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Abstract 
In recent artificial intelligence (AI) research, convolutional neural 
networks (CNNs) can create artificial agents capable of self-
learning. Self-learning autonomous moving objects utilize ma-
chine vision techniques based on processing and recognizing 
objects in digital images. Afterwards, deep reinforcement learn-
ing (Deep-RL) is applied to understand and learn intelligent ac-
tions and controls. The objective of our research is to study meth-
ods and designs on how machine vision and deep machine learn-
ing algorithms can be implemented in a virtual world (e.g., a 
computer game) for moving objects (e.g., vehicles or aircrafts) to 
improve their navigation and detection of threats in real life. In 
this paper, we create a framework for generating and using data 
from computer games to be used in CNNs and Deep-RL to per-
form intelligent actions. We show the initial results of applying 
the framework and identify various military applications that may 
benefit from this research. 

 Introduction   
Training a computer to identify adversary weapons or hos-
tile vehicles in complex backgrounds, as one of the ma-
chine vision applications, would bring values to the mili-
tary especially in real-time and post-mission processing. 
Real-time applications include assisting human sensor op-
erators in analyzing footage or scanning for threat indica-
tions, missile launches, or navigation cues when the sensor 
is not actively being monitored by an operator. Combining 
the visual scene (optical flow) with other sensor data (posi-
tion, pose, control inputs) might provide valuable insight in 
training autonomous systems to identify, emulate and 
augment human performance. The first step is to filter 
large volumes of data collected from electro-optical (EO) 
sensors, which reduces the human-manageable load for fast 
analysis. The second step is to analyze the filtered data sets 
to perform interesting discovery. For example, intelligent 
machine vision analysis can be used to find crash wreckage 
                                                
 

in the open ocean, or to spot deviations in the behavior of 
flocking birds that could indicate the bird disturbances 
caused by troop movements. 
 Although most autonomous aerial navigation techniques 
use a combination of global positioning system (GPS) and 
inertial navigation system (INS) information, they cannot 
perform the interesting discovery described above. New 
sensor technologies such as LIDAR-based sensors, which 
can detect and avoid obstacles, evaluate landing zones, and 
plan routes to perform tasks (AACUS 2017), can only gen-
erate more image data but cannot perform behavior-based 
discovery. 
 Machine vision with machine learning implemented in 
moving objects such as cars, helicopters, drones, and many 
other unmanned aerial vehicles (UAV) has potential to 
overcome the limitations of INS, GPS and sensors, which 
not only improves orienting and sensing the environment, 
but also performs advanced self-learning and discovering 
to accomplish various tasks such as monitoring its sur-
roundings, detecting objects, mapping terrain, and for au-
tonomous controls.  
 
There are three types of machine learning as follows: 

•� Supervised learning: requires training data to cor-
relate input (e.g., images) and output (e.g., object 
classes) so that it can predict output for a new da-
ta. The convolutional neural networks (CNNs) 
method used in machine vision is a supervised 
learning method.  

•� Reinforcement learning: requires the feedback 
reward data from the environment through explo-
ration to modify the parameters in a system so it 
learns to reinforce the right actions and avoid the 
wrong ones. Reinforcement learning is important 
for self-learning, real-time learning and adaptation 
in large-scale applications (DeepMind 2017).  

•� Unsupervised learning: requires only input data to 
discover patterns and anomalies. It can be used to 

Deep Models and Artificial Intelligence for Military Applications:
AAAI Technical Report FS-17-03

231



spot the deviation behavior such as the bird devia-
tion combined with machine vision. 

 Machine vision and machine learning are important 
methods and components in modern AI designs and sys-
tems. When the components of machine vision and ma-
chine learning are implemented in military sensors, they 
have the potential to increase the value of the sensors, for 
example, to have the sensors working towards better un-
derstanding and learning the environment instead of just 
collecting data. Commercial companies have already been 
working in developing machine vision and machine learn-
ing applications supported by sensor footage libraries 
(FLIR 2017). For example, traffic camera systems can use 
machine learning to improve their ability to detect and dis-
cern people either riding bicycles or cars. Military applica-
tions such as automatic target detection could reduce oper-
ator work load and improve detection probabilities.  Other 
applications related to the military mission include vehicle 
mounted cameras to assess features in the field of view to 
identify weapons, weapon signatures, or other items of 
interest. Machine vision and machine learning would be 
useful for such military applications as:  

•� Performing AI-guided human attention manage-
ment: Single-seat aircraft so that the sensor can 
perform while the pilot is flying the aircraft or do-
ing other tasks in real-time. 

•� Optimizing human supervisor to remote systems 
ratios: A single operator is monitoring multiple 
cameras in a security role in real-time. 

•� Automating analysis/flagging of post-mission data 
by providing human analysts with highlights. 

•� Distributing tasks of persistent multi-constraint, 
correlation and processing with an AI assistance.  

•� Cross-correlating target ID with other (e.g., elec-
tromagnetic) sensors to increase ID confidence. 

•� Recognizing landscape/terrain, sidereal scene fea-
tures to validate navigation in GPS-denied envi-
ronment. 

•� Performing critical intervention: recognition of 
hazard conditions, imminent collisions by optical 
flow. 

•� Identifying hand-held weapons at an airport 
checkpoint or large vehicles such as commercial 
aircraft. 

  
  
 Another analysis of data is to discover patterns over time 
in the scene such as identifying 1) people moving much 
more quickly than usual (e.g., running away from some-
thing); 2) people meeting at time that they don't usually 
meet; or 3) places devoid of people that are normally occu-
pied, which is outside the realm of the purely optical tech-
niques and more in the data realm. 

 The machine vision applications discussed above require 
large amount of training data - e.g., images and their clas-
ses due to the nature of supervised machine learning. Alt-
hough the training data is difficult and expensive to gener-
ate in reality, previous research demonstrated that it’s 
much easier to obtain the training data from a virtual envi-
ronment – e.g., video games (Knight 2016) (Shafaei 2016).  

Overview of Methods and Concepts 
The objective of our research is to study methods and de-
signs on how machine vision and deep machine learning 
algorithms can be implemented in a virtual world (e.g., a 
computer game) for moving objects (e.g., vehicles or air-
crafts) to improve their navigation and detection of threats 
in real life. 
 
In order to understand the methods and framework used, 
we provide an overview of important concepts in machine 
vision, machine learning and artificial intelligence.  

Machine Vision Using Convolutional Neural Net-
works (CNNs) 
An artificial neural network is a computer system that 
models the structure and functions of the brain that can be 
used for a machine vision task such as recognizing the ob-
ject class of an input image. A CNN has groups of nodes 
interconnected with each other and organized into multiple 
layers as shown in Fig. 1. The input layer is known as the 
convolutional layer, in which digital images are prepro-
cessed and many feature detectors are applied. Multiple 
convolutional layers may be added to the network to im-
prove its training and learning rate. The second layer is the 
pooling layer, which ensures spatial invariance in the im-
ages. In other words, if an object in the image tilts, twists, 
or is oriented differently, then the feature detector will still 
be able to recognize them. The third layer is the flattening 
layer where the nodes are organized into a column of val-
ues for the final layer. The final layer is the fully connected 
layer, where all features are processed through the network 
and an image class is determined (Eremenko 2017). To 
summarize, a CNN will recognize images and classify 
them. Such a neural network is trained through forward 
and backward propagation algorithms, which will adjust 
the assigned weights on each connection. By executing 
many iterations of that process, a CNN will improve its 
performance and learn based on the data it is trained on.  
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Fig. 1 Convolutional Neural Network Architecture 

CNNs have become an effective technique for machine 
vision because of the architecture of pre-processing layers 
(i.e., convolutional layer and pooling layer) and improved 
computational power of parallel processing.  

Reinforcement Learning  
Reinforcement learning is a field of artificial intelligence 
that focuses on connecting situations to actions to maxim-
ize a numerical reward signal (i.e., Q-value). In other 
words, the learning model does not have a set of instruc-
tion to take specific actions, but instead it seeks to find out 
which actions produce the most reward through trial and 
error. Q-learning, a reinforcement learning algorithm, is 
used to learn an optimal policy by estimating the Q-value 
function using a multi-layer perceptron with one hidden 
layer (DeepMind 2017). A reward function maps each 
state-action pair to a single number, or reward. The learn-
ing agent’s main purpose is to maximize the total reward. 
For example, a drone may receive a reward of plus one 
(+1) for finding and landing on a flat, safe landing zone. 
However, it may receive punishment of minus one (-1) for 
landing on rocky, unstable surfaces. A Q-value function 
specifies the total amount of reward a learning agent can 
receive overtime within a certain state (Dwibedi).  
 

 
 

Fig. 2 Basic Reinforcement Learning Cycle 
 

As shown in Fig. 2, the learning cycle of RL is 1) an agent 
observes some information (a state, e.g., images taken from 
the first-person view of a driving car); 2) the agent takes an 
action (e.g., turning left, right or going straight) based on 
its current state and internal knowledge models; 3) then the 
environment gives an immediate reward or penalty (e.g., 
continuing driving or crash). Reinforcement learning in-
volves algorithms to learn, update or modify a cumulative 
reward Q-value. These cumulative rewards are learned by 
using the Q-learning algorithm (Watkins 1989). 

Self-learning Using Deep Reinforcement Learning 
Techniques (Deep-RL) 
Q-learning includes data structures consisting of environ-
ment states, actions, discount factor, reward, and state tran-
sition probabilities (Egorov 2016). Q-learning tries to learn 
the value of being in a given state and action. Deep Q-
learning or Deep-RL use deep neural networks such as 
CNNs to learn Q-value and allow learning agents (Sallab), 
for example, a CNN can take a set of images as input and 
try to estimate a state-action value function. 
 Reinforcement learning differs from standard supervised 
learning because correct input/output pairs, i.e., ground 
truth, are never presented. Instead, learning is conducted 
through reinforced immediate rewards. Also it is a so-
called self-learning based on reward from environment 
(Sutton 2017).  

Initial Design of the Framework 
Fig. 3 shows the initial design of our work. It contains a 
block diagram of the concepts of reinforcement learning 
(RL) and includes the Q-learning algorithm. The Q-
learning algorithm does not require a model of the envi-
ronment, instead, the Q-value measures a preference of a 
state-action pair at a given time step, in which the solution 
decides on the most preferred pair. The Q-value can be 
approximated with a deep neural network, which is known 
as a deep Q-network (DQN). Our design is to integrate 
multiple CNNs into a RL learning paradigm: 

•� CNN 1:  serves as machine vision classifier, learn-
ing relations between input images and output ob-
ject classes or relations between input images and 
output actions. For example, in Fig. 3, CNN 1 
takes state (e.g., images, sensor data such as lon-
gitude, latitude, altitude and heading) and output 
object class (e.g., dogs, cats, trees or object la-
bels).  

•� CNN 2 (DQN): serves as cumulative reward (Q-
value) predictor, learning relations between input 
state, action and output cumulative reward. For 
example, in Fig. 3, CNN 2 takes state and action 
(e.g., turn left, right or go straight, stop, speed up 
or slow down, avoid collision) and output a cumu-
lative reward (e.g., winning or losing of the whole 
games). 
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•� CNN 3: serves as immediate reward predictor, 
learning relations between input state, action and 
output immediate reward. In Fig. 3, CNN 3 takes 
state, action and output immediate reward (e.g., 
crashes, continuation of flying or driving). 

As explained earlier, CNNs require training data of input 
and output pairs. As shown in Fig. 3, examples of input 
and output training data for CNN 1, CNN 2 and CNN 3 
need to be collected in a virtual environment such as in a 
video game. A standard CNN classifies input images into 
object classes. In RL, the Q-learning algorithm allows 
learning total reward (Q-value) from immediate rewards 
from the environment and the current state (observations). 

The following steps and methods in our research frame-
work are summarized as follows: 
Step 1: Research basic CNN models that can be deployed 
as CNN 1, CNN 2, and CNN 3 
Step 2: Collect training data for CNN 1, CNN 2 and CNN 
3 from a virtual environment such as a video game 
Step 3: Train and test CNN 1, CNN 2 or CNN 3 to the self-
learning of an autonomous moving object in a virtual envi-
ronment such as a video game.  
Step 4: Research basic Q-learning models that can be de-
ployed in this problem 
Step 5: Apply Q-learning together with CNN 1, CNN 2 
and CNN 3 to the self-learning of an autonomous moving 
object in a virtual environment such as a video game 

 
 

Fig. 3 Initial Design of Machine Vision and Deep-RL  

Initial Results for Step 1: Basic CNNs Models 
Supervised learning was used to train a learning agent –e.g. 
a moving object. In this section, we described basic CNNs 
can be trained using historical data and machine vision 
tools that can be useful in the framework. Data sets are 
images and corresponding classes. In previous research, 
datasets have been collected from Grand Theft Auto V in 
order to rapidly create pixel-accurate semantic class maps 
for these extracted screenshots from computer games 
(Ritcher 2016).  
 
Once an image dataset is created, a CNN can be trained 
from these images. The CNN was created in a Python us-
ing Spyder, TensorFlow and Keras as machine learning 
libraries implemented in Python. Two datasets were tested.  

•� One dataset contained two image classes – i.e. 
cats and dogs. The CNN produced accurate results 
above 95% after 25 iterations during testing. This 
means that the CNN was consistently predicting 
new images of cats or dogs.  

•� Another test data is about the Electro-optical (EO) 
sensors. We tested the CNN with an unclassified 
sample data of EO images. The sample data con-
tains a large collection of visible and IR imagery 
collected by the US Army Night Vision and Elec-
tronic Sensors Directorate (NVESD). It contains 
207 GB of IR imagery and 106 GB of EO images 
along with an image viewer, ground truth data, 
meteorological data, photographs of the objects. 
The EO dataset contained nine image classes from 
Electro-optical (EO) sensors. Each image class 
contains 500 images. The CNN was able to classi-
fy the images at an accuracy of 99% accurate after 
the second iteration. A total of 25 iterations were 
performed and the test accuracy reached 99.53%.  
75% of the dataset was used for the training set 
and 25% was used for the test set. To be specific, 
375 images of each image class for training set, 
and 125 images of each image class for the test 
set. The baseline object recognition for this data 
was given using the method of representation 
learning through topic models (Flenner 2015).  We 
also obtained similar test accuracy for the IR data 
set. The CNNs used for EO/IR classifications 
were used as the foundation and bases for other 
CNN applications in the framework.  

  
 Additionally, we also explored an open source machine 
vision library known as OpenCV to extract and pre-process 
image frames from a driving video. OpenCV could also 
detect lane lines in the road (Collie 2017). Before the im-
ages are used in the CNN, it must be preprocessed. To pre-
process images, grayscale and Gaussian blur filters are 
applied to the image. Following the OpenCV documenta-
tion (OpenCV 2017), a region of interest was defined to 
focus on a specific area in the image. Next, the canny edge 
detection algorithm was used to convert the original image 
into binary image, which reduces the noise and highlights 
the edges around objects. Finally, the Hough line transform 
algorithm is applied to detect and highlight straight lines, 
which overlaps the lane lines in the road. The purpose of 
applying the edge detections is to correlate them to the 
initial actions in RL for autonomous control. 

234



Initial Results for Step 2: Collecting Training 
Data 

To collect training data from a virtual environment, we 
have researched the following video games: 

•� Grand Theft Auto 5 (GTA V) (Rockstar Games 
2017) is a popular game and can be modified to 
represent military and security environment for 
data collection. A memory-less computer vision 
AI is shown playing GTA V (Sentdex 2017). The 
workflow and software the researchers used to 
capture the data are documented in (Roberson 
2017). 

•� The military game with the helicopter is Arma 3 
and VBS 3 (Bohemia Interactive 2017). 

•� Marine Corps and Naval Aviation training use the 
Aeschelon Image Generator (Aechelon Technolo-
gy 2017).  

•� Neurala is the AI spotting poachers and elephants 
(Collie 2017). 

•� A google video tool running an analysis on videos 
and returning keywords was shown in (Ritman 
2017). It could potentially tie into Lexical Link 
Analysis (Zhao 2015). 

•� Many of the sensors for military aircrafts and 
ground station would potentially have knowledge 
and data sets to share (FLIR 2017). 

•� The video game engine Unity can also create 
training data with ground truth based on video 
creation and human participation. 

 
For our initial tests, Unity was used to create the environ-
ment. To apply machine vision and Deep-RL, we explored 
Udacity, an online educational organization, which open 
sourced a self-driving car simulator made from Unity for 
the purpose of machine learning. The self-driving car con-
tains three cameras with perspectives from the center, left, 
and right of the car. The simulator contains a training mode 
and an autonomous mode. The training mode allows a user 
to virtually drive the car and generate data based on the 
user’s driving. During data generation, images are captured 
from center, left, and right cameras correlated to steering 
angle, speed, throttle, and brake. The user manually con-
trols the car with four keys (W, A, S, D) from the key-
board, “W” for forward acceleration, “A” for left, “S” for 
reverse, and “D” for right. The user must manually drive 
around the track for multiple laps up to five, which pro-
duces data for supervised learning (regression) of a CNN.  
The CNN here is a regression model instead of a classifica-
tion model that output is a predicted steering angle, instead 
of an object class. When the recording is finished, the data 
is saved as a csv file, which can be used in training the 
CNN. In supervised learning, a CNN model requires train-
ing data collected by recording images and the related 

measures, i.e., steering angles, throttles, speed and brake, 
of the car driving for five laps around the track. The user 
manually controls the car throughout those five laps.  
 

Initial Results for Step 3: Training and Test-
ing a CNN 

 
In this example, the CNN only learns steering angles. The 
CNN was trained to use the images to predict steering an-
gles based on the five laps of the training data. After the 
autonomous model (i.e., the CNN) has been trained, the 
autonomous mode allows the user to test the model. 
 
During the training phase, the training data is loaded and 
split into training and validation set. The csv file is read 
into a single data frame variable, which allows the user to 
select rows and columns by their file names. The car imag-
es from the center, left, and right perspectives are saved as 
the input data. The output data is the steering angles.  
The training and testing process are implemented in a serv-
er and client architecture. The simulator stays in the server 
and the CNN stays in the client. In the testing phase, the 
simulator sends test images (i.e., images taken from the test 
driving) to the CNN, the CNN predicts the steering angles 
based on the trained CNN, and sends predicted steering 
angles, together with specified speed (throttles depend on 
the speed) to the simulator. The simulator uses the predict-
ed steering angles to simulate the test driving (Udacity 
2017). It would allow for real-time data augmentation on 
images on the CPU in parallel to training the model on the 
GPU. Fig. 4 shows the Unity car drives in the autonomous 
mode using the predicted steering angles from the trained 
CNN. 
 

 
 

Fig. 4 The Unity Autonomous Car Driving Using Trained CNNs 
and Predicted Steering Angles  
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Step 4 to 5: Discussion and Future Work 
In this paper, we focus on virtual environments for these 
applications. While rewards from real-world environment 
are often expensive to measure or delayed, virtual envi-
ronments typically will produce better data because a cus-
tom simulation allows the user to vary different weather 
conditions, types of terrain, landscapes, and civilization. 
Another advantage is that there would be no issues with 
camera equipment. An artificial moving object trained in a 
virtual environment would be safer and cost efficient. 
 
Additionally, machine vision suggests the ability to search 
for specific objects in videos (Ritman 2017). The tool that 
is used to analyze videos and to make its contents searcha-
ble can be valuable for military applications, for example, 
searching for weapons or potential threats from surveil-
lance videos. While part of our design is to generate ma-
chine learning training data from commercial simulation 
engines capable of simulating realistic environments such 
as day, color, and visible light scenes, the artifacts of 
blooming, blurring and latency are less well simulated in 
EO/IR scenes. Better EO/IR scenes might be obtained in 
the sensor footage libraries. 
  
When the model is tested and drives autonomously, the 
model would be identical to the user’s driving at best.  We 
will perform Step 4 to 5 in the future. With Deep-RL, a 
virtual moving object might be able to fully self-learn from 
its own reward collected from its environment and drive 
better than a human operator.  

Conclusion 
The contribution of this paper is that we developed a 
framework using machine vision and deep reinforcement 
learning for self-learning moving objects in a virtual envi-
ronment. We showed the initial results of applying the 
framework and created initial CNNs to classify EO images 
with high test accuracy, later the CNNs were adapted to 
train a Unity car learning from data collected from a hu-
man driver in a virtual environment. We also discussed 
various military applications that may benefit from the 
results of this research. 
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