neural responses in temporal credit assign-
ment. Cognitive, Affective, and Behavioral Neuroscience
11:131–143.

387

